From 2f8d7092bc2c9609fa98d6888106b96f38b22828 Mon Sep 17 00:00:00 2001 From: dan miller Date: Sun, 21 Oct 2007 08:36:32 +0000 Subject: libraries moved to opensim-libs, a new repository --- libraries/ode-0.9/docs/odemath_8h-source.html | 350 -------------------------- 1 file changed, 350 deletions(-) delete mode 100644 libraries/ode-0.9/docs/odemath_8h-source.html (limited to 'libraries/ode-0.9/docs/odemath_8h-source.html') diff --git a/libraries/ode-0.9/docs/odemath_8h-source.html b/libraries/ode-0.9/docs/odemath_8h-source.html deleted file mode 100644 index b330c60..0000000 --- a/libraries/ode-0.9/docs/odemath_8h-source.html +++ /dev/null @@ -1,350 +0,0 @@ - - -Open Dynamics Engine: odemath.h Source File - - - - -
- -
-

odemath.h

00001 /*************************************************************************
-00002  *                                                                       *
-00003  * Open Dynamics Engine, Copyright (C) 2001,2002 Russell L. Smith.       *
-00004  * All rights reserved.  Email: russ@q12.org   Web: www.q12.org          *
-00005  *                                                                       *
-00006  * This library is free software; you can redistribute it and/or         *
-00007  * modify it under the terms of EITHER:                                  *
-00008  *   (1) The GNU Lesser General Public License as published by the Free  *
-00009  *       Software Foundation; either version 2.1 of the License, or (at  *
-00010  *       your option) any later version. The text of the GNU Lesser      *
-00011  *       General Public License is included with this library in the     *
-00012  *       file LICENSE.TXT.                                               *
-00013  *   (2) The BSD-style license that is included with this library in     *
-00014  *       the file LICENSE-BSD.TXT.                                       *
-00015  *                                                                       *
-00016  * This library is distributed in the hope that it will be useful,       *
-00017  * but WITHOUT ANY WARRANTY; without even the implied warranty of        *
-00018  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the files    *
-00019  * LICENSE.TXT and LICENSE-BSD.TXT for more details.                     *
-00020  *                                                                       *
-00021  *************************************************************************/
-00022 
-00023 #ifndef _ODE_ODEMATH_H_
-00024 #define _ODE_ODEMATH_H_
-00025 
-00026 #include <ode/common.h>
-00027 
-00028 #ifdef __GNUC__
-00029 #define PURE_INLINE extern inline
-00030 #else
-00031 #define PURE_INLINE inline
-00032 #endif
-00033 
-00034 /*
-00035  * macro to access elements i,j in an NxM matrix A, independent of the
-00036  * matrix storage convention.
-00037  */
-00038 #define dACCESS33(A,i,j) ((A)[(i)*4+(j)])
-00039 
-00040 /*
-00041  * Macro to test for valid floating point values
-00042  */
-00043 #define dVALIDVEC3(v) (!(dIsNan(v[0]) || dIsNan(v[1]) || dIsNan(v[2])))
-00044 #define dVALIDVEC4(v) (!(dIsNan(v[0]) || dIsNan(v[1]) || dIsNan(v[2]) || dIsNan(v[3])))
-00045 #define dVALIDMAT3(m) (!(dIsNan(m[0]) || dIsNan(m[1]) || dIsNan(m[2]) || dIsNan(m[3]) || dIsNan(m[4]) || dIsNan(m[5]) || dIsNan(m[6]) || dIsNan(m[7]) || dIsNan(m[8]) || dIsNan(m[9]) || dIsNan(m[10]) || dIsNan(m[11])))
-00046 #define dVALIDMAT4(m) (!(dIsNan(m[0]) || dIsNan(m[1]) || dIsNan(m[2]) || dIsNan(m[3]) || dIsNan(m[4]) || dIsNan(m[5]) || dIsNan(m[6]) || dIsNan(m[7]) || dIsNan(m[8]) || dIsNan(m[9]) || dIsNan(m[10]) || dIsNan(m[11]) || dIsNan(m[12]) || dIsNan(m[13]) || dIsNan(m[14]) || dIsNan(m[15]) ))
-00047 
-00048 
-00049 
-00050 /*
-00051  * General purpose vector operations with other vectors or constants.
-00052  */
-00053 
-00054 #define dOP(a,op,b,c) \
-00055     (a)[0] = ((b)[0]) op ((c)[0]); \
-00056     (a)[1] = ((b)[1]) op ((c)[1]); \
-00057     (a)[2] = ((b)[2]) op ((c)[2]);
-00058 #define dOPC(a,op,b,c) \
-00059     (a)[0] = ((b)[0]) op (c); \
-00060     (a)[1] = ((b)[1]) op (c); \
-00061     (a)[2] = ((b)[2]) op (c);
-00062 #define dOPE(a,op,b) \
-00063     (a)[0] op ((b)[0]); \
-00064     (a)[1] op ((b)[1]); \
-00065     (a)[2] op ((b)[2]);
-00066 #define dOPEC(a,op,c) \
-00067     (a)[0] op (c); \
-00068     (a)[1] op (c); \
-00069     (a)[2] op (c);
-00070 
-00071 
-00072 /*
-00073  * Length, and squared length helpers. dLENGTH returns the length of a dVector3.
-00074  * dLENGTHSQUARED return the squared length of a dVector3.
-00075  */
-00076 
-00077 #define dLENGTHSQUARED(a) (((a)[0])*((a)[0]) + ((a)[1])*((a)[1]) + ((a)[2])*((a)[2]))
-00078 
-00079 #ifdef __cplusplus
-00080 
-00081 PURE_INLINE dReal dLENGTH (const dReal *a) { return dSqrt(dLENGTHSQUARED(a)); }
-00082 
-00083 #else
-00084 
-00085 #define dLENGTH(a) ( dSqrt( ((a)[0])*((a)[0]) + ((a)[1])*((a)[1]) + ((a)[2])*((a)[2]) ) )
-00086 
-00087 #endif /* __cplusplus */
-00088 
-00089 
-00090 
-00091 
-00092 
-00093 /*
-00094  * 3-way dot product. dDOTpq means that elements of `a' and `b' are spaced
-00095  * p and q indexes apart respectively. dDOT() means dDOT11.
-00096  * in C++ we could use function templates to get all the versions of these
-00097  * functions - but on some compilers this will result in sub-optimal code.
-00098  */
-00099 
-00100 #define dDOTpq(a,b,p,q) ((a)[0]*(b)[0] + (a)[p]*(b)[q] + (a)[2*(p)]*(b)[2*(q)])
-00101 
-00102 #ifdef __cplusplus
-00103 
-00104 PURE_INLINE dReal dDOT   (const dReal *a, const dReal *b) { return dDOTpq(a,b,1,1); }
-00105 PURE_INLINE dReal dDOT13 (const dReal *a, const dReal *b) { return dDOTpq(a,b,1,3); }
-00106 PURE_INLINE dReal dDOT31 (const dReal *a, const dReal *b) { return dDOTpq(a,b,3,1); }
-00107 PURE_INLINE dReal dDOT33 (const dReal *a, const dReal *b) { return dDOTpq(a,b,3,3); }
-00108 PURE_INLINE dReal dDOT14 (const dReal *a, const dReal *b) { return dDOTpq(a,b,1,4); }
-00109 PURE_INLINE dReal dDOT41 (const dReal *a, const dReal *b) { return dDOTpq(a,b,4,1); }
-00110 PURE_INLINE dReal dDOT44 (const dReal *a, const dReal *b) { return dDOTpq(a,b,4,4); }
-00111 
-00112 #else
-00113 
-00114 #define dDOT(a,b)   dDOTpq(a,b,1,1)
-00115 #define dDOT13(a,b) dDOTpq(a,b,1,3)
-00116 #define dDOT31(a,b) dDOTpq(a,b,3,1)
-00117 #define dDOT33(a,b) dDOTpq(a,b,3,3)
-00118 #define dDOT14(a,b) dDOTpq(a,b,1,4)
-00119 #define dDOT41(a,b) dDOTpq(a,b,4,1)
-00120 #define dDOT44(a,b) dDOTpq(a,b,4,4)
-00121 
-00122 #endif /* __cplusplus */
-00123 
-00124 
-00125 /*
-00126  * cross product, set a = b x c. dCROSSpqr means that elements of `a', `b'
-00127  * and `c' are spaced p, q and r indexes apart respectively.
-00128  * dCROSS() means dCROSS111. `op' is normally `=', but you can set it to
-00129  * +=, -= etc to get other effects.
-00130  */
-00131 
-00132 #define dCROSS(a,op,b,c) \
-00133 do { \
-00134   (a)[0] op ((b)[1]*(c)[2] - (b)[2]*(c)[1]); \
-00135   (a)[1] op ((b)[2]*(c)[0] - (b)[0]*(c)[2]); \
-00136   (a)[2] op ((b)[0]*(c)[1] - (b)[1]*(c)[0]); \
-00137 } while(0)
-00138 #define dCROSSpqr(a,op,b,c,p,q,r) \
-00139 do { \
-00140   (a)[  0] op ((b)[  q]*(c)[2*r] - (b)[2*q]*(c)[  r]); \
-00141   (a)[  p] op ((b)[2*q]*(c)[  0] - (b)[  0]*(c)[2*r]); \
-00142   (a)[2*p] op ((b)[  0]*(c)[  r] - (b)[  q]*(c)[  0]); \
-00143 } while(0)
-00144 #define dCROSS114(a,op,b,c) dCROSSpqr(a,op,b,c,1,1,4)
-00145 #define dCROSS141(a,op,b,c) dCROSSpqr(a,op,b,c,1,4,1)
-00146 #define dCROSS144(a,op,b,c) dCROSSpqr(a,op,b,c,1,4,4)
-00147 #define dCROSS411(a,op,b,c) dCROSSpqr(a,op,b,c,4,1,1)
-00148 #define dCROSS414(a,op,b,c) dCROSSpqr(a,op,b,c,4,1,4)
-00149 #define dCROSS441(a,op,b,c) dCROSSpqr(a,op,b,c,4,4,1)
-00150 #define dCROSS444(a,op,b,c) dCROSSpqr(a,op,b,c,4,4,4)
-00151 
-00152 
-00153 /*
-00154  * set a 3x3 submatrix of A to a matrix such that submatrix(A)*b = a x b.
-00155  * A is stored by rows, and has `skip' elements per row. the matrix is
-00156  * assumed to be already zero, so this does not write zero elements!
-00157  * if (plus,minus) is (+,-) then a positive version will be written.
-00158  * if (plus,minus) is (-,+) then a negative version will be written.
-00159  */
-00160 
-00161 #define dCROSSMAT(A,a,skip,plus,minus) \
-00162 do { \
-00163   (A)[1] = minus (a)[2]; \
-00164   (A)[2] = plus (a)[1]; \
-00165   (A)[(skip)+0] = plus (a)[2]; \
-00166   (A)[(skip)+2] = minus (a)[0]; \
-00167   (A)[2*(skip)+0] = minus (a)[1]; \
-00168   (A)[2*(skip)+1] = plus (a)[0]; \
-00169 } while(0)
-00170 
-00171 
-00172 /*
-00173  * compute the distance between two 3D-vectors
-00174  */
-00175 
-00176 #ifdef __cplusplus
-00177 PURE_INLINE dReal dDISTANCE (const dVector3 a, const dVector3 b)
-00178    { return dSqrt( (a[0]-b[0])*(a[0]-b[0]) + (a[1]-b[1])*(a[1]-b[1]) + (a[2]-b[2])*(a[2]-b[2]) ); }
-00179 #else
-00180 #define dDISTANCE(a,b) \
-00181    (dSqrt( ((a)[0]-(b)[0])*((a)[0]-(b)[0]) + ((a)[1]-(b)[1])*((a)[1]-(b)[1]) + ((a)[2]-(b)[2])*((a)[2]-(b)[2]) ))
-00182 #endif
-00183 
-00184 
-00185 /*
-00186  * special case matrix multipication, with operator selection
-00187  */
-00188 
-00189 #define dMULTIPLYOP0_331(A,op,B,C) \
-00190 do { \
-00191   (A)[0] op dDOT((B),(C)); \
-00192   (A)[1] op dDOT((B+4),(C)); \
-00193   (A)[2] op dDOT((B+8),(C)); \
-00194 } while(0)
-00195 #define dMULTIPLYOP1_331(A,op,B,C) \
-00196 do { \
-00197   (A)[0] op dDOT41((B),(C)); \
-00198   (A)[1] op dDOT41((B+1),(C)); \
-00199   (A)[2] op dDOT41((B+2),(C)); \
-00200 } while(0)
-00201 #define dMULTIPLYOP0_133(A,op,B,C) \
-00202 do { \
-00203   (A)[0] op dDOT14((B),(C)); \
-00204   (A)[1] op dDOT14((B),(C+1)); \
-00205   (A)[2] op dDOT14((B),(C+2)); \
-00206 } while(0)
-00207 #define dMULTIPLYOP0_333(A,op,B,C) \
-00208 do { \
-00209   (A)[0] op dDOT14((B),(C)); \
-00210   (A)[1] op dDOT14((B),(C+1)); \
-00211   (A)[2] op dDOT14((B),(C+2)); \
-00212   (A)[4] op dDOT14((B+4),(C)); \
-00213   (A)[5] op dDOT14((B+4),(C+1)); \
-00214   (A)[6] op dDOT14((B+4),(C+2)); \
-00215   (A)[8] op dDOT14((B+8),(C)); \
-00216   (A)[9] op dDOT14((B+8),(C+1)); \
-00217   (A)[10] op dDOT14((B+8),(C+2)); \
-00218 } while(0)
-00219 #define dMULTIPLYOP1_333(A,op,B,C) \
-00220 do { \
-00221   (A)[0] op dDOT44((B),(C)); \
-00222   (A)[1] op dDOT44((B),(C+1)); \
-00223   (A)[2] op dDOT44((B),(C+2)); \
-00224   (A)[4] op dDOT44((B+1),(C)); \
-00225   (A)[5] op dDOT44((B+1),(C+1)); \
-00226   (A)[6] op dDOT44((B+1),(C+2)); \
-00227   (A)[8] op dDOT44((B+2),(C)); \
-00228   (A)[9] op dDOT44((B+2),(C+1)); \
-00229   (A)[10] op dDOT44((B+2),(C+2)); \
-00230 } while(0)
-00231 #define dMULTIPLYOP2_333(A,op,B,C) \
-00232 do { \
-00233   (A)[0] op dDOT((B),(C)); \
-00234   (A)[1] op dDOT((B),(C+4)); \
-00235   (A)[2] op dDOT((B),(C+8)); \
-00236   (A)[4] op dDOT((B+4),(C)); \
-00237   (A)[5] op dDOT((B+4),(C+4)); \
-00238   (A)[6] op dDOT((B+4),(C+8)); \
-00239   (A)[8] op dDOT((B+8),(C)); \
-00240   (A)[9] op dDOT((B+8),(C+4)); \
-00241   (A)[10] op dDOT((B+8),(C+8)); \
-00242 } while(0)
-00243 
-00244 #ifdef __cplusplus
-00245 
-00246 #define DECL template <class TA, class TB, class TC> PURE_INLINE void
-00247 
-00248 DECL dMULTIPLY0_331(TA *A, const TB *B, const TC *C) { dMULTIPLYOP0_331(A,=,B,C); }
-00249 DECL dMULTIPLY1_331(TA *A, const TB *B, const TC *C) { dMULTIPLYOP1_331(A,=,B,C); }
-00250 DECL dMULTIPLY0_133(TA *A, const TB *B, const TC *C) { dMULTIPLYOP0_133(A,=,B,C); }
-00251 DECL dMULTIPLY0_333(TA *A, const TB *B, const TC *C) { dMULTIPLYOP0_333(A,=,B,C); }
-00252 DECL dMULTIPLY1_333(TA *A, const TB *B, const TC *C) { dMULTIPLYOP1_333(A,=,B,C); }
-00253 DECL dMULTIPLY2_333(TA *A, const TB *B, const TC *C) { dMULTIPLYOP2_333(A,=,B,C); }
-00254 
-00255 DECL dMULTIPLYADD0_331(TA *A, const TB *B, const TC *C) { dMULTIPLYOP0_331(A,+=,B,C); }
-00256 DECL dMULTIPLYADD1_331(TA *A, const TB *B, const TC *C) { dMULTIPLYOP1_331(A,+=,B,C); }
-00257 DECL dMULTIPLYADD0_133(TA *A, const TB *B, const TC *C) { dMULTIPLYOP0_133(A,+=,B,C); }
-00258 DECL dMULTIPLYADD0_333(TA *A, const TB *B, const TC *C) { dMULTIPLYOP0_333(A,+=,B,C); }
-00259 DECL dMULTIPLYADD1_333(TA *A, const TB *B, const TC *C) { dMULTIPLYOP1_333(A,+=,B,C); }
-00260 DECL dMULTIPLYADD2_333(TA *A, const TB *B, const TC *C) { dMULTIPLYOP2_333(A,+=,B,C); }
-00261 
-00262 #undef DECL
-00263 
-00264 #else
-00265 
-00266 #define dMULTIPLY0_331(A,B,C) dMULTIPLYOP0_331(A,=,B,C)
-00267 #define dMULTIPLY1_331(A,B,C) dMULTIPLYOP1_331(A,=,B,C)
-00268 #define dMULTIPLY0_133(A,B,C) dMULTIPLYOP0_133(A,=,B,C)
-00269 #define dMULTIPLY0_333(A,B,C) dMULTIPLYOP0_333(A,=,B,C)
-00270 #define dMULTIPLY1_333(A,B,C) dMULTIPLYOP1_333(A,=,B,C)
-00271 #define dMULTIPLY2_333(A,B,C) dMULTIPLYOP2_333(A,=,B,C)
-00272 
-00273 #define dMULTIPLYADD0_331(A,B,C) dMULTIPLYOP0_331(A,+=,B,C)
-00274 #define dMULTIPLYADD1_331(A,B,C) dMULTIPLYOP1_331(A,+=,B,C)
-00275 #define dMULTIPLYADD0_133(A,B,C) dMULTIPLYOP0_133(A,+=,B,C)
-00276 #define dMULTIPLYADD0_333(A,B,C) dMULTIPLYOP0_333(A,+=,B,C)
-00277 #define dMULTIPLYADD1_333(A,B,C) dMULTIPLYOP1_333(A,+=,B,C)
-00278 #define dMULTIPLYADD2_333(A,B,C) dMULTIPLYOP2_333(A,+=,B,C)
-00279 
-00280 #endif
-00281 
-00282 
-00283 #ifdef __cplusplus
-00284 extern "C" {
-00285 #endif
-00286 
-00287 /*
-00288  * normalize 3x1 and 4x1 vectors (i.e. scale them to unit length)
-00289  */
-00290 ODE_API int  dSafeNormalize3 (dVector3 a);
-00291 ODE_API int  dSafeNormalize4 (dVector4 a);
-00292 
-00293 // For some reason demo_chain1.c does not understand "inline" keyword.
-00294 static __inline void _dNormalize3(dVector3 a)
-00295 {
-00296    int bNormalizationResult = dSafeNormalize3(a);
-00297    dIASSERT(bNormalizationResult);
-00298    dVARIABLEUSED(bNormalizationResult);
-00299 }
-00300 
-00301 static __inline void _dNormalize4(dVector4 a)
-00302 {
-00303    int bNormalizationResult = dSafeNormalize4(a);
-00304    dIASSERT(bNormalizationResult);
-00305    dVARIABLEUSED(bNormalizationResult);
-00306 }
-00307 
-00308 // For DLL export
-00309 ODE_API void dNormalize3 (dVector3 a); // Potentially asserts on zero vec
-00310 ODE_API void dNormalize4 (dVector4 a); // Potentially asserts on zero vec
-00311 
-00312 // For internal use
-00313 #define dNormalize3(a) _dNormalize3(a)
-00314 #define dNormalize4(a) _dNormalize4(a)
-00315 
-00316 /*
-00317  * given a unit length "normal" vector n, generate vectors p and q vectors
-00318  * that are an orthonormal basis for the plane space perpendicular to n.
-00319  * i.e. this makes p,q such that n,p,q are all perpendicular to each other.
-00320  * q will equal n x p. if n is not unit length then p will be unit length but
-00321  * q wont be.
-00322  */
-00323 
-00324 ODE_API void dPlaneSpace (const dVector3 n, dVector3 p, dVector3 q);
-00325 
-00326 #ifdef __cplusplus
-00327 }
-00328 #endif
-00329 
-00330 #endif
-

Generated on Fri Oct 12 08:36:51 2007 for Open Dynamics Engine by  - -doxygen 1.5.3
- - -- cgit v1.1