aboutsummaryrefslogtreecommitdiffstatshomepage
path: root/libraries/sqlite/win32/utf.c
diff options
context:
space:
mode:
Diffstat (limited to '')
-rwxr-xr-xlibraries/sqlite/win32/utf.c545
1 files changed, 0 insertions, 545 deletions
diff --git a/libraries/sqlite/win32/utf.c b/libraries/sqlite/win32/utf.c
deleted file mode 100755
index b6b3133..0000000
--- a/libraries/sqlite/win32/utf.c
+++ /dev/null
@@ -1,545 +0,0 @@
1/*
2** 2004 April 13
3**
4** The author disclaims copyright to this source code. In place of
5** a legal notice, here is a blessing:
6**
7** May you do good and not evil.
8** May you find forgiveness for yourself and forgive others.
9** May you share freely, never taking more than you give.
10**
11*************************************************************************
12** This file contains routines used to translate between UTF-8,
13** UTF-16, UTF-16BE, and UTF-16LE.
14**
15** $Id: utf.c,v 1.59 2007/10/03 08:46:45 danielk1977 Exp $
16**
17** Notes on UTF-8:
18**
19** Byte-0 Byte-1 Byte-2 Byte-3 Value
20** 0xxxxxxx 00000000 00000000 0xxxxxxx
21** 110yyyyy 10xxxxxx 00000000 00000yyy yyxxxxxx
22** 1110zzzz 10yyyyyy 10xxxxxx 00000000 zzzzyyyy yyxxxxxx
23** 11110uuu 10uuzzzz 10yyyyyy 10xxxxxx 000uuuuu zzzzyyyy yyxxxxxx
24**
25**
26** Notes on UTF-16: (with wwww+1==uuuuu)
27**
28** Word-0 Word-1 Value
29** 110110ww wwzzzzyy 110111yy yyxxxxxx 000uuuuu zzzzyyyy yyxxxxxx
30** zzzzyyyy yyxxxxxx 00000000 zzzzyyyy yyxxxxxx
31**
32**
33** BOM or Byte Order Mark:
34** 0xff 0xfe little-endian utf-16 follows
35** 0xfe 0xff big-endian utf-16 follows
36**
37*/
38#include "sqliteInt.h"
39#include <assert.h>
40#include "vdbeInt.h"
41
42/*
43** The following constant value is used by the SQLITE_BIGENDIAN and
44** SQLITE_LITTLEENDIAN macros.
45*/
46const int sqlite3one = 1;
47
48/*
49** This lookup table is used to help decode the first byte of
50** a multi-byte UTF8 character.
51*/
52static const unsigned char sqlite3UtfTrans1[] = {
53 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
54 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
55 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
56 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f,
57 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
58 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
59 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
60 0x00, 0x01, 0x02, 0x03, 0x00, 0x01, 0x00, 0x00,
61};
62
63
64#define WRITE_UTF8(zOut, c) { \
65 if( c<0x00080 ){ \
66 *zOut++ = (c&0xFF); \
67 } \
68 else if( c<0x00800 ){ \
69 *zOut++ = 0xC0 + ((c>>6)&0x1F); \
70 *zOut++ = 0x80 + (c & 0x3F); \
71 } \
72 else if( c<0x10000 ){ \
73 *zOut++ = 0xE0 + ((c>>12)&0x0F); \
74 *zOut++ = 0x80 + ((c>>6) & 0x3F); \
75 *zOut++ = 0x80 + (c & 0x3F); \
76 }else{ \
77 *zOut++ = 0xF0 + ((c>>18) & 0x07); \
78 *zOut++ = 0x80 + ((c>>12) & 0x3F); \
79 *zOut++ = 0x80 + ((c>>6) & 0x3F); \
80 *zOut++ = 0x80 + (c & 0x3F); \
81 } \
82}
83
84#define WRITE_UTF16LE(zOut, c) { \
85 if( c<=0xFFFF ){ \
86 *zOut++ = (c&0x00FF); \
87 *zOut++ = ((c>>8)&0x00FF); \
88 }else{ \
89 *zOut++ = (((c>>10)&0x003F) + (((c-0x10000)>>10)&0x00C0)); \
90 *zOut++ = (0x00D8 + (((c-0x10000)>>18)&0x03)); \
91 *zOut++ = (c&0x00FF); \
92 *zOut++ = (0x00DC + ((c>>8)&0x03)); \
93 } \
94}
95
96#define WRITE_UTF16BE(zOut, c) { \
97 if( c<=0xFFFF ){ \
98 *zOut++ = ((c>>8)&0x00FF); \
99 *zOut++ = (c&0x00FF); \
100 }else{ \
101 *zOut++ = (0x00D8 + (((c-0x10000)>>18)&0x03)); \
102 *zOut++ = (((c>>10)&0x003F) + (((c-0x10000)>>10)&0x00C0)); \
103 *zOut++ = (0x00DC + ((c>>8)&0x03)); \
104 *zOut++ = (c&0x00FF); \
105 } \
106}
107
108#define READ_UTF16LE(zIn, c){ \
109 c = (*zIn++); \
110 c += ((*zIn++)<<8); \
111 if( c>=0xD800 && c<0xE000 ){ \
112 int c2 = (*zIn++); \
113 c2 += ((*zIn++)<<8); \
114 c = (c2&0x03FF) + ((c&0x003F)<<10) + (((c&0x03C0)+0x0040)<<10); \
115 if( (c & 0xFFFF0000)==0 ) c = 0xFFFD; \
116 } \
117}
118
119#define READ_UTF16BE(zIn, c){ \
120 c = ((*zIn++)<<8); \
121 c += (*zIn++); \
122 if( c>=0xD800 && c<0xE000 ){ \
123 int c2 = ((*zIn++)<<8); \
124 c2 += (*zIn++); \
125 c = (c2&0x03FF) + ((c&0x003F)<<10) + (((c&0x03C0)+0x0040)<<10); \
126 if( (c & 0xFFFF0000)==0 ) c = 0xFFFD; \
127 } \
128}
129
130/*
131** Translate a single UTF-8 character. Return the unicode value.
132**
133** During translation, assume that the byte that zTerm points
134** is a 0x00.
135**
136** Write a pointer to the next unread byte back into *pzNext.
137**
138** Notes On Invalid UTF-8:
139**
140** * This routine never allows a 7-bit character (0x00 through 0x7f) to
141** be encoded as a multi-byte character. Any multi-byte character that
142** attempts to encode a value between 0x00 and 0x7f is rendered as 0xfffd.
143**
144** * This routine never allows a UTF16 surrogate value to be encoded.
145** If a multi-byte character attempts to encode a value between
146** 0xd800 and 0xe000 then it is rendered as 0xfffd.
147**
148** * Bytes in the range of 0x80 through 0xbf which occur as the first
149** byte of a character are interpreted as single-byte characters
150** and rendered as themselves even though they are technically
151** invalid characters.
152**
153** * This routine accepts an infinite number of different UTF8 encodings
154** for unicode values 0x80 and greater. It do not change over-length
155** encodings to 0xfffd as some systems recommend.
156*/
157int sqlite3Utf8Read(
158 const unsigned char *z, /* First byte of UTF-8 character */
159 const unsigned char *zTerm, /* Pretend this byte is 0x00 */
160 const unsigned char **pzNext /* Write first byte past UTF-8 char here */
161){
162 int c = *(z++);
163 if( c>=0xc0 ){
164 c = sqlite3UtfTrans1[c-0xc0];
165 while( z!=zTerm && (*z & 0xc0)==0x80 ){
166 c = (c<<6) + (0x3f & *(z++));
167 }
168 if( c<0x80
169 || (c&0xFFFFF800)==0xD800
170 || (c&0xFFFFFFFE)==0xFFFE ){ c = 0xFFFD; }
171 }
172 *pzNext = z;
173 return c;
174}
175
176
177
178/*
179** If the TRANSLATE_TRACE macro is defined, the value of each Mem is
180** printed on stderr on the way into and out of sqlite3VdbeMemTranslate().
181*/
182/* #define TRANSLATE_TRACE 1 */
183
184#ifndef SQLITE_OMIT_UTF16
185/*
186** This routine transforms the internal text encoding used by pMem to
187** desiredEnc. It is an error if the string is already of the desired
188** encoding, or if *pMem does not contain a string value.
189*/
190int sqlite3VdbeMemTranslate(Mem *pMem, u8 desiredEnc){
191 unsigned char zShort[NBFS]; /* Temporary short output buffer */
192 int len; /* Maximum length of output string in bytes */
193 unsigned char *zOut; /* Output buffer */
194 unsigned char *zIn; /* Input iterator */
195 unsigned char *zTerm; /* End of input */
196 unsigned char *z; /* Output iterator */
197 unsigned int c;
198
199 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
200 assert( pMem->flags&MEM_Str );
201 assert( pMem->enc!=desiredEnc );
202 assert( pMem->enc!=0 );
203 assert( pMem->n>=0 );
204
205#if defined(TRANSLATE_TRACE) && defined(SQLITE_DEBUG)
206 {
207 char zBuf[100];
208 sqlite3VdbeMemPrettyPrint(pMem, zBuf);
209 fprintf(stderr, "INPUT: %s\n", zBuf);
210 }
211#endif
212
213 /* If the translation is between UTF-16 little and big endian, then
214 ** all that is required is to swap the byte order. This case is handled
215 ** differently from the others.
216 */
217 if( pMem->enc!=SQLITE_UTF8 && desiredEnc!=SQLITE_UTF8 ){
218 u8 temp;
219 int rc;
220 rc = sqlite3VdbeMemMakeWriteable(pMem);
221 if( rc!=SQLITE_OK ){
222 assert( rc==SQLITE_NOMEM );
223 return SQLITE_NOMEM;
224 }
225 zIn = (u8*)pMem->z;
226 zTerm = &zIn[pMem->n];
227 while( zIn<zTerm ){
228 temp = *zIn;
229 *zIn = *(zIn+1);
230 zIn++;
231 *zIn++ = temp;
232 }
233 pMem->enc = desiredEnc;
234 goto translate_out;
235 }
236
237 /* Set len to the maximum number of bytes required in the output buffer. */
238 if( desiredEnc==SQLITE_UTF8 ){
239 /* When converting from UTF-16, the maximum growth results from
240 ** translating a 2-byte character to a 4-byte UTF-8 character.
241 ** A single byte is required for the output string
242 ** nul-terminator.
243 */
244 len = pMem->n * 2 + 1;
245 }else{
246 /* When converting from UTF-8 to UTF-16 the maximum growth is caused
247 ** when a 1-byte UTF-8 character is translated into a 2-byte UTF-16
248 ** character. Two bytes are required in the output buffer for the
249 ** nul-terminator.
250 */
251 len = pMem->n * 2 + 2;
252 }
253
254 /* Set zIn to point at the start of the input buffer and zTerm to point 1
255 ** byte past the end.
256 **
257 ** Variable zOut is set to point at the output buffer. This may be space
258 ** obtained from sqlite3_malloc(), or Mem.zShort, if it large enough and
259 ** not in use, or the zShort array on the stack (see above).
260 */
261 zIn = (u8*)pMem->z;
262 zTerm = &zIn[pMem->n];
263 if( len>NBFS ){
264 zOut = sqlite3DbMallocRaw(pMem->db, len);
265 if( !zOut ){
266 return SQLITE_NOMEM;
267 }
268 }else{
269 zOut = zShort;
270 }
271 z = zOut;
272
273 if( pMem->enc==SQLITE_UTF8 ){
274 if( desiredEnc==SQLITE_UTF16LE ){
275 /* UTF-8 -> UTF-16 Little-endian */
276 while( zIn<zTerm ){
277 c = sqlite3Utf8Read(zIn, zTerm, (const u8**)&zIn);
278 WRITE_UTF16LE(z, c);
279 }
280 }else{
281 assert( desiredEnc==SQLITE_UTF16BE );
282 /* UTF-8 -> UTF-16 Big-endian */
283 while( zIn<zTerm ){
284 c = sqlite3Utf8Read(zIn, zTerm, (const u8**)&zIn);
285 WRITE_UTF16BE(z, c);
286 }
287 }
288 pMem->n = z - zOut;
289 *z++ = 0;
290 }else{
291 assert( desiredEnc==SQLITE_UTF8 );
292 if( pMem->enc==SQLITE_UTF16LE ){
293 /* UTF-16 Little-endian -> UTF-8 */
294 while( zIn<zTerm ){
295 READ_UTF16LE(zIn, c);
296 WRITE_UTF8(z, c);
297 }
298 }else{
299 /* UTF-16 Little-endian -> UTF-8 */
300 while( zIn<zTerm ){
301 READ_UTF16BE(zIn, c);
302 WRITE_UTF8(z, c);
303 }
304 }
305 pMem->n = z - zOut;
306 }
307 *z = 0;
308 assert( (pMem->n+(desiredEnc==SQLITE_UTF8?1:2))<=len );
309
310 sqlite3VdbeMemRelease(pMem);
311 pMem->flags &= ~(MEM_Static|MEM_Dyn|MEM_Ephem|MEM_Short);
312 pMem->enc = desiredEnc;
313 if( zOut==zShort ){
314 memcpy(pMem->zShort, zOut, len);
315 zOut = (u8*)pMem->zShort;
316 pMem->flags |= (MEM_Term|MEM_Short);
317 }else{
318 pMem->flags |= (MEM_Term|MEM_Dyn);
319 }
320 pMem->z = (char*)zOut;
321
322translate_out:
323#if defined(TRANSLATE_TRACE) && defined(SQLITE_DEBUG)
324 {
325 char zBuf[100];
326 sqlite3VdbeMemPrettyPrint(pMem, zBuf);
327 fprintf(stderr, "OUTPUT: %s\n", zBuf);
328 }
329#endif
330 return SQLITE_OK;
331}
332
333/*
334** This routine checks for a byte-order mark at the beginning of the
335** UTF-16 string stored in *pMem. If one is present, it is removed and
336** the encoding of the Mem adjusted. This routine does not do any
337** byte-swapping, it just sets Mem.enc appropriately.
338**
339** The allocation (static, dynamic etc.) and encoding of the Mem may be
340** changed by this function.
341*/
342int sqlite3VdbeMemHandleBom(Mem *pMem){
343 int rc = SQLITE_OK;
344 u8 bom = 0;
345
346 if( pMem->n<0 || pMem->n>1 ){
347 u8 b1 = *(u8 *)pMem->z;
348 u8 b2 = *(((u8 *)pMem->z) + 1);
349 if( b1==0xFE && b2==0xFF ){
350 bom = SQLITE_UTF16BE;
351 }
352 if( b1==0xFF && b2==0xFE ){
353 bom = SQLITE_UTF16LE;
354 }
355 }
356
357 if( bom ){
358 /* This function is called as soon as a string is stored in a Mem*,
359 ** from within sqlite3VdbeMemSetStr(). At that point it is not possible
360 ** for the string to be stored in Mem.zShort, or for it to be stored
361 ** in dynamic memory with no destructor.
362 */
363 assert( !(pMem->flags&MEM_Short) );
364 assert( !(pMem->flags&MEM_Dyn) || pMem->xDel );
365 if( pMem->flags & MEM_Dyn ){
366 void (*xDel)(void*) = pMem->xDel;
367 char *z = pMem->z;
368 pMem->z = 0;
369 pMem->xDel = 0;
370 rc = sqlite3VdbeMemSetStr(pMem, &z[2], pMem->n-2, bom,
371 SQLITE_TRANSIENT);
372 xDel(z);
373 }else{
374 rc = sqlite3VdbeMemSetStr(pMem, &pMem->z[2], pMem->n-2, bom,
375 SQLITE_TRANSIENT);
376 }
377 }
378 return rc;
379}
380#endif /* SQLITE_OMIT_UTF16 */
381
382/*
383** pZ is a UTF-8 encoded unicode string. If nByte is less than zero,
384** return the number of unicode characters in pZ up to (but not including)
385** the first 0x00 byte. If nByte is not less than zero, return the
386** number of unicode characters in the first nByte of pZ (or up to
387** the first 0x00, whichever comes first).
388*/
389int sqlite3Utf8CharLen(const char *zIn, int nByte){
390 int r = 0;
391 const u8 *z = (const u8*)zIn;
392 const u8 *zTerm;
393 if( nByte>=0 ){
394 zTerm = &z[nByte];
395 }else{
396 zTerm = (const u8*)(-1);
397 }
398 assert( z<=zTerm );
399 while( *z!=0 && z<zTerm ){
400 SQLITE_SKIP_UTF8(z);
401 r++;
402 }
403 return r;
404}
405
406/* This test function is not currently used by the automated test-suite.
407** Hence it is only available in debug builds.
408*/
409#if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
410/*
411** Translate UTF-8 to UTF-8.
412**
413** This has the effect of making sure that the string is well-formed
414** UTF-8. Miscoded characters are removed.
415**
416** The translation is done in-place (since it is impossible for the
417** correct UTF-8 encoding to be longer than a malformed encoding).
418*/
419int sqlite3Utf8To8(unsigned char *zIn){
420 unsigned char *zOut = zIn;
421 unsigned char *zStart = zIn;
422 unsigned char *zTerm;
423 u32 c;
424
425 while( zIn[0] ){
426 c = sqlite3Utf8Read(zIn, zTerm, (const u8**)&zIn);
427 if( c!=0xfffd ){
428 WRITE_UTF8(zOut, c);
429 }
430 }
431 *zOut = 0;
432 return zOut - zStart;
433}
434#endif
435
436#ifndef SQLITE_OMIT_UTF16
437/*
438** Convert a UTF-16 string in the native encoding into a UTF-8 string.
439** Memory to hold the UTF-8 string is obtained from sqlite3_malloc and must
440** be freed by the calling function.
441**
442** NULL is returned if there is an allocation error.
443*/
444char *sqlite3Utf16to8(sqlite3 *db, const void *z, int nByte){
445 Mem m;
446 memset(&m, 0, sizeof(m));
447 m.db = db;
448 sqlite3VdbeMemSetStr(&m, z, nByte, SQLITE_UTF16NATIVE, SQLITE_STATIC);
449 sqlite3VdbeChangeEncoding(&m, SQLITE_UTF8);
450 if( db->mallocFailed ){
451 sqlite3VdbeMemRelease(&m);
452 m.z = 0;
453 }
454 assert( (m.flags & MEM_Term)!=0 || db->mallocFailed );
455 assert( (m.flags & MEM_Str)!=0 || db->mallocFailed );
456 return (m.flags & MEM_Dyn)!=0 ? m.z : sqlite3DbStrDup(db, m.z);
457}
458
459/*
460** pZ is a UTF-16 encoded unicode string. If nChar is less than zero,
461** return the number of bytes up to (but not including), the first pair
462** of consecutive 0x00 bytes in pZ. If nChar is not less than zero,
463** then return the number of bytes in the first nChar unicode characters
464** in pZ (or up until the first pair of 0x00 bytes, whichever comes first).
465*/
466int sqlite3Utf16ByteLen(const void *zIn, int nChar){
467 unsigned int c = 1;
468 char const *z = zIn;
469 int n = 0;
470 if( SQLITE_UTF16NATIVE==SQLITE_UTF16BE ){
471 /* Using an "if (SQLITE_UTF16NATIVE==SQLITE_UTF16BE)" construct here
472 ** and in other parts of this file means that at one branch will
473 ** not be covered by coverage testing on any single host. But coverage
474 ** will be complete if the tests are run on both a little-endian and
475 ** big-endian host. Because both the UTF16NATIVE and SQLITE_UTF16BE
476 ** macros are constant at compile time the compiler can determine
477 ** which branch will be followed. It is therefore assumed that no runtime
478 ** penalty is paid for this "if" statement.
479 */
480 while( c && ((nChar<0) || n<nChar) ){
481 READ_UTF16BE(z, c);
482 n++;
483 }
484 }else{
485 while( c && ((nChar<0) || n<nChar) ){
486 READ_UTF16LE(z, c);
487 n++;
488 }
489 }
490 return (z-(char const *)zIn)-((c==0)?2:0);
491}
492
493#if defined(SQLITE_TEST)
494/*
495** This routine is called from the TCL test function "translate_selftest".
496** It checks that the primitives for serializing and deserializing
497** characters in each encoding are inverses of each other.
498*/
499void sqlite3UtfSelfTest(){
500 unsigned int i, t;
501 unsigned char zBuf[20];
502 unsigned char *z;
503 unsigned char *zTerm;
504 int n;
505 unsigned int c;
506
507 for(i=0; i<0x00110000; i++){
508 z = zBuf;
509 WRITE_UTF8(z, i);
510 n = z-zBuf;
511 z[0] = 0;
512 zTerm = z;
513 z = zBuf;
514 c = sqlite3Utf8Read(z, zTerm, (const u8**)&z);
515 t = i;
516 if( i>=0xD800 && i<=0xDFFF ) t = 0xFFFD;
517 if( (i&0xFFFFFFFE)==0xFFFE ) t = 0xFFFD;
518 assert( c==t );
519 assert( (z-zBuf)==n );
520 }
521 for(i=0; i<0x00110000; i++){
522 if( i>=0xD800 && i<0xE000 ) continue;
523 z = zBuf;
524 WRITE_UTF16LE(z, i);
525 n = z-zBuf;
526 z[0] = 0;
527 z = zBuf;
528 READ_UTF16LE(z, c);
529 assert( c==i );
530 assert( (z-zBuf)==n );
531 }
532 for(i=0; i<0x00110000; i++){
533 if( i>=0xD800 && i<0xE000 ) continue;
534 z = zBuf;
535 WRITE_UTF16BE(z, i);
536 n = z-zBuf;
537 z[0] = 0;
538 z = zBuf;
539 READ_UTF16BE(z, c);
540 assert( c==i );
541 assert( (z-zBuf)==n );
542 }
543}
544#endif /* SQLITE_TEST */
545#endif /* SQLITE_OMIT_UTF16 */