From fca74b0bf0a0833f5701e9c0de7b3bc15b2233dd Mon Sep 17 00:00:00 2001 From: dan miller Date: Fri, 19 Oct 2007 05:20:07 +0000 Subject: dont ask --- libraries/ode-0.9/ode/src/odemath.cpp | 178 ---------------------------------- 1 file changed, 178 deletions(-) delete mode 100644 libraries/ode-0.9/ode/src/odemath.cpp (limited to 'libraries/ode-0.9/ode/src/odemath.cpp') diff --git a/libraries/ode-0.9/ode/src/odemath.cpp b/libraries/ode-0.9/ode/src/odemath.cpp deleted file mode 100644 index 11bc84e..0000000 --- a/libraries/ode-0.9/ode/src/odemath.cpp +++ /dev/null @@ -1,178 +0,0 @@ -/************************************************************************* - * * - * Open Dynamics Engine, Copyright (C) 2001,2002 Russell L. Smith. * - * All rights reserved. Email: russ@q12.org Web: www.q12.org * - * * - * This library is free software; you can redistribute it and/or * - * modify it under the terms of EITHER: * - * (1) The GNU Lesser General Public License as published by the Free * - * Software Foundation; either version 2.1 of the License, or (at * - * your option) any later version. The text of the GNU Lesser * - * General Public License is included with this library in the * - * file LICENSE.TXT. * - * (2) The BSD-style license that is included with this library in * - * the file LICENSE-BSD.TXT. * - * * - * This library is distributed in the hope that it will be useful, * - * but WITHOUT ANY WARRANTY; without even the implied warranty of * - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the files * - * LICENSE.TXT and LICENSE-BSD.TXT for more details. * - * * - *************************************************************************/ - -#include -#include - -// get some math functions under windows -#ifdef WIN32 -#include -#ifndef CYGWIN // added by andy for cygwin -#undef copysign -#define copysign(a,b) ((dReal)_copysign(a,b)) -#endif // added by andy for cygwin -#endif - -#undef dNormalize3 -#undef dNormalize4 - - -// this may be called for vectors `a' with extremely small magnitude, for -// example the result of a cross product on two nearly perpendicular vectors. -// we must be robust to these small vectors. to prevent numerical error, -// first find the component a[i] with the largest magnitude and then scale -// all the components by 1/a[i]. then we can compute the length of `a' and -// scale the components by 1/l. this has been verified to work with vectors -// containing the smallest representable numbers. - -int dSafeNormalize3 (dVector3 a) -{ - dReal a0,a1,a2,aa0,aa1,aa2,l; - dAASSERT (a); - a0 = a[0]; - a1 = a[1]; - a2 = a[2]; - aa0 = dFabs(a0); - aa1 = dFabs(a1); - aa2 = dFabs(a2); - if (aa1 > aa0) { - if (aa2 > aa1) { - goto aa2_largest; - } - else { // aa1 is largest - a0 /= aa1; - a2 /= aa1; - l = dRecipSqrt (a0*a0 + a2*a2 + 1); - a[0] = a0*l; - a[1] = dCopySign(l,a1); - a[2] = a2*l; - } - } - else { - if (aa2 > aa0) { - aa2_largest: // aa2 is largest - a0 /= aa2; - a1 /= aa2; - l = dRecipSqrt (a0*a0 + a1*a1 + 1); - a[0] = a0*l; - a[1] = a1*l; - a[2] = dCopySign(l,a2); - } - else { // aa0 is largest - if (aa0 <= 0) { - a[0] = 1; // if all a's are zero, this is where we'll end up. - a[1] = 0; // return a default unit length vector. - a[2] = 0; - return 0; - } - a1 /= aa0; - a2 /= aa0; - l = dRecipSqrt (a1*a1 + a2*a2 + 1); - a[0] = dCopySign(l,a0); - a[1] = a1*l; - a[2] = a2*l; - } - } - return 1; -} - -/* OLD VERSION */ -/* -void dNormalize3 (dVector3 a) -{ - dIASSERT (a); - dReal l = dDOT(a,a); - if (l > 0) { - l = dRecipSqrt(l); - a[0] *= l; - a[1] *= l; - a[2] *= l; - } - else { - a[0] = 1; - a[1] = 0; - a[2] = 0; - } -} -*/ - -void dNormalize3(dVector3 a) -{ - _dNormalize3(a); -} - - -int dSafeNormalize4 (dVector4 a) -{ - dAASSERT (a); - dReal l = dDOT(a,a)+a[3]*a[3]; - if (l > 0) { - l = dRecipSqrt(l); - a[0] *= l; - a[1] *= l; - a[2] *= l; - a[3] *= l; - return 1; - } - else { - a[0] = 1; - a[1] = 0; - a[2] = 0; - a[3] = 0; - return 0; - } -} - -void dNormalize4(dVector4 a) -{ - _dNormalize4(a); -} - - -void dPlaneSpace (const dVector3 n, dVector3 p, dVector3 q) -{ - dAASSERT (n && p && q); - if (dFabs(n[2]) > M_SQRT1_2) { - // choose p in y-z plane - dReal a = n[1]*n[1] + n[2]*n[2]; - dReal k = dRecipSqrt (a); - p[0] = 0; - p[1] = -n[2]*k; - p[2] = n[1]*k; - // set q = n x p - q[0] = a*k; - q[1] = -n[0]*p[2]; - q[2] = n[0]*p[1]; - } - else { - // choose p in x-y plane - dReal a = n[0]*n[0] + n[1]*n[1]; - dReal k = dRecipSqrt (a); - p[0] = -n[1]*k; - p[1] = n[0]*k; - p[2] = 0; - // set q = n x p - q[0] = -n[2]*p[1]; - q[1] = n[2]*p[0]; - q[2] = a*k; - } -} -- cgit v1.1