/* * Copyright (c) Contributors, http://opensimulator.org/ * See CONTRIBUTORS.TXT for a full list of copyright holders. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyrightD * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of the OpenSimulator Project nor the * names of its contributors may be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE DEVELOPERS ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE CONTRIBUTORS BE LIABLE FOR ANY * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ using System; using System.Collections.Generic; using System.Text; using OpenSim.Region.Physics.Manager; using OpenMetaverse; using Nini.Config; namespace OpenSim.Region.Physics.BulletSPlugin { public static class BSParam { private static string LogHeader = "[BULLETSIM PARAMETERS]"; // Tuning notes: // From: http://bulletphysics.org/Bullet/phpBB3/viewtopic.php?t=6575 // Contact points can be added even if the distance is positive. The constraint solver can deal with // contacts with positive distances as well as negative (penetration). Contact points are discarded // if the distance exceeds a certain threshold. // Bullet has a contact processing threshold and a contact breaking threshold. // If the distance is larger than the contact breaking threshold, it will be removed after one frame. // If the distance is larger than the contact processing threshold, the constraint solver will ignore it. // This is separate/independent from the collision margin. The collision margin increases the object a bit // to improve collision detection performance and accuracy. // =================== // From: // Level of Detail values kept as float because that's what the Meshmerizer wants public static float MeshLOD { get; private set; } public static float MeshCircularLOD { get; private set; } public static float MeshMegaPrimLOD { get; private set; } public static float MeshMegaPrimThreshold { get; private set; } public static float SculptLOD { get; private set; } public static int CrossingFailuresBeforeOutOfBounds { get; private set; } public static float UpdateVelocityChangeThreshold { get; private set; } public static float MinimumObjectMass { get; private set; } public static float MaximumObjectMass { get; private set; } public static float MaxLinearVelocity { get; private set; } public static float MaxLinearVelocitySquared { get; private set; } public static float MaxAngularVelocity { get; private set; } public static float MaxAngularVelocitySquared { get; private set; } public static float MaxAddForceMagnitude { get; private set; } public static float MaxAddForceMagnitudeSquared { get; private set; } public static float DensityScaleFactor { get; private set; } public static float LinearDamping { get; private set; } public static float AngularDamping { get; private set; } public static float DeactivationTime { get; private set; } public static float LinearSleepingThreshold { get; private set; } public static float AngularSleepingThreshold { get; private set; } public static float CcdMotionThreshold { get; private set; } public static float CcdSweptSphereRadius { get; private set; } public static float ContactProcessingThreshold { get; private set; } public static bool ShouldMeshSculptedPrim { get; private set; } // cause scuplted prims to get meshed public static bool ShouldForceSimplePrimMeshing { get; private set; } // if a cube or sphere, let Bullet do internal shapes public static bool ShouldUseHullsForPhysicalObjects { get; private set; } // 'true' if should create hulls for physical objects public static bool ShouldRemoveZeroWidthTriangles { get; private set; } public static bool ShouldUseBulletHACD { get; set; } public static bool ShouldUseSingleConvexHullForPrims { get; set; } public static float TerrainImplementation { get; private set; } public static int TerrainMeshMagnification { get; private set; } public static float TerrainFriction { get; private set; } public static float TerrainHitFraction { get; private set; } public static float TerrainRestitution { get; private set; } public static float TerrainContactProcessingThreshold { get; private set; } public static float TerrainCollisionMargin { get; private set; } public static float DefaultFriction { get; private set; } public static float DefaultDensity { get; private set; } public static float DefaultRestitution { get; private set; } public static float CollisionMargin { get; private set; } public static float Gravity { get; private set; } // Physics Engine operation public static float MaxPersistantManifoldPoolSize { get; private set; } public static float MaxCollisionAlgorithmPoolSize { get; private set; } public static bool ShouldDisableContactPoolDynamicAllocation { get; private set; } public static bool ShouldForceUpdateAllAabbs { get; private set; } public static bool ShouldRandomizeSolverOrder { get; private set; } public static bool ShouldSplitSimulationIslands { get; private set; } public static bool ShouldEnableFrictionCaching { get; private set; } public static float NumberOfSolverIterations { get; private set; } public static bool UseSingleSidedMeshes { get; private set; } public static float GlobalContactBreakingThreshold { get; private set; } // Avatar parameters public static float AvatarFriction { get; private set; } public static float AvatarStandingFriction { get; private set; } public static float AvatarAlwaysRunFactor { get; private set; } public static float AvatarDensity { get; private set; } public static float AvatarRestitution { get; private set; } public static float AvatarCapsuleWidth { get; private set; } public static float AvatarCapsuleDepth { get; private set; } public static float AvatarCapsuleHeight { get; private set; } public static float AvatarContactProcessingThreshold { get; private set; } public static float AvatarBelowGroundUpCorrectionMeters { get; private set; } public static float AvatarStepHeight { get; private set; } public static float AvatarStepApproachFactor { get; private set; } public static float AvatarStepForceFactor { get; private set; } public static float AvatarStepUpCorrectionFactor { get; private set; } public static int AvatarStepSmoothingSteps { get; private set; } // Vehicle parameters public static float VehicleMaxLinearVelocity { get; private set; } public static float VehicleMaxLinearVelocitySquared { get; private set; } public static float VehicleMaxAngularVelocity { get; private set; } public static float VehicleMaxAngularVelocitySq { get; private set; } public static float VehicleAngularDamping { get; private set; } public static float VehicleFriction { get; private set; } public static float VehicleRestitution { get; private set; } public static Vector3 VehicleLinearFactor { get; private set; } public static Vector3 VehicleAngularFactor { get; private set; } public static float VehicleGroundGravityFudge { get; private set; } public static float VehicleAngularBankingTimescaleFudge { get; private set; } public static bool VehicleDebuggingEnabled { get; private set; } // Convex Hulls public static int CSHullMaxDepthSplit { get; private set; } public static int CSHullMaxDepthSplitForSimpleShapes { get; private set; } public static float CSHullConcavityThresholdPercent { get; private set; } public static float CSHullVolumeConservationThresholdPercent { get; private set; } public static int CSHullMaxVertices { get; private set; } public static float CSHullMaxSkinWidth { get; private set; } public static float BHullMaxVerticesPerHull { get; private set; } // 100 public static float BHullMinClusters { get; private set; } // 2 public static float BHullCompacityWeight { get; private set; } // 0.1 public static float BHullVolumeWeight { get; private set; } // 0.0 public static float BHullConcavity { get; private set; } // 100 public static bool BHullAddExtraDistPoints { get; private set; } // false public static bool BHullAddNeighboursDistPoints { get; private set; } // false public static bool BHullAddFacesPoints { get; private set; } // false public static bool BHullShouldAdjustCollisionMargin { get; private set; } // false // Linkset implementation parameters public static float LinksetImplementation { get; private set; } public static bool LinkConstraintUseFrameOffset { get; private set; } public static bool LinkConstraintEnableTransMotor { get; private set; } public static float LinkConstraintTransMotorMaxVel { get; private set; } public static float LinkConstraintTransMotorMaxForce { get; private set; } public static float LinkConstraintERP { get; private set; } public static float LinkConstraintCFM { get; private set; } public static float LinkConstraintSolverIterations { get; private set; } public static float PID_D { get; private set; } // derivative public static float PID_P { get; private set; } // proportional // Various constants that come from that other virtual world that shall not be named. public const float MinGravityZ = -1f; public const float MaxGravityZ = 28f; public const float MinFriction = 0f; public const float MaxFriction = 255f; public const float MinDensity = 0.01f; public const float MaxDensity = 22587f; public const float MinRestitution = 0f; public const float MaxRestitution = 1f; // ===================================================================================== // ===================================================================================== // Base parameter definition that gets and sets parameter values via a string public abstract class ParameterDefnBase { public string name; // string name of the parameter public string desc; // a short description of what the parameter means public ParameterDefnBase(string pName, string pDesc) { name = pName; desc = pDesc; } // Set the parameter value to the default public abstract void AssignDefault(BSScene s); // Get the value as a string public abstract string GetValue(BSScene s); // Set the value to this string value public abstract void SetValue(BSScene s, string valAsString); // set the value on a particular object (usually sets in physics engine) public abstract void SetOnObject(BSScene s, BSPhysObject obj); public abstract bool HasSetOnObject { get; } } // Specific parameter definition for a parameter of a specific type. public delegate T PGetValue(BSScene s); public delegate void PSetValue(BSScene s, T val); public delegate void PSetOnObject(BSScene scene, BSPhysObject obj); public sealed class ParameterDefn : ParameterDefnBase { private T defaultValue; private PSetValue setter; private PGetValue getter; private PSetOnObject objectSet; public ParameterDefn(string pName, string pDesc, T pDefault, PGetValue pGetter, PSetValue pSetter) : base(pName, pDesc) { defaultValue = pDefault; setter = pSetter; getter = pGetter; objectSet = null; } public ParameterDefn(string pName, string pDesc, T pDefault, PGetValue pGetter, PSetValue pSetter, PSetOnObject pObjSetter) : base(pName, pDesc) { defaultValue = pDefault; setter = pSetter; getter = pGetter; objectSet = pObjSetter; } /* Wish I could simplify using this definition but CLR doesn't store references so closure around delegates of references won't work * TODO: Maybe use reflection and the name of the variable to create a reference for the getter/setter. public ParameterDefn(string pName, string pDesc, T pDefault, ref T loc) : base(pName, pDesc) { defaultValue = pDefault; setter = (s, v) => { loc = v; }; getter = (s) => { return loc; }; objectSet = null; } */ public override void AssignDefault(BSScene s) { setter(s, defaultValue); } public override string GetValue(BSScene s) { return getter(s).ToString(); } public override void SetValue(BSScene s, string valAsString) { // Get the generic type of the setter Type genericType = setter.GetType().GetGenericArguments()[0]; // Find the 'Parse' method on that type System.Reflection.MethodInfo parser = null; try { parser = genericType.GetMethod("Parse", new Type[] { typeof(String) } ); } catch (Exception e) { s.Logger.ErrorFormat("{0} Exception getting parser for type '{1}': {2}", LogHeader, genericType, e); parser = null; } if (parser != null) { // Parse the input string try { T setValue = (T)parser.Invoke(genericType, new Object[] { valAsString }); // Store the parsed value setter(s, setValue); // s.Logger.DebugFormat("{0} Parameter {1} = {2}", LogHeader, name, setValue); } catch { s.Logger.ErrorFormat("{0} Failed parsing parameter value '{1}' as type '{2}'", LogHeader, valAsString, genericType); } } else { s.Logger.ErrorFormat("{0} Could not find parameter parser for type '{1}'", LogHeader, genericType); } } public override bool HasSetOnObject { get { return objectSet != null; } } public override void SetOnObject(BSScene s, BSPhysObject obj) { if (objectSet != null) objectSet(s, obj); } } // List of all of the externally visible parameters. // For each parameter, this table maps a text name to getter and setters. // To add a new externally referencable/settable parameter, add the paramter storage // location somewhere in the program and make an entry in this table with the // getters and setters. // It is easiest to find an existing definition and copy it. // // A ParameterDefn() takes the following parameters: // -- the text name of the parameter. This is used for console input and ini file. // -- a short text description of the parameter. This shows up in the console listing. // -- a default value // -- a delegate for getting the value // -- a delegate for setting the value // -- an optional delegate to update the value in the world. Most often used to // push the new value to an in-world object. // // The single letter parameters for the delegates are: // s = BSScene // o = BSPhysObject // v = value (appropriate type) private static ParameterDefnBase[] ParameterDefinitions = { new ParameterDefn("MeshSculptedPrim", "Whether to create meshes for sculpties", true, (s) => { return ShouldMeshSculptedPrim; }, (s,v) => { ShouldMeshSculptedPrim = v; } ), new ParameterDefn("ForceSimplePrimMeshing", "If true, only use primitive meshes for objects", false, (s) => { return ShouldForceSimplePrimMeshing; }, (s,v) => { ShouldForceSimplePrimMeshing = v; } ), new ParameterDefn("UseHullsForPhysicalObjects", "If true, create hulls for physical objects", true, (s) => { return ShouldUseHullsForPhysicalObjects; }, (s,v) => { ShouldUseHullsForPhysicalObjects = v; } ), new ParameterDefn("ShouldRemoveZeroWidthTriangles", "If true, remove degenerate triangles from meshes", true, (s) => { return ShouldRemoveZeroWidthTriangles; }, (s,v) => { ShouldRemoveZeroWidthTriangles = v; } ), new ParameterDefn("ShouldUseBulletHACD", "If true, use the Bullet version of HACD", false, (s) => { return ShouldUseBulletHACD; }, (s,v) => { ShouldUseBulletHACD = v; } ), new ParameterDefn("ShouldUseSingleConvexHullForPrims", "If true, use a single convex hull shape for physical prims", true, (s) => { return ShouldUseSingleConvexHullForPrims; }, (s,v) => { ShouldUseSingleConvexHullForPrims = v; } ), new ParameterDefn("CrossingFailuresBeforeOutOfBounds", "How forgiving we are about getting into adjactent regions", 5, (s) => { return CrossingFailuresBeforeOutOfBounds; }, (s,v) => { CrossingFailuresBeforeOutOfBounds = v; } ), new ParameterDefn("UpdateVelocityChangeThreshold", "Change in updated velocity required before reporting change to simulator", 0.1f, (s) => { return UpdateVelocityChangeThreshold; }, (s,v) => { UpdateVelocityChangeThreshold = v; } ), new ParameterDefn("MeshLevelOfDetail", "Level of detail to render meshes (32, 16, 8 or 4. 32=most detailed)", 32f, (s) => { return MeshLOD; }, (s,v) => { MeshLOD = v; } ), new ParameterDefn("MeshLevelOfDetailCircular", "Level of detail for prims with circular cuts or shapes", 32f, (s) => { return MeshCircularLOD; }, (s,v) => { MeshCircularLOD = v; } ), new ParameterDefn("MeshLevelOfDetailMegaPrimThreshold", "Size (in meters) of a mesh before using MeshMegaPrimLOD", 10f, (s) => { return MeshMegaPrimThreshold; }, (s,v) => { MeshMegaPrimThreshold = v; } ), new ParameterDefn("MeshLevelOfDetailMegaPrim", "Level of detail to render meshes larger than threshold meters", 32f, (s) => { return MeshMegaPrimLOD; }, (s,v) => { MeshMegaPrimLOD = v; } ), new ParameterDefn("SculptLevelOfDetail", "Level of detail to render sculpties (32, 16, 8 or 4. 32=most detailed)", 32f, (s) => { return SculptLOD; }, (s,v) => { SculptLOD = v; } ), new ParameterDefn("MaxSubStep", "In simulation step, maximum number of substeps", 10, (s) => { return s.m_maxSubSteps; }, (s,v) => { s.m_maxSubSteps = (int)v; } ), new ParameterDefn("FixedTimeStep", "In simulation step, seconds of one substep (1/60)", 1f / 60f, (s) => { return s.m_fixedTimeStep; }, (s,v) => { s.m_fixedTimeStep = v; } ), new ParameterDefn("NominalFrameRate", "The base frame rate we claim", 55f, (s) => { return s.NominalFrameRate; }, (s,v) => { s.NominalFrameRate = (int)v; } ), new ParameterDefn("MaxCollisionsPerFrame", "Max collisions returned at end of each frame", 2048, (s) => { return s.m_maxCollisionsPerFrame; }, (s,v) => { s.m_maxCollisionsPerFrame = (int)v; } ), new ParameterDefn("MaxUpdatesPerFrame", "Max updates returned at end of each frame", 8000, (s) => { return s.m_maxUpdatesPerFrame; }, (s,v) => { s.m_maxUpdatesPerFrame = (int)v; } ), new ParameterDefn("MinObjectMass", "Minimum object mass (0.0001)", 0.0001f, (s) => { return MinimumObjectMass; }, (s,v) => { MinimumObjectMass = v; } ), new ParameterDefn("MaxObjectMass", "Maximum object mass (10000.01)", 10000.01f, (s) => { return MaximumObjectMass; }, (s,v) => { MaximumObjectMass = v; } ), new ParameterDefn("MaxLinearVelocity", "Maximum velocity magnitude that can be assigned to an object", 1000.0f, (s) => { return MaxLinearVelocity; }, (s,v) => { MaxLinearVelocity = v; MaxLinearVelocitySquared = v * v; } ), new ParameterDefn("MaxAngularVelocity", "Maximum rotational velocity magnitude that can be assigned to an object", 1000.0f, (s) => { return MaxAngularVelocity; }, (s,v) => { MaxAngularVelocity = v; MaxAngularVelocitySquared = v * v; } ), // LL documentation says thie number should be 20f for llApplyImpulse and 200f for llRezObject new ParameterDefn("MaxAddForceMagnitude", "Maximum force that can be applied by llApplyImpulse (SL says 20f)", 20000.0f, (s) => { return MaxAddForceMagnitude; }, (s,v) => { MaxAddForceMagnitude = v; MaxAddForceMagnitudeSquared = v * v; } ), // Density is passed around as 100kg/m3. This scales that to 1kg/m3. new ParameterDefn("DensityScaleFactor", "Conversion for simulator/viewer density (100kg/m3) to physical density (1kg/m3)", 0.01f, (s) => { return DensityScaleFactor; }, (s,v) => { DensityScaleFactor = v; } ), new ParameterDefn("PID_D", "Derivitive factor for motion smoothing", 2200f, (s) => { return (float)PID_D; }, (s,v) => { PID_D = v; } ), new ParameterDefn("PID_P", "Parameteric factor for motion smoothing", 900f, (s) => { return (float)PID_P; }, (s,v) => { PID_P = v; } ), new ParameterDefn("DefaultFriction", "Friction factor used on new objects", 0.2f, (s) => { return DefaultFriction; }, (s,v) => { DefaultFriction = v; s.UnmanagedParams[0].defaultFriction = v; } ), new ParameterDefn("DefaultDensity", "Density for new objects" , 10.000006836f, // Aluminum g/cm3 (s) => { return DefaultDensity; }, (s,v) => { DefaultDensity = v; s.UnmanagedParams[0].defaultDensity = v; } ), new ParameterDefn("DefaultRestitution", "Bouncyness of an object" , 0f, (s) => { return DefaultRestitution; }, (s,v) => { DefaultRestitution = v; s.UnmanagedParams[0].defaultRestitution = v; } ), new ParameterDefn("CollisionMargin", "Margin around objects before collisions are calculated (must be zero!)", 0.04f, (s) => { return CollisionMargin; }, (s,v) => { CollisionMargin = v; s.UnmanagedParams[0].collisionMargin = v; } ), new ParameterDefn("Gravity", "Vertical force of gravity (negative means down)", -9.80665f, (s) => { return Gravity; }, (s,v) => { Gravity = v; s.UnmanagedParams[0].gravity = v; }, (s,o) => { s.PE.SetGravity(o.PhysBody, new Vector3(0f,0f,Gravity)); } ), new ParameterDefn("LinearDamping", "Factor to damp linear movement per second (0.0 - 1.0)", 0f, (s) => { return LinearDamping; }, (s,v) => { LinearDamping = v; }, (s,o) => { s.PE.SetDamping(o.PhysBody, LinearDamping, AngularDamping); } ), new ParameterDefn("AngularDamping", "Factor to damp angular movement per second (0.0 - 1.0)", 0f, (s) => { return AngularDamping; }, (s,v) => { AngularDamping = v; }, (s,o) => { s.PE.SetDamping(o.PhysBody, LinearDamping, AngularDamping); } ), new ParameterDefn("DeactivationTime", "Seconds before considering an object potentially static", 0.2f, (s) => { return DeactivationTime; }, (s,v) => { DeactivationTime = v; }, (s,o) => { s.PE.SetDeactivationTime(o.PhysBody, DeactivationTime); } ), new ParameterDefn("LinearSleepingThreshold", "Seconds to measure linear movement before considering static", 0.8f, (s) => { return LinearSleepingThreshold; }, (s,v) => { LinearSleepingThreshold = v;}, (s,o) => { s.PE.SetSleepingThresholds(o.PhysBody, LinearSleepingThreshold, AngularSleepingThreshold); } ), new ParameterDefn("AngularSleepingThreshold", "Seconds to measure angular movement before considering static", 1.0f, (s) => { return AngularSleepingThreshold; }, (s,v) => { AngularSleepingThreshold = v;}, (s,o) => { s.PE.SetSleepingThresholds(o.PhysBody, LinearSleepingThreshold, AngularSleepingThreshold); } ), new ParameterDefn("CcdMotionThreshold", "Continuious collision detection threshold (0 means no CCD)" , 0.0f, // set to zero to disable (s) => { return CcdMotionThreshold; }, (s,v) => { CcdMotionThreshold = v;}, (s,o) => { s.PE.SetCcdMotionThreshold(o.PhysBody, CcdMotionThreshold); } ), new ParameterDefn("CcdSweptSphereRadius", "Continuious collision detection test radius" , 0.2f, (s) => { return CcdSweptSphereRadius; }, (s,v) => { CcdSweptSphereRadius = v;}, (s,o) => { s.PE.SetCcdSweptSphereRadius(o.PhysBody, CcdSweptSphereRadius); } ), new ParameterDefn("ContactProcessingThreshold", "Distance above which contacts can be discarded (0 means no discard)" , 0.0f, (s) => { return ContactProcessingThreshold; }, (s,v) => { ContactProcessingThreshold = v;}, (s,o) => { s.PE.SetContactProcessingThreshold(o.PhysBody, ContactProcessingThreshold); } ), new ParameterDefn("TerrainImplementation", "Type of shape to use for terrain (0=heightmap, 1=mesh)", (float)BSTerrainPhys.TerrainImplementation.Mesh, (s) => { return TerrainImplementation; }, (s,v) => { TerrainImplementation = v; } ), new ParameterDefn("TerrainMeshMagnification", "Number of times the 256x256 heightmap is multiplied to create the terrain mesh" , 2, (s) => { return TerrainMeshMagnification; }, (s,v) => { TerrainMeshMagnification = v; } ), new ParameterDefn("TerrainFriction", "Factor to reduce movement against terrain surface" , 0.3f, (s) => { return TerrainFriction; }, (s,v) => { TerrainFriction = v; /* TODO: set on real terrain */} ), new ParameterDefn("TerrainHitFraction", "Distance to measure hit collisions" , 0.8f, (s) => { return TerrainHitFraction; }, (s,v) => { TerrainHitFraction = v; /* TODO: set on real terrain */ } ), new ParameterDefn("TerrainRestitution", "Bouncyness" , 0f, (s) => { return TerrainRestitution; }, (s,v) => { TerrainRestitution = v; /* TODO: set on real terrain */ } ), new ParameterDefn("TerrainContactProcessingThreshold", "Distance from terrain to stop processing collisions" , 0.0f, (s) => { return TerrainContactProcessingThreshold; }, (s,v) => { TerrainContactProcessingThreshold = v; /* TODO: set on real terrain */ } ), new ParameterDefn("TerrainCollisionMargin", "Margin where collision checking starts" , 0.08f, (s) => { return TerrainCollisionMargin; }, (s,v) => { TerrainCollisionMargin = v; /* TODO: set on real terrain */ } ), new ParameterDefn("AvatarFriction", "Factor to reduce movement against an avatar. Changed on avatar recreation.", 0.2f, (s) => { return AvatarFriction; }, (s,v) => { AvatarFriction = v; } ), new ParameterDefn("AvatarStandingFriction", "Avatar friction when standing. Changed on avatar recreation.", 0.95f, (s) => { return AvatarStandingFriction; }, (s,v) => { AvatarStandingFriction = v; } ), new ParameterDefn("AvatarAlwaysRunFactor", "Speed multiplier if avatar is set to always run", 1.3f, (s) => { return AvatarAlwaysRunFactor; }, (s,v) => { AvatarAlwaysRunFactor = v; } ), new ParameterDefn("AvatarDensity", "Density of an avatar. Changed on avatar recreation.", 3.5f, (s) => { return AvatarDensity; }, (s,v) => { AvatarDensity = v; } ), new ParameterDefn("AvatarRestitution", "Bouncyness. Changed on avatar recreation.", 0f, (s) => { return AvatarRestitution; }, (s,v) => { AvatarRestitution = v; } ), new ParameterDefn("AvatarCapsuleWidth", "The distance between the sides of the avatar capsule", 0.6f, (s) => { return AvatarCapsuleWidth; }, (s,v) => { AvatarCapsuleWidth = v; } ), new ParameterDefn("AvatarCapsuleDepth", "The distance between the front and back of the avatar capsule", 0.45f, (s) => { return AvatarCapsuleDepth; }, (s,v) => { AvatarCapsuleDepth = v; } ), new ParameterDefn("AvatarCapsuleHeight", "Default height of space around avatar", 1.5f, (s) => { return AvatarCapsuleHeight; }, (s,v) => { AvatarCapsuleHeight = v; } ), new ParameterDefn("AvatarContactProcessingThreshold", "Distance from capsule to check for collisions", 0.1f, (s) => { return AvatarContactProcessingThreshold; }, (s,v) => { AvatarContactProcessingThreshold = v; } ), new ParameterDefn("AvatarBelowGroundUpCorrectionMeters", "Meters to move avatar up if it seems to be below ground", 1.0f, (s) => { return AvatarBelowGroundUpCorrectionMeters; }, (s,v) => { AvatarBelowGroundUpCorrectionMeters = v; } ), new ParameterDefn("AvatarStepHeight", "Height of a step obstacle to consider step correction", 0.6f, (s) => { return AvatarStepHeight; }, (s,v) => { AvatarStepHeight = v; } ), new ParameterDefn("AvatarStepApproachFactor", "Factor to control angle of approach to step (0=straight on)", 0.6f, (s) => { return AvatarStepApproachFactor; }, (s,v) => { AvatarStepApproachFactor = v; } ), new ParameterDefn("AvatarStepForceFactor", "Controls the amount of force up applied to step up onto a step", 1.0f, (s) => { return AvatarStepForceFactor; }, (s,v) => { AvatarStepForceFactor = v; } ), new ParameterDefn("AvatarStepUpCorrectionFactor", "Multiplied by height of step collision to create up movement at step", 1.0f, (s) => { return AvatarStepUpCorrectionFactor; }, (s,v) => { AvatarStepUpCorrectionFactor = v; } ), new ParameterDefn("AvatarStepSmoothingSteps", "Number of frames after a step collision that we continue walking up stairs", 2, (s) => { return AvatarStepSmoothingSteps; }, (s,v) => { AvatarStepSmoothingSteps = v; } ), new ParameterDefn("VehicleMaxLinearVelocity", "Maximum velocity magnitude that can be assigned to a vehicle", 1000.0f, (s) => { return (float)VehicleMaxLinearVelocity; }, (s,v) => { VehicleMaxLinearVelocity = v; VehicleMaxLinearVelocitySquared = v * v; } ), new ParameterDefn("VehicleMaxAngularVelocity", "Maximum rotational velocity magnitude that can be assigned to a vehicle", 12.0f, (s) => { return (float)VehicleMaxAngularVelocity; }, (s,v) => { VehicleMaxAngularVelocity = v; VehicleMaxAngularVelocitySq = v * v; } ), new ParameterDefn("VehicleAngularDamping", "Factor to damp vehicle angular movement per second (0.0 - 1.0)", 0.0f, (s) => { return VehicleAngularDamping; }, (s,v) => { VehicleAngularDamping = v; } ), new ParameterDefn("VehicleLinearFactor", "Fraction of physical linear changes applied to vehicle (<0,0,0> to <1,1,1>)", new Vector3(1f, 1f, 1f), (s) => { return VehicleLinearFactor; }, (s,v) => { VehicleLinearFactor = v; } ), new ParameterDefn("VehicleAngularFactor", "Fraction of physical angular changes applied to vehicle (<0,0,0> to <1,1,1>)", new Vector3(1f, 1f, 1f), (s) => { return VehicleAngularFactor; }, (s,v) => { VehicleAngularFactor = v; } ), new ParameterDefn("VehicleFriction", "Friction of vehicle on the ground (0.0 - 1.0)", 0.0f, (s) => { return VehicleFriction; }, (s,v) => { VehicleFriction = v; } ), new ParameterDefn("VehicleRestitution", "Bouncyness factor for vehicles (0.0 - 1.0)", 0.0f, (s) => { return VehicleRestitution; }, (s,v) => { VehicleRestitution = v; } ), new ParameterDefn("VehicleGroundGravityFudge", "Factor to multiply gravity if a ground vehicle is probably on the ground (0.0 - 1.0)", 0.2f, (s) => { return VehicleGroundGravityFudge; }, (s,v) => { VehicleGroundGravityFudge = v; } ), new ParameterDefn("VehicleAngularBankingTimescaleFudge", "Factor to multiple angular banking timescale. Tune to increase realism.", 60.0f, (s) => { return VehicleAngularBankingTimescaleFudge; }, (s,v) => { VehicleAngularBankingTimescaleFudge = v; } ), new ParameterDefn("VehicleDebuggingEnable", "Turn on/off vehicle debugging", false, (s) => { return VehicleDebuggingEnabled; }, (s,v) => { VehicleDebuggingEnabled = v; } ), new ParameterDefn("MaxPersistantManifoldPoolSize", "Number of manifolds pooled (0 means default of 4096)", 0f, (s) => { return MaxPersistantManifoldPoolSize; }, (s,v) => { MaxPersistantManifoldPoolSize = v; s.UnmanagedParams[0].maxPersistantManifoldPoolSize = v; } ), new ParameterDefn("MaxCollisionAlgorithmPoolSize", "Number of collisions pooled (0 means default of 4096)", 0f, (s) => { return MaxCollisionAlgorithmPoolSize; }, (s,v) => { MaxCollisionAlgorithmPoolSize = v; s.UnmanagedParams[0].maxCollisionAlgorithmPoolSize = v; } ), new ParameterDefn("ShouldDisableContactPoolDynamicAllocation", "Enable to allow large changes in object count", false, (s) => { return ShouldDisableContactPoolDynamicAllocation; }, (s,v) => { ShouldDisableContactPoolDynamicAllocation = v; s.UnmanagedParams[0].shouldDisableContactPoolDynamicAllocation = NumericBool(v); } ), new ParameterDefn("ShouldForceUpdateAllAabbs", "Enable to recomputer AABBs every simulator step", false, (s) => { return ShouldForceUpdateAllAabbs; }, (s,v) => { ShouldForceUpdateAllAabbs = v; s.UnmanagedParams[0].shouldForceUpdateAllAabbs = NumericBool(v); } ), new ParameterDefn("ShouldRandomizeSolverOrder", "Enable for slightly better stacking interaction", true, (s) => { return ShouldRandomizeSolverOrder; }, (s,v) => { ShouldRandomizeSolverOrder = v; s.UnmanagedParams[0].shouldRandomizeSolverOrder = NumericBool(v); } ), new ParameterDefn("ShouldSplitSimulationIslands", "Enable splitting active object scanning islands", true, (s) => { return ShouldSplitSimulationIslands; }, (s,v) => { ShouldSplitSimulationIslands = v; s.UnmanagedParams[0].shouldSplitSimulationIslands = NumericBool(v); } ), new ParameterDefn("ShouldEnableFrictionCaching", "Enable friction computation caching", true, (s) => { return ShouldEnableFrictionCaching; }, (s,v) => { ShouldEnableFrictionCaching = v; s.UnmanagedParams[0].shouldEnableFrictionCaching = NumericBool(v); } ), new ParameterDefn("NumberOfSolverIterations", "Number of internal iterations (0 means default)", 0f, // zero says use Bullet default (s) => { return NumberOfSolverIterations; }, (s,v) => { NumberOfSolverIterations = v; s.UnmanagedParams[0].numberOfSolverIterations = v; } ), new ParameterDefn("UseSingleSidedMeshes", "Whether to compute collisions based on single sided meshes.", true, (s) => { return UseSingleSidedMeshes; }, (s,v) => { UseSingleSidedMeshes = v; s.UnmanagedParams[0].useSingleSidedMeshes = NumericBool(v); } ), new ParameterDefn("GlobalContactBreakingThreshold", "Amount of shape radius before breaking a collision contact (0 says Bullet default (0.2))", 0f, (s) => { return GlobalContactBreakingThreshold; }, (s,v) => { GlobalContactBreakingThreshold = v; s.UnmanagedParams[0].globalContactBreakingThreshold = v; } ), new ParameterDefn("CSHullMaxDepthSplit", "CS impl: max depth to split for hull. 1-10 but > 7 is iffy", 7, (s) => { return CSHullMaxDepthSplit; }, (s,v) => { CSHullMaxDepthSplit = v; } ), new ParameterDefn("CSHullMaxDepthSplitForSimpleShapes", "CS impl: max depth setting for simple prim shapes", 2, (s) => { return CSHullMaxDepthSplitForSimpleShapes; }, (s,v) => { CSHullMaxDepthSplitForSimpleShapes = v; } ), new ParameterDefn("CSHullConcavityThresholdPercent", "CS impl: concavity threshold percent (0-20)", 5f, (s) => { return CSHullConcavityThresholdPercent; }, (s,v) => { CSHullConcavityThresholdPercent = v; } ), new ParameterDefn("CSHullVolumeConservationThresholdPercent", "percent volume conservation to collapse hulls (0-30)", 5f, (s) => { return CSHullVolumeConservationThresholdPercent; }, (s,v) => { CSHullVolumeConservationThresholdPercent = v; } ), new ParameterDefn("CSHullMaxVertices", "CS impl: maximum number of vertices in output hulls. Keep < 50.", 32, (s) => { return CSHullMaxVertices; }, (s,v) => { CSHullMaxVertices = v; } ), new ParameterDefn("CSHullMaxSkinWidth", "CS impl: skin width to apply to output hulls.", 0f, (s) => { return CSHullMaxSkinWidth; }, (s,v) => { CSHullMaxSkinWidth = v; } ), new ParameterDefn("BHullMaxVerticesPerHull", "Bullet impl: max number of vertices per created hull", 100f, (s) => { return BHullMaxVerticesPerHull; }, (s,v) => { BHullMaxVerticesPerHull = v; } ), new ParameterDefn("BHullMinClusters", "Bullet impl: minimum number of hulls to create per mesh", 2f, (s) => { return BHullMinClusters; }, (s,v) => { BHullMinClusters = v; } ), new ParameterDefn("BHullCompacityWeight", "Bullet impl: weight factor for how compact to make hulls", 2f, (s) => { return BHullCompacityWeight; }, (s,v) => { BHullCompacityWeight = v; } ), new ParameterDefn("BHullVolumeWeight", "Bullet impl: weight factor for volume in created hull", 0.1f, (s) => { return BHullVolumeWeight; }, (s,v) => { BHullVolumeWeight = v; } ), new ParameterDefn("BHullConcavity", "Bullet impl: weight factor for how convex a created hull can be", 100f, (s) => { return BHullConcavity; }, (s,v) => { BHullConcavity = v; } ), new ParameterDefn("BHullAddExtraDistPoints", "Bullet impl: whether to add extra vertices for long distance vectors", false, (s) => { return BHullAddExtraDistPoints; }, (s,v) => { BHullAddExtraDistPoints = v; } ), new ParameterDefn("BHullAddNeighboursDistPoints", "Bullet impl: whether to add extra vertices between neighbor hulls", false, (s) => { return BHullAddNeighboursDistPoints; }, (s,v) => { BHullAddNeighboursDistPoints = v; } ), new ParameterDefn("BHullAddFacesPoints", "Bullet impl: whether to add extra vertices to break up hull faces", false, (s) => { return BHullAddFacesPoints; }, (s,v) => { BHullAddFacesPoints = v; } ), new ParameterDefn("BHullShouldAdjustCollisionMargin", "Bullet impl: whether to shrink resulting hulls to account for collision margin", false, (s) => { return BHullShouldAdjustCollisionMargin; }, (s,v) => { BHullShouldAdjustCollisionMargin = v; } ), new ParameterDefn("LinksetImplementation", "Type of linkset implementation (0=Constraint, 1=Compound, 2=Manual)", (float)BSLinkset.LinksetImplementation.Compound, (s) => { return LinksetImplementation; }, (s,v) => { LinksetImplementation = v; } ), new ParameterDefn("LinkConstraintUseFrameOffset", "For linksets built with constraints, enable frame offsetFor linksets built with constraints, enable frame offset.", false, (s) => { return LinkConstraintUseFrameOffset; }, (s,v) => { LinkConstraintUseFrameOffset = v; } ), new ParameterDefn("LinkConstraintEnableTransMotor", "Whether to enable translational motor on linkset constraints", true, (s) => { return LinkConstraintEnableTransMotor; }, (s,v) => { LinkConstraintEnableTransMotor = v; } ), new ParameterDefn("LinkConstraintTransMotorMaxVel", "Maximum velocity to be applied by translational motor in linkset constraints", 5.0f, (s) => { return LinkConstraintTransMotorMaxVel; }, (s,v) => { LinkConstraintTransMotorMaxVel = v; } ), new ParameterDefn("LinkConstraintTransMotorMaxForce", "Maximum force to be applied by translational motor in linkset constraints", 0.1f, (s) => { return LinkConstraintTransMotorMaxForce; }, (s,v) => { LinkConstraintTransMotorMaxForce = v; } ), new ParameterDefn("LinkConstraintCFM", "Amount constraint can be violated. 0=no violation, 1=infinite. Default=0.1", 0.1f, (s) => { return LinkConstraintCFM; }, (s,v) => { LinkConstraintCFM = v; } ), new ParameterDefn("LinkConstraintERP", "Amount constraint is corrected each tick. 0=none, 1=all. Default = 0.2", 0.1f, (s) => { return LinkConstraintERP; }, (s,v) => { LinkConstraintERP = v; } ), new ParameterDefn("LinkConstraintSolverIterations", "Number of solver iterations when computing constraint. (0 = Bullet default)", 40, (s) => { return LinkConstraintSolverIterations; }, (s,v) => { LinkConstraintSolverIterations = v; } ), new ParameterDefn("PhysicsMetricFrames", "Frames between outputting detailed phys metrics. (0 is off)", 0, (s) => { return s.PhysicsMetricDumpFrames; }, (s,v) => { s.PhysicsMetricDumpFrames = v; } ), new ParameterDefn("ResetBroadphasePool", "Setting this is any value resets the broadphase collision pool", 0f, (s) => { return 0f; }, (s,v) => { BSParam.ResetBroadphasePoolTainted(s, v); } ), new ParameterDefn("ResetConstraintSolver", "Setting this is any value resets the constraint solver", 0f, (s) => { return 0f; }, (s,v) => { BSParam.ResetConstraintSolverTainted(s, v); } ), }; // Convert a boolean to our numeric true and false values public static float NumericBool(bool b) { return (b ? ConfigurationParameters.numericTrue : ConfigurationParameters.numericFalse); } // Convert numeric true and false values to a boolean public static bool BoolNumeric(float b) { return (b == ConfigurationParameters.numericTrue ? true : false); } // Search through the parameter definitions and return the matching // ParameterDefn structure. // Case does not matter as names are compared after converting to lower case. // Returns 'false' if the parameter is not found. internal static bool TryGetParameter(string paramName, out ParameterDefnBase defn) { bool ret = false; ParameterDefnBase foundDefn = null; string pName = paramName.ToLower(); foreach (ParameterDefnBase parm in ParameterDefinitions) { if (pName == parm.name.ToLower()) { foundDefn = parm; ret = true; break; } } defn = foundDefn; return ret; } // Pass through the settable parameters and set the default values internal static void SetParameterDefaultValues(BSScene physicsScene) { foreach (ParameterDefnBase parm in ParameterDefinitions) { parm.AssignDefault(physicsScene); } } // Get user set values out of the ini file. internal static void SetParameterConfigurationValues(BSScene physicsScene, IConfig cfg) { foreach (ParameterDefnBase parm in ParameterDefinitions) { parm.SetValue(physicsScene, cfg.GetString(parm.name, parm.GetValue(physicsScene))); } } internal static PhysParameterEntry[] SettableParameters = new PhysParameterEntry[1]; // This creates an array in the correct format for returning the list of // parameters. This is used by the 'list' option of the 'physics' command. internal static void BuildParameterTable() { if (SettableParameters.Length < ParameterDefinitions.Length) { List entries = new List(); for (int ii = 0; ii < ParameterDefinitions.Length; ii++) { ParameterDefnBase pd = ParameterDefinitions[ii]; entries.Add(new PhysParameterEntry(pd.name, pd.desc)); } // make the list alphabetical for ease of finding anything entries.Sort((ppe1, ppe2) => { return ppe1.name.CompareTo(ppe2.name); }); SettableParameters = entries.ToArray(); } } // ===================================================================== // ===================================================================== // There are parameters that, when set, cause things to happen in the physics engine. // This causes the broadphase collision cache to be cleared. private static void ResetBroadphasePoolTainted(BSScene pPhysScene, float v) { BSScene physScene = pPhysScene; physScene.TaintedObject("BSParam.ResetBroadphasePoolTainted", delegate() { physScene.PE.ResetBroadphasePool(physScene.World); }); } // This causes the constraint solver cache to be cleared and reset. private static void ResetConstraintSolverTainted(BSScene pPhysScene, float v) { BSScene physScene = pPhysScene; physScene.TaintedObject("BSParam.ResetConstraintSolver", delegate() { physScene.PE.ResetConstraintSolver(physScene.World); }); } } }