aboutsummaryrefslogtreecommitdiffstatshomepage
path: root/libraries/sqlite/win32/fts1_hash.c
diff options
context:
space:
mode:
Diffstat (limited to '')
-rwxr-xr-xlibraries/sqlite/win32/fts1_hash.c369
1 files changed, 369 insertions, 0 deletions
diff --git a/libraries/sqlite/win32/fts1_hash.c b/libraries/sqlite/win32/fts1_hash.c
new file mode 100755
index 0000000..463a52b
--- /dev/null
+++ b/libraries/sqlite/win32/fts1_hash.c
@@ -0,0 +1,369 @@
1/*
2** 2001 September 22
3**
4** The author disclaims copyright to this source code. In place of
5** a legal notice, here is a blessing:
6**
7** May you do good and not evil.
8** May you find forgiveness for yourself and forgive others.
9** May you share freely, never taking more than you give.
10**
11*************************************************************************
12** This is the implementation of generic hash-tables used in SQLite.
13** We've modified it slightly to serve as a standalone hash table
14** implementation for the full-text indexing module.
15*/
16#include <assert.h>
17#include <stdlib.h>
18#include <string.h>
19
20/*
21** The code in this file is only compiled if:
22**
23** * The FTS1 module is being built as an extension
24** (in which case SQLITE_CORE is not defined), or
25**
26** * The FTS1 module is being built into the core of
27** SQLite (in which case SQLITE_ENABLE_FTS1 is defined).
28*/
29#if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS1)
30
31
32#include "fts1_hash.h"
33
34static void *malloc_and_zero(int n){
35 void *p = malloc(n);
36 if( p ){
37 memset(p, 0, n);
38 }
39 return p;
40}
41
42/* Turn bulk memory into a hash table object by initializing the
43** fields of the Hash structure.
44**
45** "pNew" is a pointer to the hash table that is to be initialized.
46** keyClass is one of the constants
47** FTS1_HASH_BINARY or FTS1_HASH_STRING. The value of keyClass
48** determines what kind of key the hash table will use. "copyKey" is
49** true if the hash table should make its own private copy of keys and
50** false if it should just use the supplied pointer.
51*/
52void sqlite3Fts1HashInit(fts1Hash *pNew, int keyClass, int copyKey){
53 assert( pNew!=0 );
54 assert( keyClass>=FTS1_HASH_STRING && keyClass<=FTS1_HASH_BINARY );
55 pNew->keyClass = keyClass;
56 pNew->copyKey = copyKey;
57 pNew->first = 0;
58 pNew->count = 0;
59 pNew->htsize = 0;
60 pNew->ht = 0;
61 pNew->xMalloc = malloc_and_zero;
62 pNew->xFree = free;
63}
64
65/* Remove all entries from a hash table. Reclaim all memory.
66** Call this routine to delete a hash table or to reset a hash table
67** to the empty state.
68*/
69void sqlite3Fts1HashClear(fts1Hash *pH){
70 fts1HashElem *elem; /* For looping over all elements of the table */
71
72 assert( pH!=0 );
73 elem = pH->first;
74 pH->first = 0;
75 if( pH->ht ) pH->xFree(pH->ht);
76 pH->ht = 0;
77 pH->htsize = 0;
78 while( elem ){
79 fts1HashElem *next_elem = elem->next;
80 if( pH->copyKey && elem->pKey ){
81 pH->xFree(elem->pKey);
82 }
83 pH->xFree(elem);
84 elem = next_elem;
85 }
86 pH->count = 0;
87}
88
89/*
90** Hash and comparison functions when the mode is FTS1_HASH_STRING
91*/
92static int strHash(const void *pKey, int nKey){
93 const char *z = (const char *)pKey;
94 int h = 0;
95 if( nKey<=0 ) nKey = (int) strlen(z);
96 while( nKey > 0 ){
97 h = (h<<3) ^ h ^ *z++;
98 nKey--;
99 }
100 return h & 0x7fffffff;
101}
102static int strCompare(const void *pKey1, int n1, const void *pKey2, int n2){
103 if( n1!=n2 ) return 1;
104 return strncmp((const char*)pKey1,(const char*)pKey2,n1);
105}
106
107/*
108** Hash and comparison functions when the mode is FTS1_HASH_BINARY
109*/
110static int binHash(const void *pKey, int nKey){
111 int h = 0;
112 const char *z = (const char *)pKey;
113 while( nKey-- > 0 ){
114 h = (h<<3) ^ h ^ *(z++);
115 }
116 return h & 0x7fffffff;
117}
118static int binCompare(const void *pKey1, int n1, const void *pKey2, int n2){
119 if( n1!=n2 ) return 1;
120 return memcmp(pKey1,pKey2,n1);
121}
122
123/*
124** Return a pointer to the appropriate hash function given the key class.
125**
126** The C syntax in this function definition may be unfamilar to some
127** programmers, so we provide the following additional explanation:
128**
129** The name of the function is "hashFunction". The function takes a
130** single parameter "keyClass". The return value of hashFunction()
131** is a pointer to another function. Specifically, the return value
132** of hashFunction() is a pointer to a function that takes two parameters
133** with types "const void*" and "int" and returns an "int".
134*/
135static int (*hashFunction(int keyClass))(const void*,int){
136 if( keyClass==FTS1_HASH_STRING ){
137 return &strHash;
138 }else{
139 assert( keyClass==FTS1_HASH_BINARY );
140 return &binHash;
141 }
142}
143
144/*
145** Return a pointer to the appropriate hash function given the key class.
146**
147** For help in interpreted the obscure C code in the function definition,
148** see the header comment on the previous function.
149*/
150static int (*compareFunction(int keyClass))(const void*,int,const void*,int){
151 if( keyClass==FTS1_HASH_STRING ){
152 return &strCompare;
153 }else{
154 assert( keyClass==FTS1_HASH_BINARY );
155 return &binCompare;
156 }
157}
158
159/* Link an element into the hash table
160*/
161static void insertElement(
162 fts1Hash *pH, /* The complete hash table */
163 struct _fts1ht *pEntry, /* The entry into which pNew is inserted */
164 fts1HashElem *pNew /* The element to be inserted */
165){
166 fts1HashElem *pHead; /* First element already in pEntry */
167 pHead = pEntry->chain;
168 if( pHead ){
169 pNew->next = pHead;
170 pNew->prev = pHead->prev;
171 if( pHead->prev ){ pHead->prev->next = pNew; }
172 else { pH->first = pNew; }
173 pHead->prev = pNew;
174 }else{
175 pNew->next = pH->first;
176 if( pH->first ){ pH->first->prev = pNew; }
177 pNew->prev = 0;
178 pH->first = pNew;
179 }
180 pEntry->count++;
181 pEntry->chain = pNew;
182}
183
184
185/* Resize the hash table so that it cantains "new_size" buckets.
186** "new_size" must be a power of 2. The hash table might fail
187** to resize if sqliteMalloc() fails.
188*/
189static void rehash(fts1Hash *pH, int new_size){
190 struct _fts1ht *new_ht; /* The new hash table */
191 fts1HashElem *elem, *next_elem; /* For looping over existing elements */
192 int (*xHash)(const void*,int); /* The hash function */
193
194 assert( (new_size & (new_size-1))==0 );
195 new_ht = (struct _fts1ht *)pH->xMalloc( new_size*sizeof(struct _fts1ht) );
196 if( new_ht==0 ) return;
197 if( pH->ht ) pH->xFree(pH->ht);
198 pH->ht = new_ht;
199 pH->htsize = new_size;
200 xHash = hashFunction(pH->keyClass);
201 for(elem=pH->first, pH->first=0; elem; elem = next_elem){
202 int h = (*xHash)(elem->pKey, elem->nKey) & (new_size-1);
203 next_elem = elem->next;
204 insertElement(pH, &new_ht[h], elem);
205 }
206}
207
208/* This function (for internal use only) locates an element in an
209** hash table that matches the given key. The hash for this key has
210** already been computed and is passed as the 4th parameter.
211*/
212static fts1HashElem *findElementGivenHash(
213 const fts1Hash *pH, /* The pH to be searched */
214 const void *pKey, /* The key we are searching for */
215 int nKey,
216 int h /* The hash for this key. */
217){
218 fts1HashElem *elem; /* Used to loop thru the element list */
219 int count; /* Number of elements left to test */
220 int (*xCompare)(const void*,int,const void*,int); /* comparison function */
221
222 if( pH->ht ){
223 struct _fts1ht *pEntry = &pH->ht[h];
224 elem = pEntry->chain;
225 count = pEntry->count;
226 xCompare = compareFunction(pH->keyClass);
227 while( count-- && elem ){
228 if( (*xCompare)(elem->pKey,elem->nKey,pKey,nKey)==0 ){
229 return elem;
230 }
231 elem = elem->next;
232 }
233 }
234 return 0;
235}
236
237/* Remove a single entry from the hash table given a pointer to that
238** element and a hash on the element's key.
239*/
240static void removeElementGivenHash(
241 fts1Hash *pH, /* The pH containing "elem" */
242 fts1HashElem* elem, /* The element to be removed from the pH */
243 int h /* Hash value for the element */
244){
245 struct _fts1ht *pEntry;
246 if( elem->prev ){
247 elem->prev->next = elem->next;
248 }else{
249 pH->first = elem->next;
250 }
251 if( elem->next ){
252 elem->next->prev = elem->prev;
253 }
254 pEntry = &pH->ht[h];
255 if( pEntry->chain==elem ){
256 pEntry->chain = elem->next;
257 }
258 pEntry->count--;
259 if( pEntry->count<=0 ){
260 pEntry->chain = 0;
261 }
262 if( pH->copyKey && elem->pKey ){
263 pH->xFree(elem->pKey);
264 }
265 pH->xFree( elem );
266 pH->count--;
267 if( pH->count<=0 ){
268 assert( pH->first==0 );
269 assert( pH->count==0 );
270 fts1HashClear(pH);
271 }
272}
273
274/* Attempt to locate an element of the hash table pH with a key
275** that matches pKey,nKey. Return the data for this element if it is
276** found, or NULL if there is no match.
277*/
278void *sqlite3Fts1HashFind(const fts1Hash *pH, const void *pKey, int nKey){
279 int h; /* A hash on key */
280 fts1HashElem *elem; /* The element that matches key */
281 int (*xHash)(const void*,int); /* The hash function */
282
283 if( pH==0 || pH->ht==0 ) return 0;
284 xHash = hashFunction(pH->keyClass);
285 assert( xHash!=0 );
286 h = (*xHash)(pKey,nKey);
287 assert( (pH->htsize & (pH->htsize-1))==0 );
288 elem = findElementGivenHash(pH,pKey,nKey, h & (pH->htsize-1));
289 return elem ? elem->data : 0;
290}
291
292/* Insert an element into the hash table pH. The key is pKey,nKey
293** and the data is "data".
294**
295** If no element exists with a matching key, then a new
296** element is created. A copy of the key is made if the copyKey
297** flag is set. NULL is returned.
298**
299** If another element already exists with the same key, then the
300** new data replaces the old data and the old data is returned.
301** The key is not copied in this instance. If a malloc fails, then
302** the new data is returned and the hash table is unchanged.
303**
304** If the "data" parameter to this function is NULL, then the
305** element corresponding to "key" is removed from the hash table.
306*/
307void *sqlite3Fts1HashInsert(
308 fts1Hash *pH, /* The hash table to insert into */
309 const void *pKey, /* The key */
310 int nKey, /* Number of bytes in the key */
311 void *data /* The data */
312){
313 int hraw; /* Raw hash value of the key */
314 int h; /* the hash of the key modulo hash table size */
315 fts1HashElem *elem; /* Used to loop thru the element list */
316 fts1HashElem *new_elem; /* New element added to the pH */
317 int (*xHash)(const void*,int); /* The hash function */
318
319 assert( pH!=0 );
320 xHash = hashFunction(pH->keyClass);
321 assert( xHash!=0 );
322 hraw = (*xHash)(pKey, nKey);
323 assert( (pH->htsize & (pH->htsize-1))==0 );
324 h = hraw & (pH->htsize-1);
325 elem = findElementGivenHash(pH,pKey,nKey,h);
326 if( elem ){
327 void *old_data = elem->data;
328 if( data==0 ){
329 removeElementGivenHash(pH,elem,h);
330 }else{
331 elem->data = data;
332 }
333 return old_data;
334 }
335 if( data==0 ) return 0;
336 new_elem = (fts1HashElem*)pH->xMalloc( sizeof(fts1HashElem) );
337 if( new_elem==0 ) return data;
338 if( pH->copyKey && pKey!=0 ){
339 new_elem->pKey = pH->xMalloc( nKey );
340 if( new_elem->pKey==0 ){
341 pH->xFree(new_elem);
342 return data;
343 }
344 memcpy((void*)new_elem->pKey, pKey, nKey);
345 }else{
346 new_elem->pKey = (void*)pKey;
347 }
348 new_elem->nKey = nKey;
349 pH->count++;
350 if( pH->htsize==0 ){
351 rehash(pH,8);
352 if( pH->htsize==0 ){
353 pH->count = 0;
354 pH->xFree(new_elem);
355 return data;
356 }
357 }
358 if( pH->count > pH->htsize ){
359 rehash(pH,pH->htsize*2);
360 }
361 assert( pH->htsize>0 );
362 assert( (pH->htsize & (pH->htsize-1))==0 );
363 h = hraw & (pH->htsize-1);
364 insertElement(pH, &pH->ht[h], new_elem);
365 new_elem->data = data;
366 return 0;
367}
368
369#endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS1) */