/* * Copyright (c) Contributors, http://opensimulator.org/ * See CONTRIBUTORS.TXT for a full list of copyright holders. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyrightD * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of the OpenSimulator Project nor the * names of its contributors may be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE DEVELOPERS ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE CONTRIBUTORS BE LIABLE FOR ANY * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ using System; using System.Reflection; using System.Collections.Generic; using System.Xml; using log4net; using OMV = OpenMetaverse; using OpenSim.Framework; using OpenSim.Region.Physics.Manager; using OpenSim.Region.Physics.ConvexDecompositionDotNet; namespace OpenSim.Region.Physics.BulletSPlugin { [Serializable] public class BSPrim : BSPhysObject { private static readonly ILog m_log = LogManager.GetLogger(MethodBase.GetCurrentMethod().DeclaringType); private static readonly string LogHeader = "[BULLETS PRIM]"; // _size is what the user passed. Scale is what we pass to the physics engine with the mesh. private OMV.Vector3 _size; // the multiplier for each mesh dimension as passed by the user private bool _grabbed; private bool _isSelected; private bool _isVolumeDetect; // _position is what the simulator thinks the positions of the prim is. private OMV.Vector3 _position; private float _mass; // the mass of this object private OMV.Vector3 _force; private OMV.Vector3 _velocity; private OMV.Vector3 _torque; private OMV.Vector3 _acceleration; private OMV.Quaternion _orientation; private int _physicsActorType; private bool _isPhysical; private bool _flying; private bool _setAlwaysRun; private bool _throttleUpdates; private bool _floatOnWater; private OMV.Vector3 _rotationalVelocity; private bool _kinematic; private float _buoyancy; private int CrossingFailures { get; set; } public BSDynamics VehicleController { get; private set; } private BSVMotor _targetMotor; private OMV.Vector3 _PIDTarget; private float _PIDTau; private BSFMotor _hoverMotor; private float _PIDHoverHeight; private PIDHoverType _PIDHoverType; private float _PIDHoverTau; public BSPrim(uint localID, String primName, BSScene parent_scene, OMV.Vector3 pos, OMV.Vector3 size, OMV.Quaternion rotation, PrimitiveBaseShape pbs, bool pisPhysical) : base(parent_scene, localID, primName, "BSPrim") { // m_log.DebugFormat("{0}: BSPrim creation of {1}, id={2}", LogHeader, primName, localID); _physicsActorType = (int)ActorTypes.Prim; _position = pos; _size = size; Scale = size; // prims are the size the user wants them to be (different for BSCharactes). _orientation = rotation; _buoyancy = 0f; _velocity = OMV.Vector3.Zero; _rotationalVelocity = OMV.Vector3.Zero; BaseShape = pbs; _isPhysical = pisPhysical; _isVolumeDetect = false; VehicleController = new BSDynamics(PhysicsScene, this); // add vehicleness _mass = CalculateMass(); DetailLog("{0},BSPrim.constructor,call", LocalID); // do the actual object creation at taint time PhysicsScene.TaintedObject("BSPrim.create", delegate() { // Make sure the object is being created with some sanity. ExtremeSanityCheck(true /* inTaintTime */); CreateGeomAndObject(true); CurrentCollisionFlags = PhysicsScene.PE.GetCollisionFlags(PhysBody); }); } // called when this prim is being destroyed and we should free all the resources public override void Destroy() { // m_log.DebugFormat("{0}: Destroy, id={1}", LogHeader, LocalID); base.Destroy(); // Undo any vehicle properties this.VehicleType = (int)Vehicle.TYPE_NONE; PhysicsScene.TaintedObject("BSPrim.destroy", delegate() { DetailLog("{0},BSPrim.Destroy,taint,", LocalID); // If there are physical body and shape, release my use of same. PhysicsScene.Shapes.DereferenceBody(PhysBody, null); PhysBody.Clear(); PhysicsScene.Shapes.DereferenceShape(PhysShape, null); PhysShape.Clear(); }); } // No one uses this property. public override bool Stopped { get { return false; } } public override OMV.Vector3 Size { get { return _size; } set { // We presume the scale and size are the same. If scale must be changed for // the physical shape, that is done when the geometry is built. _size = value; Scale = _size; ForceBodyShapeRebuild(false); } } public override PrimitiveBaseShape Shape { set { BaseShape = value; PrimAssetState = PrimAssetCondition.Unknown; ForceBodyShapeRebuild(false); } } // 'unknown' says to choose the best type public override BSPhysicsShapeType PreferredPhysicalShape { get { return BSPhysicsShapeType.SHAPE_UNKNOWN; } } public override bool ForceBodyShapeRebuild(bool inTaintTime) { if (inTaintTime) { _mass = CalculateMass(); // changing the shape changes the mass CreateGeomAndObject(true); } else { PhysicsScene.TaintedObject("BSPrim.ForceBodyShapeRebuild", delegate() { _mass = CalculateMass(); // changing the shape changes the mass CreateGeomAndObject(true); }); } return true; } public override bool Grabbed { set { _grabbed = value; } } public override bool Selected { set { if (value != _isSelected) { _isSelected = value; PhysicsScene.TaintedObject("BSPrim.setSelected", delegate() { DetailLog("{0},BSPrim.selected,taint,selected={1}", LocalID, _isSelected); SetObjectDynamic(false); }); } } } public override bool IsSelected { get { return _isSelected; } } public override void CrossingFailure() { CrossingFailures++; if (CrossingFailures > BSParam.CrossingFailuresBeforeOutOfBounds) { base.RaiseOutOfBounds(RawPosition); } else if (CrossingFailures == BSParam.CrossingFailuresBeforeOutOfBounds) { m_log.WarnFormat("{0} Too many crossing failures for {1}", LogHeader, Name); } return; } // link me to the specified parent public override void link(PhysicsActor obj) { } // delink me from my linkset public override void delink() { } // Set motion values to zero. // Do it to the properties so the values get set in the physics engine. // Push the setting of the values to the viewer. // Called at taint time! public override void ZeroMotion(bool inTaintTime) { _velocity = OMV.Vector3.Zero; _acceleration = OMV.Vector3.Zero; _rotationalVelocity = OMV.Vector3.Zero; // Zero some other properties in the physics engine PhysicsScene.TaintedObject(inTaintTime, "BSPrim.ZeroMotion", delegate() { if (PhysBody.HasPhysicalBody) PhysicsScene.PE.ClearAllForces(PhysBody); }); } public override void ZeroAngularMotion(bool inTaintTime) { _rotationalVelocity = OMV.Vector3.Zero; // Zero some other properties in the physics engine PhysicsScene.TaintedObject(inTaintTime, "BSPrim.ZeroMotion", delegate() { // DetailLog("{0},BSPrim.ZeroAngularMotion,call,rotVel={1}", LocalID, _rotationalVelocity); if (PhysBody.HasPhysicalBody) { PhysicsScene.PE.SetInterpolationAngularVelocity(PhysBody, _rotationalVelocity); PhysicsScene.PE.SetAngularVelocity(PhysBody, _rotationalVelocity); } }); } bool TryExperimentalLockAxisCode = false; BSConstraint LockAxisConstraint = null; public override void LockAngularMotion(OMV.Vector3 axis) { DetailLog("{0},BSPrim.LockAngularMotion,call,axis={1}", LocalID, axis); // "1" means free, "0" means locked OMV.Vector3 locking = new OMV.Vector3(1f, 1f, 1f); if (axis.X != 1) locking.X = 0f; if (axis.Y != 1) locking.Y = 0f; if (axis.Z != 1) locking.Z = 0f; LockedAxis = locking; if (TryExperimentalLockAxisCode && LockedAxis != LockedAxisFree) { // Lock that axis by creating a 6DOF constraint that has one end in the world and // the other in the object. // http://www.bulletphysics.org/Bullet/phpBB3/viewtopic.php?p=20817 // http://www.bulletphysics.org/Bullet/phpBB3/viewtopic.php?p=26380 PhysicsScene.TaintedObject("BSPrim.LockAngularMotion", delegate() { CleanUpLockAxisPhysicals(true /* inTaintTime */); BSConstraint6Dof axisConstrainer = new BSConstraint6Dof(PhysicsScene.World, PhysBody, OMV.Vector3.Zero, OMV.Quaternion.Inverse(RawOrientation), true /* useLinearReferenceFrameB */, true /* disableCollisionsBetweenLinkedBodies */); LockAxisConstraint = axisConstrainer; PhysicsScene.Constraints.AddConstraint(LockAxisConstraint); // The constraint is tied to the world and oriented to the prim. // Free to move linearly OMV.Vector3 linearLow = OMV.Vector3.Zero; OMV.Vector3 linearHigh = PhysicsScene.TerrainManager.DefaultRegionSize; axisConstrainer.SetLinearLimits(linearLow, linearHigh); // Angular with some axis locked float f2PI = (float)Math.PI * 2f; OMV.Vector3 angularLow = new OMV.Vector3(-f2PI, -f2PI, -f2PI); OMV.Vector3 angularHigh = new OMV.Vector3(f2PI, f2PI, f2PI); if (LockedAxis.X != 1f) { angularLow.X = 0f; angularHigh.X = 0f; } if (LockedAxis.Y != 1f) { angularLow.Y = 0f; angularHigh.Y = 0f; } if (LockedAxis.Z != 1f) { angularLow.Z = 0f; angularHigh.Z = 0f; } axisConstrainer.SetAngularLimits(angularLow, angularHigh); DetailLog("{0},BSPrim.LockAngularMotion,create,linLow={1},linHi={2},angLow={3},angHi={4}", LocalID, linearLow, linearHigh, angularLow, angularHigh); // Constants from one of the posts mentioned above and used in Bullet's ConstraintDemo. axisConstrainer.TranslationalLimitMotor(true /* enable */, 5.0f, 0.1f); axisConstrainer.RecomputeConstraintVariables(RawMass); }); } else { // Everything seems unlocked CleanUpLockAxisPhysicals(false /* inTaintTime */); } return; } // Get rid of any constraint built for LockAxis // Most often the constraint is removed when the constraint collection is cleaned for this prim. private void CleanUpLockAxisPhysicals(bool inTaintTime) { if (LockAxisConstraint != null) { PhysicsScene.TaintedObject(inTaintTime, "BSPrim.CleanUpLockAxisPhysicals", delegate() { if (LockAxisConstraint != null) { PhysicsScene.Constraints.RemoveAndDestroyConstraint(LockAxisConstraint); LockAxisConstraint = null; DetailLog("{0},BSPrim.CleanUpLockAxisPhysicals,destroyingConstraint", LocalID); } }); } } public override OMV.Vector3 RawPosition { get { return _position; } set { _position = value; } } public override OMV.Vector3 Position { get { // don't do the GetObjectPosition for root elements because this function is called a zillion times. // _position = ForcePosition; return _position; } set { // If the position must be forced into the physics engine, use ForcePosition. // All positions are given in world positions. if (_position == value) { DetailLog("{0},BSPrim.setPosition,call,positionNotChanging,pos={1},orient={2}", LocalID, _position, _orientation); return; } _position = value; PositionSanityCheck(false); PhysicsScene.TaintedObject("BSPrim.setPosition", delegate() { DetailLog("{0},BSPrim.SetPosition,taint,pos={1},orient={2}", LocalID, _position, _orientation); ForcePosition = _position; }); } } public override OMV.Vector3 ForcePosition { get { _position = PhysicsScene.PE.GetPosition(PhysBody); return _position; } set { _position = value; if (PhysBody.HasPhysicalBody) { PhysicsScene.PE.SetTranslation(PhysBody, _position, _orientation); ActivateIfPhysical(false); } } } // Check that the current position is sane and, if not, modify the position to make it so. // Check for being below terrain and being out of bounds. // Returns 'true' of the position was made sane by some action. private bool PositionSanityCheck(bool inTaintTime) { bool ret = false; // We don't care where non-physical items are placed if (!IsPhysicallyActive) return ret; if (!PhysicsScene.TerrainManager.IsWithinKnownTerrain(RawPosition)) { // The physical object is out of the known/simulated area. // Upper levels of code will handle the transition to other areas so, for // the time, we just ignore the position. return ret; } float terrainHeight = PhysicsScene.TerrainManager.GetTerrainHeightAtXYZ(RawPosition); OMV.Vector3 upForce = OMV.Vector3.Zero; float approxSize = Math.Max(Size.X, Math.Max(Size.Y, Size.Z)); if ((RawPosition.Z + approxSize / 2f) < terrainHeight) { DetailLog("{0},BSPrim.PositionAdjustUnderGround,call,pos={1},terrain={2}", LocalID, RawPosition, terrainHeight); float targetHeight = terrainHeight + (Size.Z / 2f); // If the object is below ground it just has to be moved up because pushing will // not get it through the terrain _position.Z = targetHeight; if (inTaintTime) { ForcePosition = _position; } // If we are throwing the object around, zero its other forces ZeroMotion(inTaintTime); ret = true; } if ((CurrentCollisionFlags & CollisionFlags.BS_FLOATS_ON_WATER) != 0) { float waterHeight = PhysicsScene.TerrainManager.GetWaterLevelAtXYZ(_position); // TODO: a floating motor so object will bob in the water if (Math.Abs(RawPosition.Z - waterHeight) > 0.1f) { // Upforce proportional to the distance away from the water. Correct the error in 1 sec. upForce.Z = (waterHeight - RawPosition.Z) * 1f; // Apply upforce and overcome gravity. OMV.Vector3 correctionForce = upForce - PhysicsScene.DefaultGravity; DetailLog("{0},BSPrim.PositionSanityCheck,applyForce,pos={1},upForce={2},correctionForce={3}", LocalID, _position, upForce, correctionForce); AddForce(correctionForce, false, inTaintTime); ret = true; } } return ret; } // Occasionally things will fly off and really get lost. // Find the wanderers and bring them back. // Return 'true' if some parameter need some sanity. private bool ExtremeSanityCheck(bool inTaintTime) { bool ret = false; uint wayOutThere = Constants.RegionSize * Constants.RegionSize; // There have been instances of objects getting thrown way out of bounds and crashing // the border crossing code. if ( _position.X < -Constants.RegionSize || _position.X > wayOutThere || _position.Y < -Constants.RegionSize || _position.Y > wayOutThere || _position.Z < -Constants.RegionSize || _position.Z > wayOutThere) { _position = new OMV.Vector3(10, 10, 50); ZeroMotion(inTaintTime); ret = true; } if (_velocity.LengthSquared() > BSParam.MaxLinearVelocity) { _velocity = Util.ClampV(_velocity, BSParam.MaxLinearVelocity); ret = true; } if (_rotationalVelocity.LengthSquared() > BSParam.MaxAngularVelocitySquared) { _rotationalVelocity = Util.ClampV(_rotationalVelocity, BSParam.MaxAngularVelocity); ret = true; } return ret; } // Return the effective mass of the object. // The definition of this call is to return the mass of the prim. // If the simulator cares about the mass of the linkset, it will sum it itself. public override float Mass { get { return _mass; } } // TotalMass returns the mass of the large object the prim may be in (overridden by linkset code) public virtual float TotalMass { get { return _mass; } } // used when we only want this prim's mass and not the linkset thing public override float RawMass { get { return _mass; } } // Set the physical mass to the passed mass. // Note that this does not change _mass! public override void UpdatePhysicalMassProperties(float physMass, bool inWorld) { if (PhysBody.HasPhysicalBody && PhysShape.HasPhysicalShape) { if (IsStatic) { PhysicsScene.PE.SetGravity(PhysBody, PhysicsScene.DefaultGravity); Inertia = OMV.Vector3.Zero; PhysicsScene.PE.SetMassProps(PhysBody, 0f, Inertia); PhysicsScene.PE.UpdateInertiaTensor(PhysBody); } else { if (inWorld) { // Changing interesting properties doesn't change proxy and collision cache // information. The Bullet solution is to re-add the object to the world // after parameters are changed. PhysicsScene.PE.RemoveObjectFromWorld(PhysicsScene.World, PhysBody); } // The computation of mass props requires gravity to be set on the object. Gravity = ComputeGravity(Buoyancy); PhysicsScene.PE.SetGravity(PhysBody, Gravity); Inertia = PhysicsScene.PE.CalculateLocalInertia(PhysShape, physMass); PhysicsScene.PE.SetMassProps(PhysBody, physMass, Inertia); PhysicsScene.PE.UpdateInertiaTensor(PhysBody); DetailLog("{0},BSPrim.UpdateMassProperties,mass={1},localInertia={2},grav={3},inWorld={4}", LocalID, physMass, Inertia, Gravity, inWorld); if (inWorld) { AddObjectToPhysicalWorld(); } } } } // Return what gravity should be set to this very moment public OMV.Vector3 ComputeGravity(float buoyancy) { OMV.Vector3 ret = PhysicsScene.DefaultGravity; if (!IsStatic) { ret *= (1f - buoyancy); ret *= GravModifier; } return ret; } // Is this used? public override OMV.Vector3 CenterOfMass { get { return RawPosition; } } // Is this used? public override OMV.Vector3 GeometricCenter { get { return RawPosition; } } public override OMV.Vector3 Force { get { return _force; } set { _force = value; if (_force != OMV.Vector3.Zero) { // If the force is non-zero, it must be reapplied each tick because // Bullet clears the forces applied last frame. RegisterPreStepAction("BSPrim.setForce", LocalID, delegate(float timeStep) { if (!IsPhysicallyActive || _force == OMV.Vector3.Zero) { UnRegisterPreStepAction("BSPrim.setForce", LocalID); return; } DetailLog("{0},BSPrim.setForce,preStep,force={1}", LocalID, _force); if (PhysBody.HasPhysicalBody) { PhysicsScene.PE.ApplyCentralForce(PhysBody, _force); ActivateIfPhysical(false); } } ); } else { UnRegisterPreStepAction("BSPrim.setForce", LocalID); } } } public override int VehicleType { get { return (int)VehicleController.Type; // if we are a vehicle, return that type } set { Vehicle type = (Vehicle)value; PhysicsScene.TaintedObject("setVehicleType", delegate() { // Done at taint time so we're sure the physics engine is not using the variables // Vehicle code changes the parameters for this vehicle type. VehicleController.ProcessTypeChange(type); ActivateIfPhysical(false); // If an active vehicle, register the vehicle code to be called before each step if (VehicleController.Type == Vehicle.TYPE_NONE) { UnRegisterPreStepAction("BSPrim.Vehicle", LocalID); UnRegisterPostStepAction("BSPrim.Vehicle", LocalID); } else { RegisterPreStepAction("BSPrim.Vehicle", LocalID, VehicleController.Step); RegisterPostStepAction("BSPrim.Vehicle", LocalID, VehicleController.PostStep); } }); } } public override void VehicleFloatParam(int param, float value) { PhysicsScene.TaintedObject("BSPrim.VehicleFloatParam", delegate() { VehicleController.ProcessFloatVehicleParam((Vehicle)param, value); ActivateIfPhysical(false); }); } public override void VehicleVectorParam(int param, OMV.Vector3 value) { PhysicsScene.TaintedObject("BSPrim.VehicleVectorParam", delegate() { VehicleController.ProcessVectorVehicleParam((Vehicle)param, value); ActivateIfPhysical(false); }); } public override void VehicleRotationParam(int param, OMV.Quaternion rotation) { PhysicsScene.TaintedObject("BSPrim.VehicleRotationParam", delegate() { VehicleController.ProcessRotationVehicleParam((Vehicle)param, rotation); ActivateIfPhysical(false); }); } public override void VehicleFlags(int param, bool remove) { PhysicsScene.TaintedObject("BSPrim.VehicleFlags", delegate() { VehicleController.ProcessVehicleFlags(param, remove); }); } // Allows the detection of collisions with inherently non-physical prims. see llVolumeDetect for more public override void SetVolumeDetect(int param) { bool newValue = (param != 0); if (_isVolumeDetect != newValue) { _isVolumeDetect = newValue; PhysicsScene.TaintedObject("BSPrim.SetVolumeDetect", delegate() { // DetailLog("{0},setVolumeDetect,taint,volDetect={1}", LocalID, _isVolumeDetect); SetObjectDynamic(true); }); } return; } public override void SetMaterial(int material) { base.SetMaterial(material); PhysicsScene.TaintedObject("BSPrim.SetMaterial", delegate() { UpdatePhysicalParameters(); }); } public override float Friction { get { return base.Friction; } set { if (base.Friction != value) { base.Friction = value; PhysicsScene.TaintedObject("BSPrim.setFriction", delegate() { UpdatePhysicalParameters(); }); } } } public override float Restitution { get { return base.Restitution; } set { if (base.Restitution != value) { base.Restitution = value; PhysicsScene.TaintedObject("BSPrim.setRestitution", delegate() { UpdatePhysicalParameters(); }); } } } // The simulator/viewer keep density as 100kg/m3. // Remember to use BSParam.DensityScaleFactor to create the physical density. public override float Density { get { return base.Density; } set { if (base.Density != value) { base.Density = value; PhysicsScene.TaintedObject("BSPrim.setDensity", delegate() { UpdatePhysicalParameters(); }); } } } public override float GravModifier { get { return base.GravModifier; } set { if (base.GravModifier != value) { base.GravModifier = value; PhysicsScene.TaintedObject("BSPrim.setGravityModifier", delegate() { UpdatePhysicalParameters(); }); } } } public override OMV.Vector3 RawVelocity { get { return _velocity; } set { _velocity = value; } } public override OMV.Vector3 Velocity { get { return _velocity; } set { _velocity = value; PhysicsScene.TaintedObject("BSPrim.setVelocity", delegate() { // DetailLog("{0},BSPrim.SetVelocity,taint,vel={1}", LocalID, _velocity); ForceVelocity = _velocity; }); } } public override OMV.Vector3 ForceVelocity { get { return _velocity; } set { PhysicsScene.AssertInTaintTime("BSPrim.ForceVelocity"); _velocity = Util.ClampV(value, BSParam.MaxLinearVelocity); if (PhysBody.HasPhysicalBody) { DetailLog("{0},BSPrim.ForceVelocity,taint,vel={1}", LocalID, _velocity); PhysicsScene.PE.SetLinearVelocity(PhysBody, _velocity); ActivateIfPhysical(false); } } } public override OMV.Vector3 Torque { get { return _torque; } set { _torque = value; if (_torque != OMV.Vector3.Zero) { // If the torque is non-zero, it must be reapplied each tick because // Bullet clears the forces applied last frame. RegisterPreStepAction("BSPrim.setTorque", LocalID, delegate(float timeStep) { if (!IsPhysicallyActive || _torque == OMV.Vector3.Zero) { UnRegisterPreStepAction("BSPrim.setTorque", LocalID); return; } if (PhysBody.HasPhysicalBody) AddAngularForce(_torque, false, true); } ); } else { UnRegisterPreStepAction("BSPrim.setTorque", LocalID); } // DetailLog("{0},BSPrim.SetTorque,call,torque={1}", LocalID, _torque); } } public override OMV.Vector3 Acceleration { get { return _acceleration; } set { _acceleration = value; } } public override OMV.Quaternion RawOrientation { get { return _orientation; } set { _orientation = value; } } public override OMV.Quaternion Orientation { get { return _orientation; } set { if (_orientation == value) return; _orientation = value; PhysicsScene.TaintedObject("BSPrim.setOrientation", delegate() { ForceOrientation = _orientation; }); } } // Go directly to Bullet to get/set the value. public override OMV.Quaternion ForceOrientation { get { _orientation = PhysicsScene.PE.GetOrientation(PhysBody); return _orientation; } set { _orientation = value; if (PhysBody.HasPhysicalBody) PhysicsScene.PE.SetTranslation(PhysBody, _position, _orientation); } } public override int PhysicsActorType { get { return _physicsActorType; } set { _physicsActorType = value; } } public override bool IsPhysical { get { return _isPhysical; } set { if (_isPhysical != value) { _isPhysical = value; PhysicsScene.TaintedObject("BSPrim.setIsPhysical", delegate() { DetailLog("{0},setIsPhysical,taint,isPhys={1}", LocalID, _isPhysical); SetObjectDynamic(true); // whether phys-to-static or static-to-phys, the object is not moving. ZeroMotion(true); }); } } } // An object is static (does not move) if selected or not physical public override bool IsStatic { get { return _isSelected || !IsPhysical; } } // An object is solid if it's not phantom and if it's not doing VolumeDetect public override bool IsSolid { get { return !IsPhantom && !_isVolumeDetect; } } // The object is moving and is actively being dynamic in the physical world public override bool IsPhysicallyActive { get { return !_isSelected && IsPhysical; } } // Make gravity work if the object is physical and not selected // Called at taint-time!! private void SetObjectDynamic(bool forceRebuild) { // Recreate the physical object if necessary CreateGeomAndObject(forceRebuild); } // Convert the simulator's physical properties into settings on BulletSim objects. // There are four flags we're interested in: // IsStatic: Object does not move, otherwise the object has mass and moves // isSolid: other objects bounce off of this object // isVolumeDetect: other objects pass through but can generate collisions // collisionEvents: whether this object returns collision events public virtual void UpdatePhysicalParameters() { if (!PhysBody.HasPhysicalBody) { // This would only happen if updates are called for during initialization when the body is not set up yet. DetailLog("{0},BSPrim.UpdatePhysicalParameters,taint,calledWithNoPhysBody", LocalID); return; } // Mangling all the physical properties requires the object not be in the physical world. // This is a NOOP if the object is not in the world (BulletSim and Bullet ignore objects not found). PhysicsScene.PE.RemoveObjectFromWorld(PhysicsScene.World, PhysBody); // Set up the object physicalness (does gravity and collisions move this object) MakeDynamic(IsStatic); // Update vehicle specific parameters (after MakeDynamic() so can change physical parameters) VehicleController.Refresh(); // Arrange for collision events if the simulator wants them EnableCollisions(SubscribedEvents()); // Make solid or not (do things bounce off or pass through this object). MakeSolid(IsSolid); AddObjectToPhysicalWorld(); // Rebuild its shape PhysicsScene.PE.UpdateSingleAabb(PhysicsScene.World, PhysBody); DetailLog("{0},BSPrim.UpdatePhysicalParameters,taintExit,static={1},solid={2},mass={3},collide={4},cf={5:X},cType={6},body={7},shape={8}", LocalID, IsStatic, IsSolid, Mass, SubscribedEvents(), CurrentCollisionFlags, PhysBody.collisionType, PhysBody, PhysShape); } // "Making dynamic" means changing to and from static. // When static, gravity does not effect the object and it is fixed in space. // When dynamic, the object can fall and be pushed by others. // This is independent of its 'solidness' which controls what passes through // this object and what interacts with it. protected virtual void MakeDynamic(bool makeStatic) { if (makeStatic) { // Become a Bullet 'static' object type CurrentCollisionFlags = PhysicsScene.PE.AddToCollisionFlags(PhysBody, CollisionFlags.CF_STATIC_OBJECT); // Stop all movement ZeroMotion(true); // Set various physical properties so other object interact properly PhysicsScene.PE.SetFriction(PhysBody, Friction); PhysicsScene.PE.SetRestitution(PhysBody, Restitution); PhysicsScene.PE.SetContactProcessingThreshold(PhysBody, BSParam.ContactProcessingThreshold); // Mass is zero which disables a bunch of physics stuff in Bullet UpdatePhysicalMassProperties(0f, false); // Set collision detection parameters if (BSParam.CcdMotionThreshold > 0f) { PhysicsScene.PE.SetCcdMotionThreshold(PhysBody, BSParam.CcdMotionThreshold); PhysicsScene.PE.SetCcdSweptSphereRadius(PhysBody, BSParam.CcdSweptSphereRadius); } // The activation state is 'disabled' so Bullet will not try to act on it. // PhysicsScene.PE.ForceActivationState(PhysBody, ActivationState.DISABLE_SIMULATION); // Start it out sleeping and physical actions could wake it up. PhysicsScene.PE.ForceActivationState(PhysBody, ActivationState.ISLAND_SLEEPING); // This collides like a static object PhysBody.collisionType = CollisionType.Static; } else { // Not a Bullet static object CurrentCollisionFlags = PhysicsScene.PE.RemoveFromCollisionFlags(PhysBody, CollisionFlags.CF_STATIC_OBJECT); // Set various physical properties so other object interact properly PhysicsScene.PE.SetFriction(PhysBody, Friction); PhysicsScene.PE.SetRestitution(PhysBody, Restitution); // DetailLog("{0},BSPrim.MakeDynamic,frict={1},rest={2}", LocalID, Friction, Restitution); // per http://www.bulletphysics.org/Bullet/phpBB3/viewtopic.php?t=3382 // Since this can be called multiple times, only zero forces when becoming physical // PhysicsScene.PE.ClearAllForces(BSBody); // For good measure, make sure the transform is set through to the motion state ForcePosition = _position; ForceVelocity = _velocity; ForceRotationalVelocity = _rotationalVelocity; // A dynamic object has mass UpdatePhysicalMassProperties(RawMass, false); // Set collision detection parameters if (BSParam.CcdMotionThreshold > 0f) { PhysicsScene.PE.SetCcdMotionThreshold(PhysBody, BSParam.CcdMotionThreshold); PhysicsScene.PE.SetCcdSweptSphereRadius(PhysBody, BSParam.CcdSweptSphereRadius); } // Various values for simulation limits PhysicsScene.PE.SetDamping(PhysBody, BSParam.LinearDamping, BSParam.AngularDamping); PhysicsScene.PE.SetDeactivationTime(PhysBody, BSParam.DeactivationTime); PhysicsScene.PE.SetSleepingThresholds(PhysBody, BSParam.LinearSleepingThreshold, BSParam.AngularSleepingThreshold); PhysicsScene.PE.SetContactProcessingThreshold(PhysBody, BSParam.ContactProcessingThreshold); // This collides like an object. PhysBody.collisionType = CollisionType.Dynamic; // Force activation of the object so Bullet will act on it. // Must do the ForceActivationState2() to overcome the DISABLE_SIMULATION from static objects. PhysicsScene.PE.ForceActivationState(PhysBody, ActivationState.ACTIVE_TAG); } } // "Making solid" means that other object will not pass through this object. // To make transparent, we create a Bullet ghost object. // Note: This expects to be called from the UpdatePhysicalParameters() routine as // the functions after this one set up the state of a possibly newly created collision body. private void MakeSolid(bool makeSolid) { CollisionObjectTypes bodyType = (CollisionObjectTypes)PhysicsScene.PE.GetBodyType(PhysBody); if (makeSolid) { // Verify the previous code created the correct shape for this type of thing. if ((bodyType & CollisionObjectTypes.CO_RIGID_BODY) == 0) { m_log.ErrorFormat("{0} MakeSolid: physical body of wrong type for solidity. id={1}, type={2}", LogHeader, LocalID, bodyType); } CurrentCollisionFlags = PhysicsScene.PE.RemoveFromCollisionFlags(PhysBody, CollisionFlags.CF_NO_CONTACT_RESPONSE); } else { if ((bodyType & CollisionObjectTypes.CO_GHOST_OBJECT) == 0) { m_log.ErrorFormat("{0} MakeSolid: physical body of wrong type for non-solidness. id={1}, type={2}", LogHeader, LocalID, bodyType); } CurrentCollisionFlags = PhysicsScene.PE.AddToCollisionFlags(PhysBody, CollisionFlags.CF_NO_CONTACT_RESPONSE); // Change collision info from a static object to a ghosty collision object PhysBody.collisionType = CollisionType.VolumeDetect; } } // Enable physical actions. Bullet will keep sleeping non-moving physical objects so // they need waking up when parameters are changed. // Called in taint-time!! private void ActivateIfPhysical(bool forceIt) { if (IsPhysical && PhysBody.HasPhysicalBody) PhysicsScene.PE.Activate(PhysBody, forceIt); } // Turn on or off the flag controlling whether collision events are returned to the simulator. private void EnableCollisions(bool wantsCollisionEvents) { if (wantsCollisionEvents) { CurrentCollisionFlags = PhysicsScene.PE.AddToCollisionFlags(PhysBody, CollisionFlags.BS_SUBSCRIBE_COLLISION_EVENTS); } else { CurrentCollisionFlags = PhysicsScene.PE.RemoveFromCollisionFlags(PhysBody, CollisionFlags.BS_SUBSCRIBE_COLLISION_EVENTS); } } // Add me to the physical world. // Object MUST NOT already be in the world. // This routine exists because some assorted properties get mangled by adding to the world. internal void AddObjectToPhysicalWorld() { if (PhysBody.HasPhysicalBody) { PhysicsScene.PE.AddObjectToWorld(PhysicsScene.World, PhysBody); } else { m_log.ErrorFormat("{0} Attempt to add physical object without body. id={1}", LogHeader, LocalID); DetailLog("{0},BSPrim.AddObjectToPhysicalWorld,addObjectWithoutBody,cType={1}", LocalID, PhysBody.collisionType); } } // prims don't fly public override bool Flying { get { return _flying; } set { _flying = value; } } public override bool SetAlwaysRun { get { return _setAlwaysRun; } set { _setAlwaysRun = value; } } public override bool ThrottleUpdates { get { return _throttleUpdates; } set { _throttleUpdates = value; } } public bool IsPhantom { get { // SceneObjectPart removes phantom objects from the physics scene // so, although we could implement touching and such, we never // are invoked as a phantom object return false; } } public override bool FloatOnWater { set { _floatOnWater = value; PhysicsScene.TaintedObject("BSPrim.setFloatOnWater", delegate() { if (_floatOnWater) CurrentCollisionFlags = PhysicsScene.PE.AddToCollisionFlags(PhysBody, CollisionFlags.BS_FLOATS_ON_WATER); else CurrentCollisionFlags = PhysicsScene.PE.RemoveFromCollisionFlags(PhysBody, CollisionFlags.BS_FLOATS_ON_WATER); }); } } public override OMV.Vector3 RotationalVelocity { get { return _rotationalVelocity; } set { _rotationalVelocity = value; Util.ClampV(_rotationalVelocity, BSParam.MaxAngularVelocity); // m_log.DebugFormat("{0}: RotationalVelocity={1}", LogHeader, _rotationalVelocity); PhysicsScene.TaintedObject("BSPrim.setRotationalVelocity", delegate() { ForceRotationalVelocity = _rotationalVelocity; }); } } public override OMV.Vector3 ForceRotationalVelocity { get { return _rotationalVelocity; } set { _rotationalVelocity = Util.ClampV(value, BSParam.MaxAngularVelocity); if (PhysBody.HasPhysicalBody) { DetailLog("{0},BSPrim.ForceRotationalVel,taint,rotvel={1}", LocalID, _rotationalVelocity); PhysicsScene.PE.SetAngularVelocity(PhysBody, _rotationalVelocity); // PhysicsScene.PE.SetInterpolationAngularVelocity(PhysBody, _rotationalVelocity); ActivateIfPhysical(false); } } } public override bool Kinematic { get { return _kinematic; } set { _kinematic = value; // m_log.DebugFormat("{0}: Kinematic={1}", LogHeader, _kinematic); } } public override float Buoyancy { get { return _buoyancy; } set { _buoyancy = value; PhysicsScene.TaintedObject("BSPrim.setBuoyancy", delegate() { ForceBuoyancy = _buoyancy; }); } } public override float ForceBuoyancy { get { return _buoyancy; } set { _buoyancy = value; // DetailLog("{0},BSPrim.setForceBuoyancy,taint,buoy={1}", LocalID, _buoyancy); // Force the recalculation of the various inertia,etc variables in the object UpdatePhysicalMassProperties(RawMass, true); DetailLog("{0},BSPrim.ForceBuoyancy,buoy={1},mass={2},grav={3}", LocalID, _buoyancy, RawMass, Gravity); ActivateIfPhysical(false); } } // Used for MoveTo public override OMV.Vector3 PIDTarget { set { // TODO: add a sanity check -- don't move more than a region or something like that. _PIDTarget = value; } } public override float PIDTau { set { _PIDTau = value; } } public override bool PIDActive { set { if (value) { // We're taking over after this. ZeroMotion(true); _targetMotor = new BSVMotor("BSPrim.PIDTarget", _PIDTau, // timeScale BSMotor.Infinite, // decay time scale BSMotor.InfiniteVector, // friction timescale 1f // efficiency ); _targetMotor.PhysicsScene = PhysicsScene; // DEBUG DEBUG so motor will output detail log messages. _targetMotor.SetTarget(_PIDTarget); _targetMotor.SetCurrent(RawPosition); /* _targetMotor = new BSPIDVMotor("BSPrim.PIDTarget"); _targetMotor.PhysicsScene = PhysicsScene; // DEBUG DEBUG so motor will output detail log messages. _targetMotor.SetTarget(_PIDTarget); _targetMotor.SetCurrent(RawPosition); _targetMotor.TimeScale = _PIDTau; _targetMotor.Efficiency = 1f; */ RegisterPreStepAction("BSPrim.PIDTarget", LocalID, delegate(float timeStep) { if (!IsPhysicallyActive) { UnRegisterPreStepAction("BSPrim.PIDTarget", LocalID); return; } OMV.Vector3 origPosition = RawPosition; // DEBUG DEBUG (for printout below) // 'movePosition' is where we'd like the prim to be at this moment. OMV.Vector3 movePosition = RawPosition + _targetMotor.Step(timeStep); // If we are very close to our target, turn off the movement motor. if (_targetMotor.ErrorIsZero()) { DetailLog("{0},BSPrim.PIDTarget,zeroMovement,movePos={1},pos={2},mass={3}", LocalID, movePosition, RawPosition, Mass); ForcePosition = _targetMotor.TargetValue; _targetMotor.Enabled = false; } else { _position = movePosition; PositionSanityCheck(true /* intaintTime */); ForcePosition = _position; } DetailLog("{0},BSPrim.PIDTarget,move,fromPos={1},movePos={2}", LocalID, origPosition, movePosition); }); } else { // Stop any targetting UnRegisterPreStepAction("BSPrim.PIDTarget", LocalID); } } } // Used for llSetHoverHeight and maybe vehicle height // Hover Height will override MoveTo target's Z public override bool PIDHoverActive { set { if (value) { // Turning the target on _hoverMotor = new BSFMotor("BSPrim.Hover", _PIDHoverTau, // timeScale BSMotor.Infinite, // decay time scale BSMotor.Infinite, // friction timescale 1f // efficiency ); _hoverMotor.SetTarget(ComputeCurrentPIDHoverHeight()); _hoverMotor.SetCurrent(RawPosition.Z); _hoverMotor.PhysicsScene = PhysicsScene; // DEBUG DEBUG so motor will output detail log messages. RegisterPreStepAction("BSPrim.Hover", LocalID, delegate(float timeStep) { // Don't do hovering while the object is selected. if (!IsPhysicallyActive) return; _hoverMotor.SetCurrent(RawPosition.Z); _hoverMotor.SetTarget(ComputeCurrentPIDHoverHeight()); float targetHeight = _hoverMotor.Step(timeStep); // 'targetHeight' is where we'd like the Z of the prim to be at this moment. // Compute the amount of force to push us there. float moveForce = (targetHeight - RawPosition.Z) * Mass; // Undo anything the object thinks it's doing at the moment moveForce = -RawVelocity.Z * Mass; PhysicsScene.PE.ApplyCentralImpulse(PhysBody, new OMV.Vector3(0f, 0f, moveForce)); DetailLog("{0},BSPrim.Hover,move,targHt={1},moveForce={2},mass={3}", LocalID, targetHeight, moveForce, Mass); }); } else { UnRegisterPreStepAction("BSPrim.Hover", LocalID); } } } public override float PIDHoverHeight { set { _PIDHoverHeight = value; } } public override PIDHoverType PIDHoverType { set { _PIDHoverType = value; } } public override float PIDHoverTau { set { _PIDHoverTau = value; } } // Based on current position, determine what we should be hovering at now. // Must recompute often. What if we walked offa cliff> private float ComputeCurrentPIDHoverHeight() { float ret = _PIDHoverHeight; float groundHeight = PhysicsScene.TerrainManager.GetTerrainHeightAtXYZ(RawPosition); switch (_PIDHoverType) { case PIDHoverType.Ground: ret = groundHeight + _PIDHoverHeight; break; case PIDHoverType.GroundAndWater: float waterHeight = PhysicsScene.TerrainManager.GetWaterLevelAtXYZ(RawPosition); if (groundHeight > waterHeight) { ret = groundHeight + _PIDHoverHeight; } else { ret = waterHeight + _PIDHoverHeight; } break; } return ret; } // For RotLookAt public override OMV.Quaternion APIDTarget { set { return; } } public override bool APIDActive { set { return; } } public override float APIDStrength { set { return; } } public override float APIDDamping { set { return; } } public override void AddForce(OMV.Vector3 force, bool pushforce) { // Per documentation, max force is limited. OMV.Vector3 addForce = Util.ClampV(force, BSParam.MaxAddForceMagnitude); // Since this force is being applied in only one step, make this a force per second. addForce /= PhysicsScene.LastTimeStep; AddForce(addForce, pushforce, false /* inTaintTime */); } // Applying a force just adds this to the total force on the object. // This added force will only last the next simulation tick. public void AddForce(OMV.Vector3 force, bool pushforce, bool inTaintTime) { // for an object, doesn't matter if force is a pushforce or not if (IsPhysicallyActive) { if (force.IsFinite()) { // DetailLog("{0},BSPrim.addForce,call,force={1}", LocalID, addForce); OMV.Vector3 addForce = force; PhysicsScene.TaintedObject(inTaintTime, "BSPrim.AddForce", delegate() { // Bullet adds this central force to the total force for this tick DetailLog("{0},BSPrim.addForce,taint,force={1}", LocalID, addForce); if (PhysBody.HasPhysicalBody) { PhysicsScene.PE.ApplyCentralForce(PhysBody, addForce); ActivateIfPhysical(false); } }); } else { m_log.WarnFormat("{0}: AddForce: Got a NaN force applied to a prim. LocalID={1}", LogHeader, LocalID); return; } } } public void AddForceImpulse(OMV.Vector3 impulse, bool pushforce, bool inTaintTime) { // for an object, doesn't matter if force is a pushforce or not if (!IsPhysicallyActive) { if (impulse.IsFinite()) { OMV.Vector3 addImpulse = Util.ClampV(impulse, BSParam.MaxAddForceMagnitude); // DetailLog("{0},BSPrim.addForceImpulse,call,impulse={1}", LocalID, impulse); PhysicsScene.TaintedObject(inTaintTime, "BSPrim.AddImpulse", delegate() { // Bullet adds this impulse immediately to the velocity DetailLog("{0},BSPrim.addForceImpulse,taint,impulseforce={1}", LocalID, addImpulse); if (PhysBody.HasPhysicalBody) { PhysicsScene.PE.ApplyCentralImpulse(PhysBody, addImpulse); ActivateIfPhysical(false); } }); } else { m_log.WarnFormat("{0}: AddForceImpulse: Got a NaN impulse applied to a prim. LocalID={1}", LogHeader, LocalID); return; } } } public override void AddAngularForce(OMV.Vector3 force, bool pushforce) { AddAngularForce(force, pushforce, false); } public void AddAngularForce(OMV.Vector3 force, bool pushforce, bool inTaintTime) { if (force.IsFinite()) { OMV.Vector3 angForce = force; PhysicsScene.TaintedObject(inTaintTime, "BSPrim.AddAngularForce", delegate() { if (PhysBody.HasPhysicalBody) { DetailLog("{0},BSPrim.AddAngularForce,taint,angForce={1}", LocalID, angForce); PhysicsScene.PE.ApplyTorque(PhysBody, angForce); ActivateIfPhysical(false); } }); } else { m_log.WarnFormat("{0}: Got a NaN force applied to a prim. LocalID={1}", LogHeader, LocalID); return; } } // A torque impulse. // ApplyTorqueImpulse adds torque directly to the angularVelocity. // AddAngularForce accumulates the force and applied it to the angular velocity all at once. // Computed as: angularVelocity += impulse * inertia; public void ApplyTorqueImpulse(OMV.Vector3 impulse, bool inTaintTime) { OMV.Vector3 applyImpulse = impulse; PhysicsScene.TaintedObject(inTaintTime, "BSPrim.ApplyTorqueImpulse", delegate() { if (PhysBody.HasPhysicalBody) { PhysicsScene.PE.ApplyTorqueImpulse(PhysBody, applyImpulse); ActivateIfPhysical(false); } }); } public override void SetMomentum(OMV.Vector3 momentum) { // DetailLog("{0},BSPrim.SetMomentum,call,mom={1}", LocalID, momentum); } #region Mass Calculation private float CalculateMass() { float volume = _size.X * _size.Y * _size.Z; // default float tmp; float returnMass = 0; float hollowAmount = (float)BaseShape.ProfileHollow * 2.0e-5f; float hollowVolume = hollowAmount * hollowAmount; switch (BaseShape.ProfileShape) { case ProfileShape.Square: // default box if (BaseShape.PathCurve == (byte)Extrusion.Straight) { if (hollowAmount > 0.0) { switch (BaseShape.HollowShape) { case HollowShape.Square: case HollowShape.Same: break; case HollowShape.Circle: hollowVolume *= 0.78539816339f; break; case HollowShape.Triangle: hollowVolume *= (0.5f * .5f); break; default: hollowVolume = 0; break; } volume *= (1.0f - hollowVolume); } } else if (BaseShape.PathCurve == (byte)Extrusion.Curve1) { //a tube volume *= 0.78539816339e-2f * (float)(200 - BaseShape.PathScaleX); tmp= 1.0f -2.0e-2f * (float)(200 - BaseShape.PathScaleY); volume -= volume*tmp*tmp; if (hollowAmount > 0.0) { hollowVolume *= hollowAmount; switch (BaseShape.HollowShape) { case HollowShape.Square: case HollowShape.Same: break; case HollowShape.Circle: hollowVolume *= 0.78539816339f;; break; case HollowShape.Triangle: hollowVolume *= 0.5f * 0.5f; break; default: hollowVolume = 0; break; } volume *= (1.0f - hollowVolume); } } break; case ProfileShape.Circle: if (BaseShape.PathCurve == (byte)Extrusion.Straight) { volume *= 0.78539816339f; // elipse base if (hollowAmount > 0.0) { switch (BaseShape.HollowShape) { case HollowShape.Same: case HollowShape.Circle: break; case HollowShape.Square: hollowVolume *= 0.5f * 2.5984480504799f; break; case HollowShape.Triangle: hollowVolume *= .5f * 1.27323954473516f; break; default: hollowVolume = 0; break; } volume *= (1.0f - hollowVolume); } } else if (BaseShape.PathCurve == (byte)Extrusion.Curve1) { volume *= 0.61685027506808491367715568749226e-2f * (float)(200 - BaseShape.PathScaleX); tmp = 1.0f - .02f * (float)(200 - BaseShape.PathScaleY); volume *= (1.0f - tmp * tmp); if (hollowAmount > 0.0) { // calculate the hollow volume by it's shape compared to the prim shape hollowVolume *= hollowAmount; switch (BaseShape.HollowShape) { case HollowShape.Same: case HollowShape.Circle: break; case HollowShape.Square: hollowVolume *= 0.5f * 2.5984480504799f; break; case HollowShape.Triangle: hollowVolume *= .5f * 1.27323954473516f; break; default: hollowVolume = 0; break; } volume *= (1.0f - hollowVolume); } } break; case ProfileShape.HalfCircle: if (BaseShape.PathCurve == (byte)Extrusion.Curve1) { volume *= 0.52359877559829887307710723054658f; } break; case ProfileShape.EquilateralTriangle: if (BaseShape.PathCurve == (byte)Extrusion.Straight) { volume *= 0.32475953f; if (hollowAmount > 0.0) { // calculate the hollow volume by it's shape compared to the prim shape switch (BaseShape.HollowShape) { case HollowShape.Same: case HollowShape.Triangle: hollowVolume *= .25f; break; case HollowShape.Square: hollowVolume *= 0.499849f * 3.07920140172638f; break; case HollowShape.Circle: // Hollow shape is a perfect cyllinder in respect to the cube's scale // Cyllinder hollow volume calculation hollowVolume *= 0.1963495f * 3.07920140172638f; break; default: hollowVolume = 0; break; } volume *= (1.0f - hollowVolume); } } else if (BaseShape.PathCurve == (byte)Extrusion.Curve1) { volume *= 0.32475953f; volume *= 0.01f * (float)(200 - BaseShape.PathScaleX); tmp = 1.0f - .02f * (float)(200 - BaseShape.PathScaleY); volume *= (1.0f - tmp * tmp); if (hollowAmount > 0.0) { hollowVolume *= hollowAmount; switch (BaseShape.HollowShape) { case HollowShape.Same: case HollowShape.Triangle: hollowVolume *= .25f; break; case HollowShape.Square: hollowVolume *= 0.499849f * 3.07920140172638f; break; case HollowShape.Circle: hollowVolume *= 0.1963495f * 3.07920140172638f; break; default: hollowVolume = 0; break; } volume *= (1.0f - hollowVolume); } } break; default: break; } float taperX1; float taperY1; float taperX; float taperY; float pathBegin; float pathEnd; float profileBegin; float profileEnd; if (BaseShape.PathCurve == (byte)Extrusion.Straight || BaseShape.PathCurve == (byte)Extrusion.Flexible) { taperX1 = BaseShape.PathScaleX * 0.01f; if (taperX1 > 1.0f) taperX1 = 2.0f - taperX1; taperX = 1.0f - taperX1; taperY1 = BaseShape.PathScaleY * 0.01f; if (taperY1 > 1.0f) taperY1 = 2.0f - taperY1; taperY = 1.0f - taperY1; } else { taperX = BaseShape.PathTaperX * 0.01f; if (taperX < 0.0f) taperX = -taperX; taperX1 = 1.0f - taperX; taperY = BaseShape.PathTaperY * 0.01f; if (taperY < 0.0f) taperY = -taperY; taperY1 = 1.0f - taperY; } volume *= (taperX1 * taperY1 + 0.5f * (taperX1 * taperY + taperX * taperY1) + 0.3333333333f * taperX * taperY); pathBegin = (float)BaseShape.PathBegin * 2.0e-5f; pathEnd = 1.0f - (float)BaseShape.PathEnd * 2.0e-5f; volume *= (pathEnd - pathBegin); // this is crude aproximation profileBegin = (float)BaseShape.ProfileBegin * 2.0e-5f; profileEnd = 1.0f - (float)BaseShape.ProfileEnd * 2.0e-5f; volume *= (profileEnd - profileBegin); returnMass = Density * BSParam.DensityScaleFactor * volume; DetailLog("{0},BSPrim.CalculateMass,den={1},vol={2},mass={3}", LocalID, Density, volume, returnMass); returnMass = Util.Clamp(returnMass, BSParam.MinimumObjectMass, BSParam.MaximumObjectMass); return returnMass; }// end CalculateMass #endregion Mass Calculation // Rebuild the geometry and object. // This is called when the shape changes so we need to recreate the mesh/hull. // Called at taint-time!!! public void CreateGeomAndObject(bool forceRebuild) { // Create the correct physical representation for this type of object. // Updates base.PhysBody and base.PhysShape with the new information. // Ignore 'forceRebuild'. This routine makes the right choices and changes of necessary. PhysicsScene.Shapes.GetBodyAndShape(false /*forceRebuild */, PhysicsScene.World, this, null, delegate(BulletBody dBody) { // Called if the current prim body is about to be destroyed. // Remove all the physical dependencies on the old body. // (Maybe someday make the changing of BSShape an event to be subscribed to by BSLinkset, ...) RemoveBodyDependencies(); }); // Make sure the properties are set on the new object UpdatePhysicalParameters(); return; } protected virtual void RemoveBodyDependencies() { VehicleController.RemoveBodyDependencies(this); } // The physics engine says that properties have updated. Update same and inform // the world that things have changed. public override void UpdateProperties(EntityProperties entprop) { TriggerPreUpdatePropertyAction(ref entprop); // A temporary kludge to suppress the rotational effects introduced on vehicles by Bullet // TODO: handle physics introduced by Bullet with computed vehicle physics. if (VehicleController.IsActive) { entprop.RotationalVelocity = OMV.Vector3.Zero; } // DetailLog("{0},BSPrim.UpdateProperties,entry,entprop={1}", LocalID, entprop); // DEBUG DEBUG // Assign directly to the local variables so the normal set actions do not happen _position = entprop.Position; _orientation = entprop.Rotation; // DEBUG DEBUG DEBUG -- smooth velocity changes a bit. The simulator seems to be // very sensitive to velocity changes. if (entprop.Velocity == OMV.Vector3.Zero || !entprop.Velocity.ApproxEquals(_velocity, BSParam.UpdateVelocityChangeThreshold)) _velocity = entprop.Velocity; _acceleration = entprop.Acceleration; _rotationalVelocity = entprop.RotationalVelocity; // DetailLog("{0},BSPrim.UpdateProperties,afterAssign,entprop={1}", LocalID, entprop); // DEBUG DEBUG // The sanity check can change the velocity and/or position. if (PositionSanityCheck(true /* inTaintTime */ )) { entprop.Position = _position; entprop.Velocity = _velocity; entprop.RotationalVelocity = _rotationalVelocity; entprop.Acceleration = _acceleration; } OMV.Vector3 direction = OMV.Vector3.UnitX * _orientation; // DEBUG DEBUG DEBUG DetailLog("{0},BSPrim.UpdateProperties,call,entProp={1},dir={2}", LocalID, entprop, direction); // remember the current and last set values LastEntityProperties = CurrentEntityProperties; CurrentEntityProperties = entprop; base.RequestPhysicsterseUpdate(); /* else { // For debugging, report the movement of children DetailLog("{0},BSPrim.UpdateProperties,child,pos={1},orient={2},vel={3},accel={4},rotVel={5}", LocalID, entprop.Position, entprop.Rotation, entprop.Velocity, entprop.Acceleration, entprop.RotationalVelocity); } */ } } }