From 07ee2c3504edb0c328020aed6f5d3f182a3b67c5 Mon Sep 17 00:00:00 2001
From: Dahlia Trimble
Date: Sun, 30 Nov 2008 03:52:18 +0000
Subject: Revert r7548 and r7549 until someone with prebuild-fu can help
structure the dependencies
---
OpenSim/Region/Physics/Meshing/PrimMesher.cs | 2168 ++++++++++++++++++++++++++
1 file changed, 2168 insertions(+)
create mode 100644 OpenSim/Region/Physics/Meshing/PrimMesher.cs
(limited to 'OpenSim/Region/Physics/Meshing/PrimMesher.cs')
diff --git a/OpenSim/Region/Physics/Meshing/PrimMesher.cs b/OpenSim/Region/Physics/Meshing/PrimMesher.cs
new file mode 100644
index 0000000..1fed64d
--- /dev/null
+++ b/OpenSim/Region/Physics/Meshing/PrimMesher.cs
@@ -0,0 +1,2168 @@
+/*
+ * Copyright (c) Contributors
+ * See CONTRIBUTORS.TXT for a full list of copyright holders.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions are met:
+ * * Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * * Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ * * Neither the name of the OpenSim Project nor the
+ * names of its contributors may be used to endorse or promote products
+ * derived from this software without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE DEVELOPERS ``AS IS'' AND ANY
+ * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
+ * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
+ * DISCLAIMED. IN NO EVENT SHALL THE CONTRIBUTORS BE LIABLE FOR ANY
+ * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
+ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
+ * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
+ * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
+ * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ */
+
+using System;
+using System.Collections.Generic;
+using System.Text;
+using System.IO;
+
+namespace PrimMesher
+{
+ public struct Quat
+ {
+ /// X value
+ public float X;
+ /// Y value
+ public float Y;
+ /// Z value
+ public float Z;
+ /// W value
+ public float W;
+
+ public Quat(float x, float y, float z, float w)
+ {
+ X = x;
+ Y = y;
+ Z = z;
+ W = w;
+ }
+
+ public Quat(Coord axis, float angle)
+ {
+ axis = axis.Normalize();
+
+ angle *= 0.5f;
+ float c = (float)Math.Cos(angle);
+ float s = (float)Math.Sin(angle);
+
+ X = axis.X * s;
+ Y = axis.Y * s;
+ Z = axis.Z * s;
+ W = c;
+
+ Normalize();
+ }
+
+ public float Length()
+ {
+ return (float)Math.Sqrt(X * X + Y * Y + Z * Z + W * W);
+ }
+
+ public Quat Normalize()
+ {
+ const float MAG_THRESHOLD = 0.0000001f;
+ float mag = Length();
+
+ // Catch very small rounding errors when normalizing
+ if (mag > MAG_THRESHOLD)
+ {
+ float oomag = 1f / mag;
+ X *= oomag;
+ Y *= oomag;
+ Z *= oomag;
+ W *= oomag;
+ }
+ else
+ {
+ X = 0f;
+ Y = 0f;
+ Z = 0f;
+ W = 1f;
+ }
+
+ return this;
+ }
+
+ public override string ToString()
+ {
+ return "< X: " + this.X.ToString() + ", Y: " + this.Y.ToString() + ", Z: " + this.Z.ToString() + ", W: " + this.W.ToString() + ">";
+ }
+ }
+
+ public struct Coord
+ {
+ public float X;
+ public float Y;
+ public float Z;
+
+ public Coord(float x, float y, float z)
+ {
+ this.X = x;
+ this.Y = y;
+ this.Z = z;
+ }
+
+ public float Length()
+ {
+ return (float)Math.Sqrt(this.X * this.X + this.Y * this.Y + this.Z * this.Z);
+ }
+
+ public Coord Invert()
+ {
+ this.X = -this.X;
+ this.Y = -this.Y;
+ this.Z = -this.Z;
+
+ return this;
+ }
+
+ public Coord Normalize()
+ {
+ const float MAG_THRESHOLD = 0.0000001f;
+ float mag = Length();
+
+ // Catch very small rounding errors when normalizing
+ if (mag > MAG_THRESHOLD)
+ {
+ float oomag = 1.0f / mag;
+ this.X *= oomag;
+ this.Y *= oomag;
+ this.Z *= oomag;
+ }
+ else
+ {
+ this.X = 0.0f;
+ this.Y = 0.0f;
+ this.Z = 0.0f;
+ }
+
+ return this;
+ }
+
+ public override string ToString()
+ {
+ return this.X.ToString() + " " + this.Y.ToString() + " " + this.Z.ToString();
+ }
+
+ public static Coord Cross(Coord c1, Coord c2)
+ {
+ return new Coord(
+ c1.Y * c2.Z - c2.Y * c1.Z,
+ c1.Z * c2.X - c2.Z * c1.X,
+ c1.X * c2.Y - c2.X * c1.Y
+ );
+ }
+
+ public static Coord operator +(Coord v, Coord a)
+ {
+ return new Coord(v.X + a.X, v.Y + a.Y, v.Z + a.Z);
+ }
+
+ public static Coord operator *(Coord v, Coord m)
+ {
+ return new Coord(v.X * m.X, v.Y * m.Y, v.Z * m.Z);
+ }
+
+ public static Coord operator *(Coord v, Quat q)
+ {
+ // From http://www.euclideanspace.com/maths/algebra/realNormedAlgebra/quaternions/transforms/
+
+ Coord c2 = new Coord(0.0f, 0.0f, 0.0f);
+
+ c2.X = q.W * q.W * v.X +
+ 2f * q.Y * q.W * v.Z -
+ 2f * q.Z * q.W * v.Y +
+ q.X * q.X * v.X +
+ 2f * q.Y * q.X * v.Y +
+ 2f * q.Z * q.X * v.Z -
+ q.Z * q.Z * v.X -
+ q.Y * q.Y * v.X;
+
+ c2.Y =
+ 2f * q.X * q.Y * v.X +
+ q.Y * q.Y * v.Y +
+ 2f * q.Z * q.Y * v.Z +
+ 2f * q.W * q.Z * v.X -
+ q.Z * q.Z * v.Y +
+ q.W * q.W * v.Y -
+ 2f * q.X * q.W * v.Z -
+ q.X * q.X * v.Y;
+
+ c2.Z =
+ 2f * q.X * q.Z * v.X +
+ 2f * q.Y * q.Z * v.Y +
+ q.Z * q.Z * v.Z -
+ 2f * q.W * q.Y * v.X -
+ q.Y * q.Y * v.Z +
+ 2f * q.W * q.X * v.Y -
+ q.X * q.X * v.Z +
+ q.W * q.W * v.Z;
+
+ return c2;
+ }
+ }
+
+ public struct UVCoord
+ {
+ public float U;
+ public float V;
+
+
+ public UVCoord(float u, float v)
+ {
+ this.U = u;
+ this.V = v;
+ }
+ }
+
+ public struct Face
+ {
+ public int primFace;
+
+ // vertices
+ public int v1;
+ public int v2;
+ public int v3;
+
+ //normals
+ public int n1;
+ public int n2;
+ public int n3;
+
+ // uvs
+ public int uv1;
+ public int uv2;
+ public int uv3;
+
+
+ public Face(int v1, int v2, int v3)
+ {
+ primFace = 0;
+
+ this.v1 = v1;
+ this.v2 = v2;
+ this.v3 = v3;
+
+ this.n1 = 0;
+ this.n2 = 0;
+ this.n3 = 0;
+
+ this.uv1 = 0;
+ this.uv2 = 0;
+ this.uv3 = 0;
+
+ }
+
+ public Face(int v1, int v2, int v3, int n1, int n2, int n3)
+ {
+ primFace = 0;
+
+ this.v1 = v1;
+ this.v2 = v2;
+ this.v3 = v3;
+
+ this.n1 = n1;
+ this.n2 = n2;
+ this.n3 = n3;
+
+ this.uv1 = 0;
+ this.uv2 = 0;
+ this.uv3 = 0;
+ }
+
+ public Coord SurfaceNormal(List coordList)
+ {
+ Coord c1 = coordList[this.v1];
+ Coord c2 = coordList[this.v2];
+ Coord c3 = coordList[this.v3];
+
+ Coord edge1 = new Coord(c2.X - c1.X, c2.Y - c1.Y, c2.Z - c1.Z);
+ Coord edge2 = new Coord(c3.X - c1.X, c3.Y - c1.Y, c3.Z - c1.Z);
+
+ return Coord.Cross(edge1, edge2).Normalize();
+ }
+ }
+
+ public struct ViewerFace
+ {
+ public int primFaceNumber;
+
+ public Coord v1;
+ public Coord v2;
+ public Coord v3;
+
+ public Coord n1;
+ public Coord n2;
+ public Coord n3;
+
+ public UVCoord uv1;
+ public UVCoord uv2;
+ public UVCoord uv3;
+
+ public ViewerFace(int primFaceNumber)
+ {
+ this.primFaceNumber = primFaceNumber;
+
+ this.v1 = new Coord();
+ this.v2 = new Coord();
+ this.v3 = new Coord();
+
+ this.n1 = new Coord();
+ this.n2 = new Coord();
+ this.n3 = new Coord();
+
+ this.uv1 = new UVCoord();
+ this.uv2 = new UVCoord();
+ this.uv3 = new UVCoord();
+ }
+
+ public void Scale(float x, float y, float z)
+ {
+ this.v1.X *= x;
+ this.v1.Y *= y;
+ this.v1.Z *= z;
+
+ this.v2.X *= x;
+ this.v2.Y *= y;
+ this.v2.Z *= z;
+
+ this.v3.X *= x;
+ this.v3.Y *= y;
+ this.v3.Z *= z;
+ }
+
+ public void AddRot(Quat q)
+ {
+ this.v1 *= q;
+ this.v2 *= q;
+ this.v3 *= q;
+
+ this.n1 *= q;
+ this.n2 *= q;
+ this.n3 *= q;
+ }
+
+ public void CalcSurfaceNormal()
+ {
+
+ Coord edge1 = new Coord(this.v2.X - this.v1.X, this.v2.Y - this.v1.Y, this.v2.Z - this.v1.Z);
+ Coord edge2 = new Coord(this.v3.X - this.v1.X, this.v3.Y - this.v1.Y, this.v3.Z - this.v1.Z);
+
+ this.n1 = this.n2 = this.n3 = Coord.Cross(edge1, edge2).Normalize();
+ }
+ }
+
+ internal struct Angle
+ {
+ internal float angle;
+ internal float X;
+ internal float Y;
+
+ internal Angle(float angle, float x, float y)
+ {
+ this.angle = angle;
+ this.X = x;
+ this.Y = y;
+ }
+ }
+
+ internal class AngleList
+ {
+ private float iX, iY; // intersection point
+
+ private Angle[] angles3 =
+ {
+ new Angle(0.0f, 1.0f, 0.0f),
+ new Angle(0.33333333333333333f, -0.5f, 0.86602540378443871f),
+ new Angle(0.66666666666666667f, -0.5f, -0.86602540378443837f),
+ new Angle(1.0f, 1.0f, 0.0f)
+ };
+
+ private Coord[] normals3 =
+ {
+ new Coord(0.25f, 0.4330127019f, 0.0f).Normalize(),
+ new Coord(-0.5f, 0.0f, 0.0f).Normalize(),
+ new Coord(0.25f, -0.4330127019f, 0.0f).Normalize(),
+ new Coord(0.25f, 0.4330127019f, 0.0f).Normalize()
+ };
+
+ private Angle[] angles4 =
+ {
+ new Angle(0.0f, 1.0f, 0.0f),
+ new Angle(0.25f, 0.0f, 1.0f),
+ new Angle(0.5f, -1.0f, 0.0f),
+ new Angle(0.75f, 0.0f, -1.0f),
+ new Angle(1.0f, 1.0f, 0.0f)
+ };
+
+ private Coord[] normals4 =
+ {
+ new Coord(0.5f, 0.5f, 0.0f).Normalize(),
+ new Coord(-0.5f, 0.5f, 0.0f).Normalize(),
+ new Coord(-0.5f, -0.5f, 0.0f).Normalize(),
+ new Coord(0.5f, -0.5f, 0.0f).Normalize(),
+ new Coord(0.5f, 0.5f, 0.0f).Normalize()
+ };
+
+ private Angle[] angles24 =
+ {
+ new Angle(0.0f, 1.0f, 0.0f),
+ new Angle(0.041666666666666664f, 0.96592582628906831f, 0.25881904510252074f),
+ new Angle(0.083333333333333329f, 0.86602540378443871f, 0.5f),
+ new Angle(0.125f, 0.70710678118654757f, 0.70710678118654746f),
+ new Angle(0.16666666666666667f, 0.5f, 0.8660254037844386f),
+ new Angle(0.20833333333333331f, 0.25881904510252096f, 0.9659258262890682f),
+ new Angle(0.25f, 0.0f, 1.0f),
+ new Angle(0.29166666666666663f, -0.25881904510252063f, 0.96592582628906831f),
+ new Angle(0.33333333333333333f, -0.5f, 0.86602540378443871f),
+ new Angle(0.375f, -0.70710678118654746f, 0.70710678118654757f),
+ new Angle(0.41666666666666663f, -0.86602540378443849f, 0.5f),
+ new Angle(0.45833333333333331f, -0.9659258262890682f, 0.25881904510252102f),
+ new Angle(0.5f, -1.0f, 0.0f),
+ new Angle(0.54166666666666663f, -0.96592582628906842f, -0.25881904510252035f),
+ new Angle(0.58333333333333326f, -0.86602540378443882f, -0.5f),
+ new Angle(0.62499999999999989f, -0.70710678118654791f, -0.70710678118654713f),
+ new Angle(0.66666666666666667f, -0.5f, -0.86602540378443837f),
+ new Angle(0.70833333333333326f, -0.25881904510252152f, -0.96592582628906809f),
+ new Angle(0.75f, 0.0f, -1.0f),
+ new Angle(0.79166666666666663f, 0.2588190451025203f, -0.96592582628906842f),
+ new Angle(0.83333333333333326f, 0.5f, -0.86602540378443904f),
+ new Angle(0.875f, 0.70710678118654735f, -0.70710678118654768f),
+ new Angle(0.91666666666666663f, 0.86602540378443837f, -0.5f),
+ new Angle(0.95833333333333326f, 0.96592582628906809f, -0.25881904510252157f),
+ new Angle(1.0f, 1.0f, 0.0f)
+ };
+
+ private Angle interpolatePoints(float newPoint, Angle p1, Angle p2)
+ {
+ float m = (newPoint - p1.angle) / (p2.angle - p1.angle);
+ return new Angle(newPoint, p1.X + m * (p2.X - p1.X), p1.Y + m * (p2.Y - p1.Y));
+ }
+
+ private void intersection(double x1, double y1, double x2, double y2, double x3, double y3, double x4, double y4)
+ { // ref: http://local.wasp.uwa.edu.au/~pbourke/geometry/lineline2d/
+ double denom = (y4 - y3) * (x2 - x1) - (x4 - x3) * (y2 - y1);
+ double uaNumerator = (x4 - x3) * (y1 - y3) - (y4 - y3) * (x1 - x3);
+
+ if (denom != 0.0)
+ {
+ double ua = uaNumerator / denom;
+ iX = (float)(x1 + ua * (x2 - x1));
+ iY = (float)(y1 + ua * (y2 - y1));
+ }
+ }
+
+ internal List angles;
+ internal List normals;
+
+ internal void makeAngles(int sides, float startAngle, float stopAngle)
+ {
+ angles = new List();
+ normals = new List();
+
+ double twoPi = System.Math.PI * 2.0;
+ float twoPiInv = 1.0f / (float)twoPi;
+
+ if (sides < 1)
+ throw new Exception("number of sides not greater than zero");
+ if (stopAngle <= startAngle)
+ throw new Exception("stopAngle not greater than startAngle");
+
+ if ((sides == 3 || sides == 4 || sides == 24))
+ {
+ startAngle *= twoPiInv;
+ stopAngle *= twoPiInv;
+
+ Angle[] sourceAngles;
+ if (sides == 3)
+ sourceAngles = angles3;
+ else if (sides == 4)
+ sourceAngles = angles4;
+ else sourceAngles = angles24;
+
+ int startAngleIndex = (int)(startAngle * sides);
+ int endAngleIndex = sourceAngles.Length - 1;
+ if (stopAngle < 1.0f)
+ endAngleIndex = (int)(stopAngle * sides) + 1;
+ if (endAngleIndex == startAngleIndex)
+ endAngleIndex++;
+
+ for (int angleIndex = startAngleIndex; angleIndex < endAngleIndex + 1; angleIndex++)
+ {
+ angles.Add(sourceAngles[angleIndex]);
+ if (sides == 3)
+ normals.Add(normals3[angleIndex]);
+ else if (sides == 4)
+ normals.Add(normals4[angleIndex]);
+ }
+
+ if (startAngle > 0.0f)
+ angles[0] = interpolatePoints(startAngle, angles[0], angles[1]);
+
+ if (stopAngle < 1.0f)
+ {
+ int lastAngleIndex = angles.Count - 1;
+ angles[lastAngleIndex] = interpolatePoints(stopAngle, angles[lastAngleIndex - 1], angles[lastAngleIndex]);
+ }
+ }
+ else
+ {
+ double stepSize = twoPi / sides;
+
+ int startStep = (int)(startAngle / stepSize);
+ double angle = stepSize * startStep;
+ int step = startStep;
+ double stopAngleTest = stopAngle;
+ if (stopAngle < twoPi)
+ {
+ stopAngleTest = stepSize * ((int)(stopAngle / stepSize) + 1);
+ if (stopAngleTest < stopAngle)
+ stopAngleTest += stepSize;
+ if (stopAngleTest > twoPi)
+ stopAngleTest = twoPi;
+ }
+
+ while (angle <= stopAngleTest)
+ {
+ Angle newAngle;
+ newAngle.angle = (float)angle;
+ newAngle.X = (float)System.Math.Cos(angle);
+ newAngle.Y = (float)System.Math.Sin(angle);
+ angles.Add(newAngle);
+ step += 1;
+ angle = stepSize * step;
+ }
+
+ if (startAngle > angles[0].angle)
+ {
+ Angle newAngle;
+ intersection(angles[0].X, angles[0].Y, angles[1].X, angles[1].Y, 0.0f, 0.0f, (float)Math.Cos(startAngle), (float)Math.Sin(startAngle));
+ newAngle.angle = startAngle;
+ newAngle.X = iX;
+ newAngle.Y = iY;
+ angles[0] = newAngle;
+ }
+
+ int index = angles.Count - 1;
+ if (stopAngle < angles[index].angle)
+ {
+ Angle newAngle;
+ intersection(angles[index - 1].X, angles[index - 1].Y, angles[index].X, angles[index].Y, 0.0f, 0.0f, (float)Math.Cos(stopAngle), (float)Math.Sin(stopAngle));
+ newAngle.angle = stopAngle;
+ newAngle.X = iX;
+ newAngle.Y = iY;
+ angles[index] = newAngle;
+ }
+ }
+ }
+ }
+
+ ///
+ /// generates a profile for extrusion
+ ///
+ internal class Profile
+ {
+ private const float twoPi = 2.0f * (float)Math.PI;
+
+ internal List coords;
+ internal List faces;
+ internal List vertexNormals;
+ internal List us;
+ internal List faceUVs;
+ internal List faceNumbers;
+
+ internal Coord faceNormal = new Coord(0.0f, 0.0f, 1.0f);
+ internal Coord cutNormal1 = new Coord();
+ internal Coord cutNormal2 = new Coord();
+
+ internal int numOuterVerts = 0;
+ internal int numHollowVerts = 0;
+
+ internal bool calcVertexNormals = false;
+ internal int bottomFaceNumber = 0;
+ internal int numPrimFaces = 0;
+
+ internal Profile()
+ {
+ this.coords = new List();
+ this.faces = new List();
+ this.vertexNormals = new List();
+ this.us = new List();
+ this.faceUVs = new List();
+ this.faceNumbers = new List();
+ }
+
+ internal Profile(int sides, float profileStart, float profileEnd, float hollow, int hollowSides, bool createFaces, bool calcVertexNormals)
+ {
+ this.calcVertexNormals = calcVertexNormals;
+ this.coords = new List();
+ this.faces = new List();
+ this.vertexNormals = new List();
+ this.us = new List();
+ this.faceUVs = new List();
+ this.faceNumbers = new List();
+
+ Coord center = new Coord(0.0f, 0.0f, 0.0f);
+
+ List hollowCoords = new List();
+ List hollowNormals = new List();
+ List hollowUs = new List();
+
+ bool hasHollow = (hollow > 0.0f);
+
+ bool hasProfileCut = (profileStart > 0.0f || profileEnd < 1.0f);
+
+ AngleList angles = new AngleList();
+ AngleList hollowAngles = new AngleList();
+
+ float xScale = 0.5f;
+ float yScale = 0.5f;
+ if (sides == 4) // corners of a square are sqrt(2) from center
+ {
+ xScale = 0.707f;
+ yScale = 0.707f;
+ }
+
+ float startAngle = profileStart * twoPi;
+ float stopAngle = profileEnd * twoPi;
+
+ try { angles.makeAngles(sides, startAngle, stopAngle); }
+ catch (Exception ex)
+ {
+ Console.WriteLine("makeAngles failed: Exception: " + ex.ToString());
+ Console.WriteLine("sides: " + sides.ToString() + " startAngle: " + startAngle.ToString() + " stopAngle: " + stopAngle.ToString());
+ return;
+ }
+
+ this.numOuterVerts = angles.angles.Count;
+
+ // flag to create as few triangles as possible for 3 or 4 side profile
+ bool simpleFace = (sides < 5 && !(hasHollow || hasProfileCut));
+
+ if (hasHollow)
+ {
+ if (sides == hollowSides)
+ hollowAngles = angles;
+ else
+ {
+ try { hollowAngles.makeAngles(hollowSides, startAngle, stopAngle); }
+ catch (Exception ex)
+ {
+ Console.WriteLine("makeAngles failed: Exception: " + ex.ToString());
+ Console.WriteLine("sides: " + sides.ToString() + " startAngle: " + startAngle.ToString() + " stopAngle: " + stopAngle.ToString());
+ return;
+ }
+ }
+ this.numHollowVerts = hollowAngles.angles.Count;
+ }
+ else if (!simpleFace)
+ {
+ this.coords.Add(center);
+ if (this.calcVertexNormals)
+ this.vertexNormals.Add(new Coord(0.0f, 0.0f, 1.0f));
+ this.us.Add(0.0f);
+ }
+
+ float z = 0.0f;
+
+ Angle angle;
+ Coord newVert = new Coord();
+ if (hasHollow && hollowSides != sides)
+ {
+ int numHollowAngles = hollowAngles.angles.Count;
+ for (int i = 0; i < numHollowAngles; i++)
+ {
+ angle = hollowAngles.angles[i];
+ newVert.X = hollow * xScale * angle.X;
+ newVert.Y = hollow * yScale * angle.Y;
+ newVert.Z = z;
+
+ hollowCoords.Add(newVert);
+ if (this.calcVertexNormals)
+ {
+ if (hollowSides < 5)
+ hollowNormals.Add(hollowAngles.normals[i].Invert());
+ else
+ hollowNormals.Add(new Coord(-angle.X, -angle.Y, 0.0f));
+
+ hollowUs.Add(angle.angle * hollow);
+ }
+ }
+ }
+
+ int index = 0;
+ int numAngles = angles.angles.Count;
+
+ for (int i = 0; i < numAngles; i++)
+ {
+ int iNext = i == numAngles ? i + 1 : 0;
+ angle = angles.angles[i];
+ newVert.X = angle.X * xScale;
+ newVert.Y = angle.Y * yScale;
+ newVert.Z = z;
+ this.coords.Add(newVert);
+ if (this.calcVertexNormals)
+ {
+
+ if (sides < 5)
+ {
+ this.vertexNormals.Add(angles.normals[i]);
+ float u = angle.angle;
+ this.us.Add(u);
+ }
+ else
+ {
+ this.vertexNormals.Add(new Coord(angle.X, angle.Y, 0.0f));
+ this.us.Add(angle.angle);
+ }
+ }
+
+ if (hollow > 0.0f)
+ {
+ if (hollowSides == sides)
+ {
+ newVert.X *= hollow;
+ newVert.Y *= hollow;
+ newVert.Z = z;
+ hollowCoords.Add(newVert);
+ if (this.calcVertexNormals)
+ {
+ if (sides < 5)
+ {
+ hollowNormals.Add(angles.normals[i].Invert());
+ }
+
+ else
+ hollowNormals.Add(new Coord(-angle.X, -angle.Y, 0.0f));
+
+ hollowUs.Add(angle.angle * hollow);
+ }
+ }
+ }
+ else if (!simpleFace && createFaces && angle.angle > 0.0001f)
+ {
+ Face newFace = new Face();
+ newFace.v1 = 0;
+ newFace.v2 = index;
+ newFace.v3 = index + 1;
+
+ this.faces.Add(newFace);
+ }
+ index += 1;
+ }
+
+ if (hasHollow)
+ {
+ hollowCoords.Reverse();
+ if (this.calcVertexNormals)
+ {
+ hollowNormals.Reverse();
+ hollowUs.Reverse();
+ }
+
+ if (createFaces)
+ {
+ int numOuterVerts = this.coords.Count;
+ int numHollowVerts = hollowCoords.Count;
+ int numTotalVerts = numOuterVerts + numHollowVerts;
+
+ if (numOuterVerts == numHollowVerts)
+ {
+ Face newFace = new Face();
+
+ for (int coordIndex = 0; coordIndex < numOuterVerts - 1; coordIndex++)
+ {
+ newFace.v1 = coordIndex;
+ newFace.v2 = coordIndex + 1;
+ newFace.v3 = numTotalVerts - coordIndex - 1;
+ this.faces.Add(newFace);
+
+ newFace.v1 = coordIndex + 1;
+ newFace.v2 = numTotalVerts - coordIndex - 2;
+ newFace.v3 = numTotalVerts - coordIndex - 1;
+ this.faces.Add(newFace);
+ }
+ }
+ else
+ {
+ if (numOuterVerts < numHollowVerts)
+ {
+ Face newFace = new Face();
+ int j = 0; // j is the index for outer vertices
+ int maxJ = numOuterVerts - 1;
+ for (int i = 0; i < numHollowVerts; i++) // i is the index for inner vertices
+ {
+ if (j < maxJ)
+ if (angles.angles[j + 1].angle - hollowAngles.angles[i].angle <= hollowAngles.angles[i].angle - angles.angles[j].angle)
+ {
+ newFace.v1 = numTotalVerts - i - 1;
+ newFace.v2 = j;
+ newFace.v3 = j + 1;
+
+ this.faces.Add(newFace);
+ j += 1;
+ }
+
+ newFace.v1 = j;
+ newFace.v2 = numTotalVerts - i - 2;
+ newFace.v3 = numTotalVerts - i - 1;
+
+ this.faces.Add(newFace);
+ }
+ }
+ else // numHollowVerts < numOuterVerts
+ {
+ Face newFace = new Face();
+ int j = 0; // j is the index for inner vertices
+ int maxJ = numHollowVerts - 1;
+ for (int i = 0; i < numOuterVerts; i++)
+ {
+ if (j < maxJ)
+ if (hollowAngles.angles[j + 1].angle - angles.angles[i].angle <= angles.angles[i].angle - hollowAngles.angles[j].angle)
+ {
+ newFace.v1 = i;
+ newFace.v2 = numTotalVerts - j - 2;
+ newFace.v3 = numTotalVerts - j - 1;
+
+ this.faces.Add(newFace);
+ j += 1;
+ }
+
+ newFace.v1 = numTotalVerts - j - 1;
+ newFace.v2 = i;
+ newFace.v3 = i + 1;
+
+ this.faces.Add(newFace);
+ }
+ }
+ }
+ }
+
+ this.coords.AddRange(hollowCoords);
+ if (this.calcVertexNormals)
+ {
+ this.vertexNormals.AddRange(hollowNormals);
+ this.us.AddRange(hollowUs);
+
+ }
+ }
+
+ if (simpleFace && createFaces)
+ {
+ if (sides == 3)
+ this.faces.Add(new Face(0, 1, 2));
+ else if (sides == 4)
+ {
+ this.faces.Add(new Face(0, 1, 2));
+ this.faces.Add(new Face(0, 2, 3));
+ }
+ }
+
+ if (calcVertexNormals && hasProfileCut)
+ {
+ if (hasHollow)
+ {
+ int lastOuterVertIndex = this.numOuterVerts - 1;
+
+ this.cutNormal1.X = this.coords[0].Y - this.coords[this.coords.Count - 1].Y;
+ this.cutNormal1.Y = -(this.coords[0].X - this.coords[this.coords.Count - 1].X);
+
+ this.cutNormal2.X = this.coords[lastOuterVertIndex + 1].Y - this.coords[lastOuterVertIndex].Y;
+ this.cutNormal2.Y = -(this.coords[lastOuterVertIndex + 1].X - this.coords[lastOuterVertIndex].X);
+ }
+
+ else
+ {
+ this.cutNormal1.X = this.vertexNormals[1].Y;
+ this.cutNormal1.Y = -this.vertexNormals[1].X;
+
+ this.cutNormal2.X = -this.vertexNormals[this.vertexNormals.Count - 2].Y;
+ this.cutNormal2.Y = this.vertexNormals[this.vertexNormals.Count - 2].X;
+
+ }
+ this.cutNormal1.Normalize();
+ this.cutNormal2.Normalize();
+ }
+
+ this.MakeFaceUVs();
+
+ hollowCoords = null;
+ hollowNormals = null;
+ hollowUs = null;
+
+ if (calcVertexNormals)
+ { // calculate prim face numbers
+ // I know it's ugly but so is the whole concept of prim face numbers
+ int faceNum = 1;
+ int startVert = hasProfileCut && !hasHollow ? 1 : 0;
+ if (startVert > 0)
+ this.faceNumbers.Add(0);
+ for (int i = 0; i < numOuterVerts; i++)
+ this.faceNumbers.Add(sides < 5 ? faceNum++ : faceNum);
+ if (sides > 4)
+ faceNum++;
+ if (hasProfileCut)
+ this.faceNumbers.Add(0);
+ for (int i = 0; i < numHollowVerts; i++)
+ this.faceNumbers.Add(faceNum++);
+ this.bottomFaceNumber = faceNum++;
+ if (hasHollow && hasProfileCut)
+ this.faceNumbers.Add(faceNum++);
+ for (int i = 0; i < this.faceNumbers.Count; i++)
+ if (this.faceNumbers[i] == 0)
+ this.faceNumbers[i] = faceNum++;
+
+ this.numPrimFaces = faceNum;
+ }
+
+ }
+
+ internal void MakeFaceUVs()
+ {
+ this.faceUVs = new List();
+ foreach (Coord c in this.coords)
+ this.faceUVs.Add(new UVCoord(1.0f - (0.5f + c.X), 1.0f - (0.5f - c.Y)));
+ }
+
+ internal Profile Clone()
+ {
+ return this.Clone(true);
+ }
+
+ internal Profile Clone(bool needFaces)
+ {
+ Profile clone = new Profile();
+
+ clone.coords.AddRange(this.coords);
+ clone.faceUVs.AddRange(this.faceUVs);
+
+ if (needFaces)
+ clone.faces.AddRange(this.faces);
+ if ((clone.calcVertexNormals = this.calcVertexNormals) == true)
+ {
+ clone.vertexNormals.AddRange(this.vertexNormals);
+ clone.faceNormal = this.faceNormal;
+ clone.cutNormal1 = this.cutNormal1;
+ clone.cutNormal2 = this.cutNormal2;
+ clone.us.AddRange(this.us);
+ clone.faceNumbers.AddRange(this.faceNumbers);
+ }
+ clone.numOuterVerts = this.numOuterVerts;
+ clone.numHollowVerts = this.numHollowVerts;
+
+ return clone;
+ }
+
+ internal void AddPos(Coord v)
+ {
+ this.AddPos(v.X, v.Y, v.Z);
+ }
+
+ internal void AddPos(float x, float y, float z)
+ {
+ int i;
+ int numVerts = this.coords.Count;
+ Coord vert;
+
+ for (i = 0; i < numVerts; i++)
+ {
+ vert = this.coords[i];
+ vert.X += x;
+ vert.Y += y;
+ vert.Z += z;
+ this.coords[i] = vert;
+ }
+ }
+
+ internal void AddRot(Quat q)
+ {
+ int i;
+ int numVerts = this.coords.Count;
+
+ for (i = 0; i < numVerts; i++)
+ this.coords[i] *= q;
+
+ if (this.calcVertexNormals)
+ {
+ int numNormals = this.vertexNormals.Count;
+ for (i = 0; i < numNormals; i++)
+ this.vertexNormals[i] *= q;
+
+ this.faceNormal *= q;
+ this.cutNormal1 *= q;
+ this.cutNormal2 *= q;
+
+ }
+ }
+
+ internal void Scale(float x, float y)
+ {
+ int i;
+ int numVerts = this.coords.Count;
+ Coord vert;
+
+ for (i = 0; i < numVerts; i++)
+ {
+ vert = this.coords[i];
+ vert.X *= x;
+ vert.Y *= y;
+ this.coords[i] = vert;
+ }
+ }
+
+ ///
+ /// Changes order of the vertex indices and negates the center vertex normal. Does not alter vertex normals of radial vertices
+ ///
+ internal void FlipNormals()
+ {
+ int i;
+ int numFaces = this.faces.Count;
+ Face tmpFace;
+ int tmp;
+
+ for (i = 0; i < numFaces; i++)
+ {
+ tmpFace = this.faces[i];
+ tmp = tmpFace.v3;
+ tmpFace.v3 = tmpFace.v1;
+ tmpFace.v1 = tmp;
+ this.faces[i] = tmpFace;
+ }
+
+ if (this.calcVertexNormals)
+ {
+ int normalCount = this.vertexNormals.Count;
+ if (normalCount > 0)
+ {
+ Coord n = this.vertexNormals[normalCount - 1];
+ n.Z = -n.Z;
+ this.vertexNormals[normalCount - 1] = n;
+ }
+ }
+
+ this.faceNormal.X = -this.faceNormal.X;
+ this.faceNormal.Y = -this.faceNormal.Y;
+ this.faceNormal.Z = -this.faceNormal.Z;
+
+ int numfaceUVs = this.faceUVs.Count;
+ for (i = 0; i < numfaceUVs; i++)
+ {
+ UVCoord uv = this.faceUVs[i];
+ uv.V = 1.0f - uv.V;
+ this.faceUVs[i] = uv;
+ }
+ }
+
+ internal void AddValue2FaceVertexIndices(int num)
+ {
+ int numFaces = this.faces.Count;
+ Face tmpFace;
+ for (int i = 0; i < numFaces; i++)
+ {
+ tmpFace = this.faces[i];
+ tmpFace.v1 += num;
+ tmpFace.v2 += num;
+ tmpFace.v3 += num;
+
+ this.faces[i] = tmpFace;
+ }
+ }
+
+ internal void AddValue2FaceNormalIndices(int num)
+ {
+ if (this.calcVertexNormals)
+ {
+ int numFaces = this.faces.Count;
+ Face tmpFace;
+ for (int i = 0; i < numFaces; i++)
+ {
+ tmpFace = this.faces[i];
+ tmpFace.n1 += num;
+ tmpFace.n2 += num;
+ tmpFace.n3 += num;
+
+ this.faces[i] = tmpFace;
+ }
+ }
+ }
+
+ internal void DumpRaw(String path, String name, String title)
+ {
+ if (path == null)
+ return;
+ String fileName = name + "_" + title + ".raw";
+ String completePath = Path.Combine(path, fileName);
+ StreamWriter sw = new StreamWriter(completePath);
+
+ for (int i = 0; i < this.faces.Count; i++)
+ {
+ string s = this.coords[this.faces[i].v1].ToString();
+ s += " " + this.coords[this.faces[i].v2].ToString();
+ s += " " + this.coords[this.faces[i].v3].ToString();
+
+ sw.WriteLine(s);
+ }
+
+ sw.Close();
+ }
+ }
+
+ public class PrimMesh
+ {
+ private const float twoPi = 2.0f * (float)Math.PI;
+
+ public List coords;
+ public List normals;
+ public List faces;
+
+ public List viewerFaces;
+
+ private int sides = 4;
+ private int hollowSides = 4;
+ private float profileStart = 0.0f;
+ private float profileEnd = 1.0f;
+ private float hollow = 0.0f;
+ public int twistBegin = 0;
+ public int twistEnd = 0;
+ public float topShearX = 0.0f;
+ public float topShearY = 0.0f;
+ public float pathCutBegin = 0.0f;
+ public float pathCutEnd = 1.0f;
+ public float dimpleBegin = 0.0f;
+ public float dimpleEnd = 1.0f;
+ public float skew = 0.0f;
+ public float holeSizeX = 1.0f; // called pathScaleX in pbs
+ public float holeSizeY = 0.25f;
+ public float taperX = 0.0f;
+ public float taperY = 0.0f;
+ public float radius = 0.0f;
+ public float revolutions = 1.0f;
+ public int stepsPerRevolution = 24;
+
+ private bool hasProfileCut = false;
+ private bool hasHollow = false;
+ public bool calcVertexNormals = false;
+ private bool normalsProcessed = false;
+ public bool viewerMode = false;
+
+ public int numPrimFaces = 0;
+
+ ///
+ /// Human readable string representation of the parameters used to create a mesh.
+ ///
+ ///
+ public string ParamsToDisplayString()
+ {
+ string s = "";
+ s += "sides..................: " + this.sides.ToString();
+ s += "\nhollowSides..........: " + this.hollowSides.ToString();
+ s += "\nprofileStart.........: " + this.profileStart.ToString();
+ s += "\nprofileEnd...........: " + this.profileEnd.ToString();
+ s += "\nhollow...............: " + this.hollow.ToString();
+ s += "\ntwistBegin...........: " + this.twistBegin.ToString();
+ s += "\ntwistEnd.............: " + this.twistEnd.ToString();
+ s += "\ntopShearX............: " + this.topShearX.ToString();
+ s += "\ntopShearY............: " + this.topShearY.ToString();
+ s += "\npathCutBegin.........: " + this.pathCutBegin.ToString();
+ s += "\npathCutEnd...........: " + this.pathCutEnd.ToString();
+ s += "\ndimpleBegin..........: " + this.dimpleBegin.ToString();
+ s += "\ndimpleEnd............: " + this.dimpleEnd.ToString();
+ s += "\nskew.................: " + this.skew.ToString();
+ s += "\nholeSizeX............: " + this.holeSizeX.ToString();
+ s += "\nholeSizeY............: " + this.holeSizeY.ToString();
+ s += "\ntaperX...............: " + this.taperX.ToString();
+ s += "\ntaperY...............: " + this.taperY.ToString();
+ s += "\nradius...............: " + this.radius.ToString();
+ s += "\nrevolutions..........: " + this.revolutions.ToString();
+ s += "\nstepsPerRevolution...: " + this.stepsPerRevolution.ToString();
+
+ return s;
+ }
+
+ ///
+ /// Constructs a PrimMesh object and creates the profile for extrusion.
+ ///
+ ///
+ ///
+ ///
+ ///
+ ///
+ public PrimMesh(int sides, float profileStart, float profileEnd, float hollow, int hollowSides)
+ {
+ this.coords = new List();
+ this.faces = new List();
+
+ this.sides = sides;
+ this.profileStart = profileStart;
+ this.profileEnd = profileEnd;
+ this.hollow = hollow;
+ this.hollowSides = hollowSides;
+
+ if (sides < 3)
+ this.sides = 3;
+ if (hollowSides < 3)
+ this.hollowSides = 3;
+ if (profileStart < 0.0f)
+ this.profileStart = 0.0f;
+ if (profileEnd > 1.0f)
+ this.profileEnd = 1.0f;
+ if (profileEnd < 0.02f)
+ this.profileEnd = 0.02f;
+ if (profileStart >= profileEnd)
+ this.profileStart = profileEnd - 0.02f;
+ if (hollow > 1.0f)
+ this.hollow = 1.0f;
+ if (hollow < 0.0f)
+ this.hollow = 0.0f;
+
+ this.hasProfileCut = (this.profileStart > 0.0f || this.profileEnd < 1.0f);
+ this.hasHollow = (this.hollow > 0.001f);
+ }
+
+ ///
+ /// Extrudes a profile along a straight line path. Used for prim types box, cylinder, and prism.
+ ///
+ public void ExtrudeLinear()
+ {
+ this.coords = new List();
+ this.faces = new List();
+
+ if (this.viewerMode)
+ {
+ this.viewerFaces = new List();
+ this.calcVertexNormals = true;
+ }
+
+ if (this.calcVertexNormals)
+ this.normals = new List();
+
+ int step = 0;
+ int steps = 1;
+
+ float length = this.pathCutEnd - this.pathCutBegin;
+ normalsProcessed = false;
+
+ if (this.viewerMode && this.sides == 3)
+ {
+ // prisms don't taper well so add some vertical resolution
+ // other prims may benefit from this but just do prisms for now
+ if (Math.Abs(this.taperX) > 0.01 || Math.Abs(this.taperY) > 0.01)
+ steps = (int)(steps * 4.5 * length);
+ }
+
+
+ float twistBegin = this.twistBegin / 360.0f * twoPi;
+ float twistEnd = this.twistEnd / 360.0f * twoPi;
+ float twistTotal = twistEnd - twistBegin;
+ float twistTotalAbs = Math.Abs(twistTotal);
+ if (twistTotalAbs > 0.01f)
+ steps += (int)(twistTotalAbs * 3.66); // dahlia's magic number
+
+ float start = -0.5f;
+ float stepSize = length / (float)steps;
+ float percentOfPathMultiplier = stepSize;
+ float xProfileScale = 1.0f;
+ float yProfileScale = 1.0f;
+ float xOffset = 0.0f;
+ float yOffset = 0.0f;
+ float zOffset = start;
+ float xOffsetStepIncrement = this.topShearX / steps;
+ float yOffsetStepIncrement = this.topShearY / steps;
+
+ float percentOfPath = this.pathCutBegin;
+ zOffset += percentOfPath;
+
+ float hollow = this.hollow;
+
+ // sanity checks
+ float initialProfileRot = 0.0f;
+ if (this.sides == 3)
+ {
+ if (this.hollowSides == 4)
+ {
+ if (hollow > 0.7f)
+ hollow = 0.7f;
+ hollow *= 0.707f;
+ }
+ else hollow *= 0.5f;
+ }
+ else if (this.sides == 4)
+ {
+ initialProfileRot = 1.25f * (float)Math.PI;
+ if (this.hollowSides != 4)
+ hollow *= 0.707f;
+ }
+ else if (this.sides == 24 && this.hollowSides == 4)
+ hollow *= 1.414f;
+
+ Profile profile = new Profile(this.sides, this.profileStart, this.profileEnd, hollow, this.hollowSides, true, calcVertexNormals);
+ this.numPrimFaces = profile.numPrimFaces;
+
+ int cut1Vert = -1;
+ int cut2Vert = -1;
+ if (hasProfileCut)
+ {
+ cut1Vert = hasHollow ? profile.coords.Count - 1 : 0;
+ cut2Vert = hasHollow ? profile.numOuterVerts - 1 : profile.numOuterVerts;
+ }
+
+ if (initialProfileRot != 0.0f)
+ {
+ profile.AddRot(new Quat(new Coord(0.0f, 0.0f, 1.0f), initialProfileRot));
+ if (viewerMode)
+ profile.MakeFaceUVs();
+ }
+
+
+ Coord lastCutNormal1 = new Coord();
+ Coord lastCutNormal2 = new Coord();
+ float lastV = 1.0f;
+
+ bool done = false;
+ while (!done)
+ {
+ Profile newLayer = profile.Clone();
+
+ if (this.taperX == 0.0f)
+ xProfileScale = 1.0f;
+ else if (this.taperX > 0.0f)
+ xProfileScale = 1.0f - percentOfPath * this.taperX;
+ else xProfileScale = 1.0f + (1.0f - percentOfPath) * this.taperX;
+
+ if (this.taperY == 0.0f)
+ yProfileScale = 1.0f;
+ else if (this.taperY > 0.0f)
+ yProfileScale = 1.0f - percentOfPath * this.taperY;
+ else yProfileScale = 1.0f + (1.0f - percentOfPath) * this.taperY;
+
+ if (xProfileScale != 1.0f || yProfileScale != 1.0f)
+ newLayer.Scale(xProfileScale, yProfileScale);
+
+ float twist = twistBegin + twistTotal * percentOfPath;
+ if (twist != 0.0f)
+ newLayer.AddRot(new Quat(new Coord(0.0f, 0.0f, 1.0f), twist));
+
+ newLayer.AddPos(xOffset, yOffset, zOffset);
+
+ if (step == 0)
+ {
+ newLayer.FlipNormals();
+
+ // add the top faces to the viewerFaces list here
+ if (this.viewerMode)
+ {
+ Coord faceNormal = newLayer.faceNormal;
+ ViewerFace newViewerFace = new ViewerFace(0);
+ foreach (Face face in newLayer.faces)
+ {
+ newViewerFace.v1 = newLayer.coords[face.v1];
+ newViewerFace.v2 = newLayer.coords[face.v2];
+ newViewerFace.v3 = newLayer.coords[face.v3];
+
+ newViewerFace.n1 = faceNormal;
+ newViewerFace.n2 = faceNormal;
+ newViewerFace.n3 = faceNormal;
+
+ newViewerFace.uv1 = newLayer.faceUVs[face.v1];
+ newViewerFace.uv2 = newLayer.faceUVs[face.v2];
+ newViewerFace.uv3 = newLayer.faceUVs[face.v3];
+
+ this.viewerFaces.Add(newViewerFace);
+ }
+ }
+ }
+
+ // append this layer
+
+ int coordsLen = this.coords.Count;
+ newLayer.AddValue2FaceVertexIndices(coordsLen);
+
+ this.coords.AddRange(newLayer.coords);
+
+ if (this.calcVertexNormals)
+ {
+ newLayer.AddValue2FaceNormalIndices(this.normals.Count);
+ this.normals.AddRange(newLayer.vertexNormals);
+ }
+
+ if (percentOfPath < this.pathCutBegin + 0.01f || percentOfPath > this.pathCutEnd - 0.01f)
+ this.faces.AddRange(newLayer.faces);
+
+ // fill faces between layers
+
+ int numVerts = newLayer.coords.Count;
+ Face newFace = new Face();
+
+ if (step > 0)
+ {
+ int startVert = coordsLen + 1;
+ int endVert = this.coords.Count;
+
+ if (sides < 5 || this.hasProfileCut || hollow > 0.0f)
+ startVert--;
+
+ for (int i = startVert; i < endVert; i++)
+ {
+ int iNext = i + 1;
+ if (i == endVert - 1)
+ iNext = startVert;
+
+ int whichVert = i - startVert;
+
+ newFace.v1 = i;
+ newFace.v2 = i - numVerts;
+ newFace.v3 = iNext - numVerts;
+ this.faces.Add(newFace);
+
+ newFace.v2 = iNext - numVerts;
+ newFace.v3 = iNext;
+ this.faces.Add(newFace);
+
+ if (this.viewerMode)
+ {
+ // add the side faces to the list of viewerFaces here
+ int primFaceNum = 1;
+ if (whichVert >= sides)
+ primFaceNum = 2;
+ ViewerFace newViewerFace1 = new ViewerFace(primFaceNum);
+ ViewerFace newViewerFace2 = new ViewerFace(primFaceNum);
+
+ float u1 = newLayer.us[whichVert];
+ float u2 = 1.0f;
+ if (whichVert < newLayer.us.Count - 1)
+ u2 = newLayer.us[whichVert + 1];
+
+ if (whichVert == cut1Vert || whichVert == cut2Vert)
+ {
+ u1 = 0.0f;
+ u2 = 1.0f;
+ }
+ else if (sides < 5)
+ { // boxes and prisms have one texture face per side of the prim, so the U values have to be scaled
+ // to reflect the entire texture width
+ u1 *= sides;
+ u2 *= sides;
+ u2 -= (int)u1;
+ u1 -= (int)u1;
+ if (u2 < 0.1f)
+ u2 = 1.0f;
+
+ //newViewerFace2.primFaceNumber = newViewerFace1.primFaceNumber = whichVert + 1;
+ }
+
+ newViewerFace1.uv1.U = u1;
+ newViewerFace1.uv2.U = u1;
+ newViewerFace1.uv3.U = u2;
+
+ newViewerFace1.uv1.V = 1.0f - percentOfPath;
+ newViewerFace1.uv2.V = lastV;
+ newViewerFace1.uv3.V = lastV;
+
+ newViewerFace2.uv1.U = u1;
+ newViewerFace2.uv2.U = u2;
+ newViewerFace2.uv3.U = u2;
+
+ newViewerFace2.uv1.V = 1.0f - percentOfPath;
+ newViewerFace2.uv2.V = lastV;
+ newViewerFace2.uv3.V = 1.0f - percentOfPath;
+
+ newViewerFace1.v1 = this.coords[i];
+ newViewerFace1.v2 = this.coords[i - numVerts];
+ newViewerFace1.v3 = this.coords[iNext - numVerts];
+
+ newViewerFace2.v1 = this.coords[i];
+ newViewerFace2.v2 = this.coords[iNext - numVerts];
+ newViewerFace2.v3 = this.coords[iNext];
+
+ // profile cut faces
+ if (whichVert == cut1Vert)
+ {
+ newViewerFace1.n1 = newLayer.cutNormal1;
+ newViewerFace1.n2 = newViewerFace1.n3 = lastCutNormal1;
+
+ newViewerFace2.n1 = newViewerFace2.n3 = newLayer.cutNormal1;
+ newViewerFace2.n2 = lastCutNormal1;
+ }
+ else if (whichVert == cut2Vert)
+ {
+ newViewerFace1.n1 = newLayer.cutNormal2;
+ newViewerFace1.n2 = newViewerFace1.n3 = lastCutNormal2;
+
+ newViewerFace2.n1 = newViewerFace2.n3 = newLayer.cutNormal2;
+ newViewerFace2.n2 = lastCutNormal2;
+ }
+
+ else // outer and hollow faces
+ {
+ if ((sides < 5 && whichVert < newLayer.numOuterVerts) || (hollowSides < 5 && whichVert >= newLayer.numOuterVerts))
+ {
+ newViewerFace1.CalcSurfaceNormal();
+ newViewerFace2.CalcSurfaceNormal();
+ }
+ else
+ {
+ newViewerFace1.n1 = this.normals[i];
+ newViewerFace1.n2 = this.normals[i - numVerts];
+ newViewerFace1.n3 = this.normals[iNext - numVerts];
+
+ newViewerFace2.n1 = this.normals[i];
+ newViewerFace2.n2 = this.normals[iNext - numVerts];
+ newViewerFace2.n3 = this.normals[iNext];
+ }
+ }
+
+ newViewerFace2.primFaceNumber = newViewerFace1.primFaceNumber = newLayer.faceNumbers[whichVert];
+
+ this.viewerFaces.Add(newViewerFace1);
+ this.viewerFaces.Add(newViewerFace2);
+
+ }
+ }
+ }
+
+ lastCutNormal1 = newLayer.cutNormal1;
+ lastCutNormal2 = newLayer.cutNormal2;
+ lastV = 1.0f - percentOfPath;
+
+ // calc the step for the next iteration of the loop
+
+ if (step < steps)
+ {
+ step += 1;
+ percentOfPath += percentOfPathMultiplier;
+ xOffset += xOffsetStepIncrement;
+ yOffset += yOffsetStepIncrement;
+ zOffset += stepSize;
+ if (percentOfPath > this.pathCutEnd)
+ done = true;
+ }
+ else done = true;
+
+ if (done && viewerMode)
+ {
+ // add the top faces to the viewerFaces list here
+ Coord faceNormal = newLayer.faceNormal;
+ ViewerFace newViewerFace = new ViewerFace();
+ newViewerFace.primFaceNumber = newLayer.bottomFaceNumber;
+ foreach (Face face in newLayer.faces)
+ {
+ newViewerFace.v1 = newLayer.coords[face.v1 - coordsLen];
+ newViewerFace.v2 = newLayer.coords[face.v2 - coordsLen];
+ newViewerFace.v3 = newLayer.coords[face.v3 - coordsLen];
+
+ newViewerFace.n1 = faceNormal;
+ newViewerFace.n2 = faceNormal;
+ newViewerFace.n3 = faceNormal;
+
+ newViewerFace.uv1 = newLayer.faceUVs[face.v1 - coordsLen];
+ newViewerFace.uv2 = newLayer.faceUVs[face.v2 - coordsLen];
+ newViewerFace.uv3 = newLayer.faceUVs[face.v3 - coordsLen];
+
+ this.viewerFaces.Add(newViewerFace);
+ }
+ }
+ }
+ }
+
+ ///
+ /// Extrude a profile into a circular path prim mesh. Used for prim types torus, tube, and ring.
+ ///
+ public void ExtrudeCircular()
+ {
+ this.coords = new List();
+ this.faces = new List();
+
+ if (this.viewerMode)
+ {
+ this.viewerFaces = new List();
+ this.calcVertexNormals = true;
+ }
+
+ if (this.calcVertexNormals)
+ this.normals = new List();
+
+ int step = 0;
+ int steps = 24;
+
+ normalsProcessed = false;
+
+ float twistBegin = this.twistBegin / 360.0f * twoPi;
+ float twistEnd = this.twistEnd / 360.0f * twoPi;
+ float twistTotal = twistEnd - twistBegin;
+
+ // if the profile has a lot of twist, add more layers otherwise the layers may overlap
+ // and the resulting mesh may be quite inaccurate. This method is arbitrary and doesn't
+ // accurately match the viewer
+ float twistTotalAbs = Math.Abs(twistTotal);
+ if (twistTotalAbs > 0.01f)
+ {
+ if (twistTotalAbs > Math.PI * 1.5f)
+ steps *= 2;
+ if (twistTotalAbs > Math.PI * 3.0f)
+ steps *= 2;
+ }
+
+ float yPathScale = this.holeSizeY * 0.5f;
+ float pathLength = this.pathCutEnd - this.pathCutBegin;
+ float totalSkew = this.skew * 2.0f * pathLength;
+ float skewStart = this.pathCutBegin * 2.0f * this.skew - this.skew;
+ float xOffsetTopShearXFactor = this.topShearX * (0.25f + 0.5f * (0.5f - this.holeSizeY));
+ float yShearCompensation = 1.0f + Math.Abs(this.topShearY) * 0.25f;
+
+ // It's not quite clear what pushY (Y top shear) does, but subtracting it from the start and end
+ // angles appears to approximate it's effects on path cut. Likewise, adding it to the angle used
+ // to calculate the sine for generating the path radius appears to approximate it's effects there
+ // too, but there are some subtle differences in the radius which are noticeable as the prim size
+ // increases and it may affect megaprims quite a bit. The effect of the Y top shear parameter on
+ // the meshes generated with this technique appear nearly identical in shape to the same prims when
+ // displayed by the viewer.
+
+ float startAngle = (twoPi * this.pathCutBegin * this.revolutions) - this.topShearY * 0.9f;
+ float endAngle = (twoPi * this.pathCutEnd * this.revolutions) - this.topShearY * 0.9f;
+ float stepSize = twoPi / this.stepsPerRevolution;
+
+ step = (int)(startAngle / stepSize);
+ int firstStep = step;
+ float angle = startAngle;
+ float hollow = this.hollow;
+
+ // sanity checks
+ float initialProfileRot = 0.0f;
+ if (this.sides == 3)
+ {
+ initialProfileRot = (float)Math.PI;
+ if (this.hollowSides == 4)
+ {
+ if (hollow > 0.7f)
+ hollow = 0.7f;
+ hollow *= 0.707f;
+ }
+ else hollow *= 0.5f;
+ }
+ else if (this.sides == 4)
+ {
+ initialProfileRot = 0.25f * (float)Math.PI;
+ if (this.hollowSides != 4)
+ hollow *= 0.707f;
+ }
+ else if (this.sides > 4)
+ {
+ initialProfileRot = (float)Math.PI;
+ if (this.hollowSides == 4)
+ {
+ if (hollow > 0.7f)
+ hollow = 0.7f;
+ hollow /= 0.7f;
+ }
+ }
+
+ bool needEndFaces = false;
+ if (this.pathCutBegin != 0.0f || this.pathCutEnd != 1.0f)
+ needEndFaces = true;
+ else if (this.taperX != 0.0f || this.taperY != 0.0f)
+ needEndFaces = true;
+ else if (this.skew != 0.0f)
+ needEndFaces = true;
+ else if (twistTotal != 0.0f)
+ needEndFaces = true;
+ else if (this.radius != 0.0f)
+ needEndFaces = true;
+
+ Profile profile = new Profile(this.sides, this.profileStart, this.profileEnd, hollow, this.hollowSides, needEndFaces, calcVertexNormals);
+ this.numPrimFaces = profile.numPrimFaces;
+
+ int cut1Vert = -1;
+ int cut2Vert = -1;
+ if (hasProfileCut)
+ {
+ cut1Vert = hasHollow ? profile.coords.Count - 1 : 0;
+ cut2Vert = hasHollow ? profile.numOuterVerts - 1 : profile.numOuterVerts;
+ }
+
+ if (initialProfileRot != 0.0f)
+ {
+ profile.AddRot(new Quat(new Coord(0.0f, 0.0f, 1.0f), initialProfileRot));
+ if (viewerMode)
+ profile.MakeFaceUVs();
+ }
+
+ Coord lastCutNormal1 = new Coord();
+ Coord lastCutNormal2 = new Coord();
+ float lastV = 1.0f;
+
+ bool done = false;
+ while (!done) // loop through the length of the path and add the layers
+ {
+ bool isEndLayer = false;
+ if (angle <= startAngle + .01f || angle >= endAngle - .01f)
+ isEndLayer = true;
+
+ //Profile newLayer = profile.Clone(isEndLayer && needEndFaces);
+ Profile newLayer = profile.Clone();
+
+ float xProfileScale = (1.0f - Math.Abs(this.skew)) * this.holeSizeX;
+ float yProfileScale = this.holeSizeY;
+
+ float percentOfPath = angle / (twoPi * this.revolutions);
+ float percentOfAngles = (angle - startAngle) / (endAngle - startAngle);
+
+ if (this.taperX > 0.01f)
+ xProfileScale *= 1.0f - percentOfPath * this.taperX;
+ else if (this.taperX < -0.01f)
+ xProfileScale *= 1.0f + (1.0f - percentOfPath) * this.taperX;
+
+ if (this.taperY > 0.01f)
+ yProfileScale *= 1.0f - percentOfPath * this.taperY;
+ else if (this.taperY < -0.01f)
+ yProfileScale *= 1.0f + (1.0f - percentOfPath) * this.taperY;
+
+ if (xProfileScale != 1.0f || yProfileScale != 1.0f)
+ newLayer.Scale(xProfileScale, yProfileScale);
+
+ float radiusScale = 1.0f;
+ if (this.radius > 0.001f)
+ radiusScale = 1.0f - this.radius * percentOfPath;
+ else if (this.radius < 0.001f)
+ radiusScale = 1.0f + this.radius * (1.0f - percentOfPath);
+
+ float twist = twistBegin + twistTotal * percentOfPath;
+
+ float xOffset = 0.5f * (skewStart + totalSkew * percentOfAngles);
+ xOffset += (float)Math.Sin(angle) * xOffsetTopShearXFactor;
+
+ float yOffset = yShearCompensation * (float)Math.Cos(angle) * (0.5f - yPathScale) * radiusScale;
+
+ float zOffset = (float)Math.Sin(angle + this.topShearY) * (0.5f - yPathScale) * radiusScale;
+
+ // next apply twist rotation to the profile layer
+ if (twistTotal != 0.0f || twistBegin != 0.0f)
+ newLayer.AddRot(new Quat(new Coord(0.0f, 0.0f, 1.0f), twist));
+
+ // now orient the rotation of the profile layer relative to it's position on the path
+ // adding taperY to the angle used to generate the quat appears to approximate the viewer
+ newLayer.AddRot(new Quat(new Coord(1.0f, 0.0f, 0.0f), angle + this.topShearY));
+ newLayer.AddPos(xOffset, yOffset, zOffset);
+
+ if (isEndLayer && angle <= startAngle + .01f)
+ {
+ newLayer.FlipNormals();
+
+ // add the top faces to the viewerFaces list here
+ if (this.viewerMode && needEndFaces)
+ {
+ Coord faceNormal = newLayer.faceNormal;
+ ViewerFace newViewerFace = new ViewerFace();
+ newViewerFace.primFaceNumber = 0;
+ foreach (Face face in newLayer.faces)
+ {
+ newViewerFace.v1 = newLayer.coords[face.v1];
+ newViewerFace.v2 = newLayer.coords[face.v2];
+ newViewerFace.v3 = newLayer.coords[face.v3];
+
+ newViewerFace.n1 = faceNormal;
+ newViewerFace.n2 = faceNormal;
+ newViewerFace.n3 = faceNormal;
+
+ newViewerFace.uv1 = newLayer.faceUVs[face.v1];
+ newViewerFace.uv2 = newLayer.faceUVs[face.v2];
+ newViewerFace.uv3 = newLayer.faceUVs[face.v3];
+
+ this.viewerFaces.Add(newViewerFace);
+ }
+ }
+ }
+
+ // append the layer and fill in the sides
+
+ int coordsLen = this.coords.Count;
+ newLayer.AddValue2FaceVertexIndices(coordsLen);
+
+ this.coords.AddRange(newLayer.coords);
+
+ if (this.calcVertexNormals)
+ {
+ newLayer.AddValue2FaceNormalIndices(this.normals.Count);
+ this.normals.AddRange(newLayer.vertexNormals);
+ }
+
+ if (isEndLayer)
+ this.faces.AddRange(newLayer.faces);
+
+ // fill faces between layers
+
+ int numVerts = newLayer.coords.Count;
+ Face newFace = new Face();
+ if (step > firstStep)
+ {
+ int startVert = coordsLen + 1;
+ int endVert = this.coords.Count;
+
+ if (sides < 5 || this.hasProfileCut || hollow > 0.0f)
+ startVert--;
+
+ for (int i = startVert; i < endVert; i++)
+ {
+ int iNext = i + 1;
+ if (i == endVert - 1)
+ iNext = startVert;
+
+ int whichVert = i - startVert;
+
+ newFace.v1 = i;
+ newFace.v2 = i - numVerts;
+ newFace.v3 = iNext - numVerts;
+ this.faces.Add(newFace);
+
+ newFace.v2 = iNext - numVerts;
+ newFace.v3 = iNext;
+ this.faces.Add(newFace);
+
+ if (this.viewerMode)
+ {
+ // add the side faces to the list of viewerFaces here
+ ViewerFace newViewerFace1 = new ViewerFace();
+ ViewerFace newViewerFace2 = new ViewerFace();
+ float u1 = newLayer.us[whichVert];
+ float u2 = 1.0f;
+ if (whichVert < newLayer.us.Count - 1)
+ u2 = newLayer.us[whichVert + 1];
+
+ if (whichVert == cut1Vert || whichVert == cut2Vert)
+ {
+ u1 = 0.0f;
+ u2 = 1.0f;
+ }
+ else if (sides < 5)
+ { // boxes and prisms have one texture face per side of the prim, so the U values have to be scaled
+ // to reflect the entire texture width
+ u1 *= sides;
+ u2 *= sides;
+ u2 -= (int)u1;
+ u1 -= (int)u1;
+ if (u2 < 0.1f)
+ u2 = 1.0f;
+
+ //newViewerFace2.primFaceNumber = newViewerFace1.primFaceNumber = whichVert + 1;
+ }
+
+ newViewerFace1.uv1.U = u1;
+ newViewerFace1.uv2.U = u1;
+ newViewerFace1.uv3.U = u2;
+
+ newViewerFace1.uv1.V = 1.0f - percentOfPath;
+ newViewerFace1.uv2.V = lastV;
+ newViewerFace1.uv3.V = lastV;
+
+ newViewerFace2.uv1.U = u1;
+ newViewerFace2.uv2.U = u2;
+ newViewerFace2.uv3.U = u2;
+
+ newViewerFace2.uv1.V = 1.0f - percentOfPath;
+ newViewerFace2.uv2.V = lastV;
+ newViewerFace2.uv3.V = 1.0f - percentOfPath;
+
+ newViewerFace1.v1 = this.coords[i];
+ newViewerFace1.v2 = this.coords[i - numVerts];
+ newViewerFace1.v3 = this.coords[iNext - numVerts];
+
+ newViewerFace2.v1 = this.coords[i];
+ newViewerFace2.v2 = this.coords[iNext - numVerts];
+ newViewerFace2.v3 = this.coords[iNext];
+
+ // profile cut faces
+ if (whichVert == cut1Vert)
+ {
+ newViewerFace1.n1 = newLayer.cutNormal1;
+ newViewerFace1.n2 = newViewerFace1.n3 = lastCutNormal1;
+
+ newViewerFace2.n1 = newViewerFace2.n3 = newLayer.cutNormal1;
+ newViewerFace2.n2 = lastCutNormal1;
+ }
+ else if (whichVert == cut2Vert)
+ {
+ newViewerFace1.n1 = newLayer.cutNormal2;
+ newViewerFace1.n2 = newViewerFace1.n3 = lastCutNormal2;
+
+ newViewerFace2.n1 = newViewerFace2.n3 = newLayer.cutNormal2;
+ newViewerFace2.n2 = lastCutNormal2;
+ }
+ else // periphery faces
+ {
+ if (sides < 5 && whichVert < newLayer.numOuterVerts)
+ {
+ newViewerFace1.n1 = this.normals[i];
+ newViewerFace1.n2 = this.normals[i - numVerts];
+ newViewerFace1.n3 = this.normals[i - numVerts];
+
+ newViewerFace2.n1 = this.normals[i];
+ newViewerFace2.n2 = this.normals[i - numVerts];
+ newViewerFace2.n3 = this.normals[i];
+ }
+ else if (hollowSides < 5 && whichVert >= newLayer.numOuterVerts)
+ {
+ newViewerFace1.n1 = this.normals[iNext];
+ newViewerFace1.n2 = this.normals[iNext - numVerts];
+ newViewerFace1.n3 = this.normals[iNext - numVerts];
+
+ newViewerFace2.n1 = this.normals[iNext];
+ newViewerFace2.n2 = this.normals[iNext - numVerts];
+ newViewerFace2.n3 = this.normals[iNext];
+ }
+ else
+ {
+ newViewerFace1.n1 = this.normals[i];
+ newViewerFace1.n2 = this.normals[i - numVerts];
+ newViewerFace1.n3 = this.normals[iNext - numVerts];
+
+ newViewerFace2.n1 = this.normals[i];
+ newViewerFace2.n2 = this.normals[iNext - numVerts];
+ newViewerFace2.n3 = this.normals[iNext];
+ }
+ }
+
+ newViewerFace1.primFaceNumber = newViewerFace2.primFaceNumber = newLayer.faceNumbers[whichVert];
+ this.viewerFaces.Add(newViewerFace1);
+ this.viewerFaces.Add(newViewerFace2);
+
+ }
+ }
+ }
+
+ lastCutNormal1 = newLayer.cutNormal1;
+ lastCutNormal2 = newLayer.cutNormal2;
+ lastV = 1.0f - percentOfPath;
+
+ // calculate terms for next iteration
+ // calculate the angle for the next iteration of the loop
+
+ if (angle >= endAngle)
+ done = true;
+ else
+ {
+ step += 1;
+ angle = stepSize * step;
+ if (angle > endAngle)
+ angle = endAngle;
+ }
+
+ if (done && viewerMode && needEndFaces)
+ {
+ // add the bottom faces to the viewerFaces list here
+ Coord faceNormal = newLayer.faceNormal;
+ ViewerFace newViewerFace = new ViewerFace();
+ newViewerFace.primFaceNumber = newLayer.bottomFaceNumber;
+ foreach (Face face in newLayer.faces)
+ {
+ newViewerFace.v1 = newLayer.coords[face.v1 - coordsLen];
+ newViewerFace.v2 = newLayer.coords[face.v2 - coordsLen];
+ newViewerFace.v3 = newLayer.coords[face.v3 - coordsLen];
+
+ newViewerFace.n1 = faceNormal;
+ newViewerFace.n2 = faceNormal;
+ newViewerFace.n3 = faceNormal;
+
+ newViewerFace.uv1 = newLayer.faceUVs[face.v1 - coordsLen];
+ newViewerFace.uv2 = newLayer.faceUVs[face.v2 - coordsLen];
+ newViewerFace.uv3 = newLayer.faceUVs[face.v3 - coordsLen];
+
+ this.viewerFaces.Add(newViewerFace);
+ }
+ }
+ }
+ }
+
+ private Coord SurfaceNormal(Coord c1, Coord c2, Coord c3)
+ {
+ Coord edge1 = new Coord(c2.X - c1.X, c2.Y - c1.Y, c2.Z - c1.Z);
+ Coord edge2 = new Coord(c3.X - c1.X, c3.Y - c1.Y, c3.Z - c1.Z);
+
+ Coord normal = Coord.Cross(edge1, edge2);
+
+ normal.Normalize();
+
+ return normal;
+ }
+
+ private Coord SurfaceNormal(Face face)
+ {
+ return SurfaceNormal(this.coords[face.v1], this.coords[face.v2], this.coords[face.v3]);
+ }
+
+ ///
+ /// Calculate the surface normal for a face in the list of faces
+ ///
+ ///
+ ///
+ public Coord SurfaceNormal(int faceIndex)
+ {
+ int numFaces = this.faces.Count;
+ if (faceIndex < 0 || faceIndex >= numFaces)
+ throw new Exception("faceIndex out of range");
+
+ return SurfaceNormal(this.faces[faceIndex]);
+ }
+
+ ///
+ /// Calculate surface normals for all of the faces in the list of faces in this mesh
+ ///
+ public void CalcNormals()
+ {
+ if (normalsProcessed)
+ return;
+
+ normalsProcessed = true;
+
+ int numFaces = faces.Count;
+
+ if (!this.calcVertexNormals)
+ this.normals = new List();
+
+ for (int i = 0; i < numFaces; i++)
+ {
+ Face face = faces[i];
+
+ this.normals.Add(SurfaceNormal(i).Normalize());
+
+ int normIndex = normals.Count - 1;
+ face.n1 = normIndex;
+ face.n2 = normIndex;
+ face.n3 = normIndex;
+
+ this.faces[i] = face;
+ }
+ }
+
+ ///
+ /// Adds a value to each XYZ vertex coordinate in the mesh
+ ///
+ ///
+ ///
+ ///
+ public void AddPos(float x, float y, float z)
+ {
+ int i;
+ int numVerts = this.coords.Count;
+ Coord vert;
+
+ for (i = 0; i < numVerts; i++)
+ {
+ vert = this.coords[i];
+ vert.X += x;
+ vert.Y += y;
+ vert.Z += z;
+ this.coords[i] = vert;
+ }
+ }
+
+ ///
+ /// Rotates the mesh
+ ///
+ ///
+ public void AddRot(Quat q)
+ {
+ int i;
+ int numVerts = this.coords.Count;
+
+ for (i = 0; i < numVerts; i++)
+ this.coords[i] *= q;
+
+ if (this.normals != null)
+ {
+ int numNormals = this.normals.Count;
+ for (i = 0; i < numNormals; i++)
+ this.normals[i] *= q;
+ }
+
+ if (this.viewerFaces != null)
+ {
+ int numViewerFaces = this.viewerFaces.Count;
+
+ for (i = 0; i < numViewerFaces; i++)
+ {
+ ViewerFace v = this.viewerFaces[i];
+ v.v1 *= q;
+ v.v2 *= q;
+ v.v3 *= q;
+
+ v.n1 *= q;
+ v.n2 *= q;
+ v.n3 *= q;
+ this.viewerFaces[i] = v;
+ }
+ }
+
+ }
+
+ ///
+ /// Scales the mesh
+ ///
+ ///
+ ///
+ ///
+ public void Scale(float x, float y, float z)
+ {
+ int i;
+ int numVerts = this.coords.Count;
+ //Coord vert;
+
+ Coord m = new Coord(x, y, z);
+ for (i = 0; i < numVerts; i++)
+ this.coords[i] *= m;
+
+ if (this.viewerFaces != null)
+ {
+ int numViewerFaces = this.viewerFaces.Count;
+ for (i = 0; i < numViewerFaces; i++)
+ {
+ ViewerFace v = this.viewerFaces[i];
+ v.v1 *= m;
+ v.v2 *= m;
+ v.v3 *= m;
+ this.viewerFaces[i] = v;
+ }
+
+ }
+
+ }
+
+ ///
+ /// Dumps the mesh to a Blender compatible "Raw" format file
+ ///
+ ///
+ ///
+ ///
+ public void DumpRaw(String path, String name, String title)
+ {
+ if (path == null)
+ return;
+ String fileName = name + "_" + title + ".raw";
+ String completePath = Path.Combine(path, fileName);
+ StreamWriter sw = new StreamWriter(completePath);
+
+ for (int i = 0; i < this.faces.Count; i++)
+ {
+ string s = this.coords[this.faces[i].v1].ToString();
+ s += " " + this.coords[this.faces[i].v2].ToString();
+ s += " " + this.coords[this.faces[i].v3].ToString();
+
+ sw.WriteLine(s);
+ }
+
+ sw.Close();
+ }
+ }
+}
--
cgit v1.1