diff options
Diffstat (limited to '')
-rwxr-xr-x | libraries/sqlite/win32/expr.c | 2617 |
1 files changed, 2617 insertions, 0 deletions
diff --git a/libraries/sqlite/win32/expr.c b/libraries/sqlite/win32/expr.c new file mode 100755 index 0000000..0a7091a --- /dev/null +++ b/libraries/sqlite/win32/expr.c | |||
@@ -0,0 +1,2617 @@ | |||
1 | /* | ||
2 | ** 2001 September 15 | ||
3 | ** | ||
4 | ** The author disclaims copyright to this source code. In place of | ||
5 | ** a legal notice, here is a blessing: | ||
6 | ** | ||
7 | ** May you do good and not evil. | ||
8 | ** May you find forgiveness for yourself and forgive others. | ||
9 | ** May you share freely, never taking more than you give. | ||
10 | ** | ||
11 | ************************************************************************* | ||
12 | ** This file contains routines used for analyzing expressions and | ||
13 | ** for generating VDBE code that evaluates expressions in SQLite. | ||
14 | ** | ||
15 | ** $Id: expr.c,v 1.313 2007/09/18 15:55:07 drh Exp $ | ||
16 | */ | ||
17 | #include "sqliteInt.h" | ||
18 | #include <ctype.h> | ||
19 | |||
20 | /* | ||
21 | ** Return the 'affinity' of the expression pExpr if any. | ||
22 | ** | ||
23 | ** If pExpr is a column, a reference to a column via an 'AS' alias, | ||
24 | ** or a sub-select with a column as the return value, then the | ||
25 | ** affinity of that column is returned. Otherwise, 0x00 is returned, | ||
26 | ** indicating no affinity for the expression. | ||
27 | ** | ||
28 | ** i.e. the WHERE clause expresssions in the following statements all | ||
29 | ** have an affinity: | ||
30 | ** | ||
31 | ** CREATE TABLE t1(a); | ||
32 | ** SELECT * FROM t1 WHERE a; | ||
33 | ** SELECT a AS b FROM t1 WHERE b; | ||
34 | ** SELECT * FROM t1 WHERE (select a from t1); | ||
35 | */ | ||
36 | char sqlite3ExprAffinity(Expr *pExpr){ | ||
37 | int op = pExpr->op; | ||
38 | if( op==TK_SELECT ){ | ||
39 | return sqlite3ExprAffinity(pExpr->pSelect->pEList->a[0].pExpr); | ||
40 | } | ||
41 | #ifndef SQLITE_OMIT_CAST | ||
42 | if( op==TK_CAST ){ | ||
43 | return sqlite3AffinityType(&pExpr->token); | ||
44 | } | ||
45 | #endif | ||
46 | return pExpr->affinity; | ||
47 | } | ||
48 | |||
49 | /* | ||
50 | ** Set the collating sequence for expression pExpr to be the collating | ||
51 | ** sequence named by pToken. Return a pointer to the revised expression. | ||
52 | ** The collating sequence is marked as "explicit" using the EP_ExpCollate | ||
53 | ** flag. An explicit collating sequence will override implicit | ||
54 | ** collating sequences. | ||
55 | */ | ||
56 | Expr *sqlite3ExprSetColl(Parse *pParse, Expr *pExpr, Token *pName){ | ||
57 | CollSeq *pColl; | ||
58 | if( pExpr==0 ) return 0; | ||
59 | pColl = sqlite3LocateCollSeq(pParse, (char*)pName->z, pName->n); | ||
60 | if( pColl ){ | ||
61 | pExpr->pColl = pColl; | ||
62 | pExpr->flags |= EP_ExpCollate; | ||
63 | } | ||
64 | return pExpr; | ||
65 | } | ||
66 | |||
67 | /* | ||
68 | ** Return the default collation sequence for the expression pExpr. If | ||
69 | ** there is no default collation type, return 0. | ||
70 | */ | ||
71 | CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr){ | ||
72 | CollSeq *pColl = 0; | ||
73 | if( pExpr ){ | ||
74 | int op; | ||
75 | pColl = pExpr->pColl; | ||
76 | op = pExpr->op; | ||
77 | if( (op==TK_CAST || op==TK_UPLUS) && !pColl ){ | ||
78 | return sqlite3ExprCollSeq(pParse, pExpr->pLeft); | ||
79 | } | ||
80 | } | ||
81 | if( sqlite3CheckCollSeq(pParse, pColl) ){ | ||
82 | pColl = 0; | ||
83 | } | ||
84 | return pColl; | ||
85 | } | ||
86 | |||
87 | /* | ||
88 | ** pExpr is an operand of a comparison operator. aff2 is the | ||
89 | ** type affinity of the other operand. This routine returns the | ||
90 | ** type affinity that should be used for the comparison operator. | ||
91 | */ | ||
92 | char sqlite3CompareAffinity(Expr *pExpr, char aff2){ | ||
93 | char aff1 = sqlite3ExprAffinity(pExpr); | ||
94 | if( aff1 && aff2 ){ | ||
95 | /* Both sides of the comparison are columns. If one has numeric | ||
96 | ** affinity, use that. Otherwise use no affinity. | ||
97 | */ | ||
98 | if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){ | ||
99 | return SQLITE_AFF_NUMERIC; | ||
100 | }else{ | ||
101 | return SQLITE_AFF_NONE; | ||
102 | } | ||
103 | }else if( !aff1 && !aff2 ){ | ||
104 | /* Neither side of the comparison is a column. Compare the | ||
105 | ** results directly. | ||
106 | */ | ||
107 | return SQLITE_AFF_NONE; | ||
108 | }else{ | ||
109 | /* One side is a column, the other is not. Use the columns affinity. */ | ||
110 | assert( aff1==0 || aff2==0 ); | ||
111 | return (aff1 + aff2); | ||
112 | } | ||
113 | } | ||
114 | |||
115 | /* | ||
116 | ** pExpr is a comparison operator. Return the type affinity that should | ||
117 | ** be applied to both operands prior to doing the comparison. | ||
118 | */ | ||
119 | static char comparisonAffinity(Expr *pExpr){ | ||
120 | char aff; | ||
121 | assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT || | ||
122 | pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE || | ||
123 | pExpr->op==TK_NE ); | ||
124 | assert( pExpr->pLeft ); | ||
125 | aff = sqlite3ExprAffinity(pExpr->pLeft); | ||
126 | if( pExpr->pRight ){ | ||
127 | aff = sqlite3CompareAffinity(pExpr->pRight, aff); | ||
128 | } | ||
129 | else if( pExpr->pSelect ){ | ||
130 | aff = sqlite3CompareAffinity(pExpr->pSelect->pEList->a[0].pExpr, aff); | ||
131 | } | ||
132 | else if( !aff ){ | ||
133 | aff = SQLITE_AFF_NONE; | ||
134 | } | ||
135 | return aff; | ||
136 | } | ||
137 | |||
138 | /* | ||
139 | ** pExpr is a comparison expression, eg. '=', '<', IN(...) etc. | ||
140 | ** idx_affinity is the affinity of an indexed column. Return true | ||
141 | ** if the index with affinity idx_affinity may be used to implement | ||
142 | ** the comparison in pExpr. | ||
143 | */ | ||
144 | int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity){ | ||
145 | char aff = comparisonAffinity(pExpr); | ||
146 | switch( aff ){ | ||
147 | case SQLITE_AFF_NONE: | ||
148 | return 1; | ||
149 | case SQLITE_AFF_TEXT: | ||
150 | return idx_affinity==SQLITE_AFF_TEXT; | ||
151 | default: | ||
152 | return sqlite3IsNumericAffinity(idx_affinity); | ||
153 | } | ||
154 | } | ||
155 | |||
156 | /* | ||
157 | ** Return the P1 value that should be used for a binary comparison | ||
158 | ** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2. | ||
159 | ** If jumpIfNull is true, then set the low byte of the returned | ||
160 | ** P1 value to tell the opcode to jump if either expression | ||
161 | ** evaluates to NULL. | ||
162 | */ | ||
163 | static int binaryCompareP1(Expr *pExpr1, Expr *pExpr2, int jumpIfNull){ | ||
164 | char aff = sqlite3ExprAffinity(pExpr2); | ||
165 | return ((int)sqlite3CompareAffinity(pExpr1, aff))+(jumpIfNull?0x100:0); | ||
166 | } | ||
167 | |||
168 | /* | ||
169 | ** Return a pointer to the collation sequence that should be used by | ||
170 | ** a binary comparison operator comparing pLeft and pRight. | ||
171 | ** | ||
172 | ** If the left hand expression has a collating sequence type, then it is | ||
173 | ** used. Otherwise the collation sequence for the right hand expression | ||
174 | ** is used, or the default (BINARY) if neither expression has a collating | ||
175 | ** type. | ||
176 | ** | ||
177 | ** Argument pRight (but not pLeft) may be a null pointer. In this case, | ||
178 | ** it is not considered. | ||
179 | */ | ||
180 | CollSeq *sqlite3BinaryCompareCollSeq( | ||
181 | Parse *pParse, | ||
182 | Expr *pLeft, | ||
183 | Expr *pRight | ||
184 | ){ | ||
185 | CollSeq *pColl; | ||
186 | assert( pLeft ); | ||
187 | if( pLeft->flags & EP_ExpCollate ){ | ||
188 | assert( pLeft->pColl ); | ||
189 | pColl = pLeft->pColl; | ||
190 | }else if( pRight && pRight->flags & EP_ExpCollate ){ | ||
191 | assert( pRight->pColl ); | ||
192 | pColl = pRight->pColl; | ||
193 | }else{ | ||
194 | pColl = sqlite3ExprCollSeq(pParse, pLeft); | ||
195 | if( !pColl ){ | ||
196 | pColl = sqlite3ExprCollSeq(pParse, pRight); | ||
197 | } | ||
198 | } | ||
199 | return pColl; | ||
200 | } | ||
201 | |||
202 | /* | ||
203 | ** Generate code for a comparison operator. | ||
204 | */ | ||
205 | static int codeCompare( | ||
206 | Parse *pParse, /* The parsing (and code generating) context */ | ||
207 | Expr *pLeft, /* The left operand */ | ||
208 | Expr *pRight, /* The right operand */ | ||
209 | int opcode, /* The comparison opcode */ | ||
210 | int dest, /* Jump here if true. */ | ||
211 | int jumpIfNull /* If true, jump if either operand is NULL */ | ||
212 | ){ | ||
213 | int p1 = binaryCompareP1(pLeft, pRight, jumpIfNull); | ||
214 | CollSeq *p3 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight); | ||
215 | return sqlite3VdbeOp3(pParse->pVdbe, opcode, p1, dest, (void*)p3, P3_COLLSEQ); | ||
216 | } | ||
217 | |||
218 | /* | ||
219 | ** Construct a new expression node and return a pointer to it. Memory | ||
220 | ** for this node is obtained from sqlite3_malloc(). The calling function | ||
221 | ** is responsible for making sure the node eventually gets freed. | ||
222 | */ | ||
223 | Expr *sqlite3Expr( | ||
224 | sqlite3 *db, /* Handle for sqlite3DbMallocZero() (may be null) */ | ||
225 | int op, /* Expression opcode */ | ||
226 | Expr *pLeft, /* Left operand */ | ||
227 | Expr *pRight, /* Right operand */ | ||
228 | const Token *pToken /* Argument token */ | ||
229 | ){ | ||
230 | Expr *pNew; | ||
231 | pNew = sqlite3DbMallocZero(db, sizeof(Expr)); | ||
232 | if( pNew==0 ){ | ||
233 | /* When malloc fails, delete pLeft and pRight. Expressions passed to | ||
234 | ** this function must always be allocated with sqlite3Expr() for this | ||
235 | ** reason. | ||
236 | */ | ||
237 | sqlite3ExprDelete(pLeft); | ||
238 | sqlite3ExprDelete(pRight); | ||
239 | return 0; | ||
240 | } | ||
241 | pNew->op = op; | ||
242 | pNew->pLeft = pLeft; | ||
243 | pNew->pRight = pRight; | ||
244 | pNew->iAgg = -1; | ||
245 | if( pToken ){ | ||
246 | assert( pToken->dyn==0 ); | ||
247 | pNew->span = pNew->token = *pToken; | ||
248 | }else if( pLeft ){ | ||
249 | if( pRight ){ | ||
250 | sqlite3ExprSpan(pNew, &pLeft->span, &pRight->span); | ||
251 | if( pRight->flags & EP_ExpCollate ){ | ||
252 | pNew->flags |= EP_ExpCollate; | ||
253 | pNew->pColl = pRight->pColl; | ||
254 | } | ||
255 | } | ||
256 | if( pLeft->flags & EP_ExpCollate ){ | ||
257 | pNew->flags |= EP_ExpCollate; | ||
258 | pNew->pColl = pLeft->pColl; | ||
259 | } | ||
260 | } | ||
261 | |||
262 | sqlite3ExprSetHeight(pNew); | ||
263 | return pNew; | ||
264 | } | ||
265 | |||
266 | /* | ||
267 | ** Works like sqlite3Expr() except that it takes an extra Parse* | ||
268 | ** argument and notifies the associated connection object if malloc fails. | ||
269 | */ | ||
270 | Expr *sqlite3PExpr( | ||
271 | Parse *pParse, /* Parsing context */ | ||
272 | int op, /* Expression opcode */ | ||
273 | Expr *pLeft, /* Left operand */ | ||
274 | Expr *pRight, /* Right operand */ | ||
275 | const Token *pToken /* Argument token */ | ||
276 | ){ | ||
277 | return sqlite3Expr(pParse->db, op, pLeft, pRight, pToken); | ||
278 | } | ||
279 | |||
280 | /* | ||
281 | ** When doing a nested parse, you can include terms in an expression | ||
282 | ** that look like this: #0 #1 #2 ... These terms refer to elements | ||
283 | ** on the stack. "#0" means the top of the stack. | ||
284 | ** "#1" means the next down on the stack. And so forth. | ||
285 | ** | ||
286 | ** This routine is called by the parser to deal with on of those terms. | ||
287 | ** It immediately generates code to store the value in a memory location. | ||
288 | ** The returns an expression that will code to extract the value from | ||
289 | ** that memory location as needed. | ||
290 | */ | ||
291 | Expr *sqlite3RegisterExpr(Parse *pParse, Token *pToken){ | ||
292 | Vdbe *v = pParse->pVdbe; | ||
293 | Expr *p; | ||
294 | int depth; | ||
295 | if( pParse->nested==0 ){ | ||
296 | sqlite3ErrorMsg(pParse, "near \"%T\": syntax error", pToken); | ||
297 | return sqlite3PExpr(pParse, TK_NULL, 0, 0, 0); | ||
298 | } | ||
299 | if( v==0 ) return 0; | ||
300 | p = sqlite3PExpr(pParse, TK_REGISTER, 0, 0, pToken); | ||
301 | if( p==0 ){ | ||
302 | return 0; /* Malloc failed */ | ||
303 | } | ||
304 | depth = atoi((char*)&pToken->z[1]); | ||
305 | p->iTable = pParse->nMem++; | ||
306 | sqlite3VdbeAddOp(v, OP_Dup, depth, 0); | ||
307 | sqlite3VdbeAddOp(v, OP_MemStore, p->iTable, 1); | ||
308 | return p; | ||
309 | } | ||
310 | |||
311 | /* | ||
312 | ** Join two expressions using an AND operator. If either expression is | ||
313 | ** NULL, then just return the other expression. | ||
314 | */ | ||
315 | Expr *sqlite3ExprAnd(sqlite3 *db, Expr *pLeft, Expr *pRight){ | ||
316 | if( pLeft==0 ){ | ||
317 | return pRight; | ||
318 | }else if( pRight==0 ){ | ||
319 | return pLeft; | ||
320 | }else{ | ||
321 | return sqlite3Expr(db, TK_AND, pLeft, pRight, 0); | ||
322 | } | ||
323 | } | ||
324 | |||
325 | /* | ||
326 | ** Set the Expr.span field of the given expression to span all | ||
327 | ** text between the two given tokens. | ||
328 | */ | ||
329 | void sqlite3ExprSpan(Expr *pExpr, Token *pLeft, Token *pRight){ | ||
330 | assert( pRight!=0 ); | ||
331 | assert( pLeft!=0 ); | ||
332 | if( pExpr && pRight->z && pLeft->z ){ | ||
333 | assert( pLeft->dyn==0 || pLeft->z[pLeft->n]==0 ); | ||
334 | if( pLeft->dyn==0 && pRight->dyn==0 ){ | ||
335 | pExpr->span.z = pLeft->z; | ||
336 | pExpr->span.n = pRight->n + (pRight->z - pLeft->z); | ||
337 | }else{ | ||
338 | pExpr->span.z = 0; | ||
339 | } | ||
340 | } | ||
341 | } | ||
342 | |||
343 | /* | ||
344 | ** Construct a new expression node for a function with multiple | ||
345 | ** arguments. | ||
346 | */ | ||
347 | Expr *sqlite3ExprFunction(Parse *pParse, ExprList *pList, Token *pToken){ | ||
348 | Expr *pNew; | ||
349 | assert( pToken ); | ||
350 | pNew = sqlite3DbMallocZero(pParse->db, sizeof(Expr) ); | ||
351 | if( pNew==0 ){ | ||
352 | sqlite3ExprListDelete(pList); /* Avoid leaking memory when malloc fails */ | ||
353 | return 0; | ||
354 | } | ||
355 | pNew->op = TK_FUNCTION; | ||
356 | pNew->pList = pList; | ||
357 | assert( pToken->dyn==0 ); | ||
358 | pNew->token = *pToken; | ||
359 | pNew->span = pNew->token; | ||
360 | |||
361 | sqlite3ExprSetHeight(pNew); | ||
362 | return pNew; | ||
363 | } | ||
364 | |||
365 | /* | ||
366 | ** Assign a variable number to an expression that encodes a wildcard | ||
367 | ** in the original SQL statement. | ||
368 | ** | ||
369 | ** Wildcards consisting of a single "?" are assigned the next sequential | ||
370 | ** variable number. | ||
371 | ** | ||
372 | ** Wildcards of the form "?nnn" are assigned the number "nnn". We make | ||
373 | ** sure "nnn" is not too be to avoid a denial of service attack when | ||
374 | ** the SQL statement comes from an external source. | ||
375 | ** | ||
376 | ** Wildcards of the form ":aaa" or "$aaa" are assigned the same number | ||
377 | ** as the previous instance of the same wildcard. Or if this is the first | ||
378 | ** instance of the wildcard, the next sequenial variable number is | ||
379 | ** assigned. | ||
380 | */ | ||
381 | void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr){ | ||
382 | Token *pToken; | ||
383 | sqlite3 *db = pParse->db; | ||
384 | |||
385 | if( pExpr==0 ) return; | ||
386 | pToken = &pExpr->token; | ||
387 | assert( pToken->n>=1 ); | ||
388 | assert( pToken->z!=0 ); | ||
389 | assert( pToken->z[0]!=0 ); | ||
390 | if( pToken->n==1 ){ | ||
391 | /* Wildcard of the form "?". Assign the next variable number */ | ||
392 | pExpr->iTable = ++pParse->nVar; | ||
393 | }else if( pToken->z[0]=='?' ){ | ||
394 | /* Wildcard of the form "?nnn". Convert "nnn" to an integer and | ||
395 | ** use it as the variable number */ | ||
396 | int i; | ||
397 | pExpr->iTable = i = atoi((char*)&pToken->z[1]); | ||
398 | if( i<1 || i>SQLITE_MAX_VARIABLE_NUMBER ){ | ||
399 | sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d", | ||
400 | SQLITE_MAX_VARIABLE_NUMBER); | ||
401 | } | ||
402 | if( i>pParse->nVar ){ | ||
403 | pParse->nVar = i; | ||
404 | } | ||
405 | }else{ | ||
406 | /* Wildcards of the form ":aaa" or "$aaa". Reuse the same variable | ||
407 | ** number as the prior appearance of the same name, or if the name | ||
408 | ** has never appeared before, reuse the same variable number | ||
409 | */ | ||
410 | int i, n; | ||
411 | n = pToken->n; | ||
412 | for(i=0; i<pParse->nVarExpr; i++){ | ||
413 | Expr *pE; | ||
414 | if( (pE = pParse->apVarExpr[i])!=0 | ||
415 | && pE->token.n==n | ||
416 | && memcmp(pE->token.z, pToken->z, n)==0 ){ | ||
417 | pExpr->iTable = pE->iTable; | ||
418 | break; | ||
419 | } | ||
420 | } | ||
421 | if( i>=pParse->nVarExpr ){ | ||
422 | pExpr->iTable = ++pParse->nVar; | ||
423 | if( pParse->nVarExpr>=pParse->nVarExprAlloc-1 ){ | ||
424 | pParse->nVarExprAlloc += pParse->nVarExprAlloc + 10; | ||
425 | pParse->apVarExpr = | ||
426 | sqlite3DbReallocOrFree( | ||
427 | db, | ||
428 | pParse->apVarExpr, | ||
429 | pParse->nVarExprAlloc*sizeof(pParse->apVarExpr[0]) | ||
430 | ); | ||
431 | } | ||
432 | if( !db->mallocFailed ){ | ||
433 | assert( pParse->apVarExpr!=0 ); | ||
434 | pParse->apVarExpr[pParse->nVarExpr++] = pExpr; | ||
435 | } | ||
436 | } | ||
437 | } | ||
438 | if( !pParse->nErr && pParse->nVar>SQLITE_MAX_VARIABLE_NUMBER ){ | ||
439 | sqlite3ErrorMsg(pParse, "too many SQL variables"); | ||
440 | } | ||
441 | } | ||
442 | |||
443 | /* | ||
444 | ** Recursively delete an expression tree. | ||
445 | */ | ||
446 | void sqlite3ExprDelete(Expr *p){ | ||
447 | if( p==0 ) return; | ||
448 | if( p->span.dyn ) sqlite3_free((char*)p->span.z); | ||
449 | if( p->token.dyn ) sqlite3_free((char*)p->token.z); | ||
450 | sqlite3ExprDelete(p->pLeft); | ||
451 | sqlite3ExprDelete(p->pRight); | ||
452 | sqlite3ExprListDelete(p->pList); | ||
453 | sqlite3SelectDelete(p->pSelect); | ||
454 | sqlite3_free(p); | ||
455 | } | ||
456 | |||
457 | /* | ||
458 | ** The Expr.token field might be a string literal that is quoted. | ||
459 | ** If so, remove the quotation marks. | ||
460 | */ | ||
461 | void sqlite3DequoteExpr(sqlite3 *db, Expr *p){ | ||
462 | if( ExprHasAnyProperty(p, EP_Dequoted) ){ | ||
463 | return; | ||
464 | } | ||
465 | ExprSetProperty(p, EP_Dequoted); | ||
466 | if( p->token.dyn==0 ){ | ||
467 | sqlite3TokenCopy(db, &p->token, &p->token); | ||
468 | } | ||
469 | sqlite3Dequote((char*)p->token.z); | ||
470 | } | ||
471 | |||
472 | |||
473 | /* | ||
474 | ** The following group of routines make deep copies of expressions, | ||
475 | ** expression lists, ID lists, and select statements. The copies can | ||
476 | ** be deleted (by being passed to their respective ...Delete() routines) | ||
477 | ** without effecting the originals. | ||
478 | ** | ||
479 | ** The expression list, ID, and source lists return by sqlite3ExprListDup(), | ||
480 | ** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded | ||
481 | ** by subsequent calls to sqlite*ListAppend() routines. | ||
482 | ** | ||
483 | ** Any tables that the SrcList might point to are not duplicated. | ||
484 | */ | ||
485 | Expr *sqlite3ExprDup(sqlite3 *db, Expr *p){ | ||
486 | Expr *pNew; | ||
487 | if( p==0 ) return 0; | ||
488 | pNew = sqlite3DbMallocRaw(db, sizeof(*p) ); | ||
489 | if( pNew==0 ) return 0; | ||
490 | memcpy(pNew, p, sizeof(*pNew)); | ||
491 | if( p->token.z!=0 ){ | ||
492 | pNew->token.z = (u8*)sqlite3DbStrNDup(db, (char*)p->token.z, p->token.n); | ||
493 | pNew->token.dyn = 1; | ||
494 | }else{ | ||
495 | assert( pNew->token.z==0 ); | ||
496 | } | ||
497 | pNew->span.z = 0; | ||
498 | pNew->pLeft = sqlite3ExprDup(db, p->pLeft); | ||
499 | pNew->pRight = sqlite3ExprDup(db, p->pRight); | ||
500 | pNew->pList = sqlite3ExprListDup(db, p->pList); | ||
501 | pNew->pSelect = sqlite3SelectDup(db, p->pSelect); | ||
502 | return pNew; | ||
503 | } | ||
504 | void sqlite3TokenCopy(sqlite3 *db, Token *pTo, Token *pFrom){ | ||
505 | if( pTo->dyn ) sqlite3_free((char*)pTo->z); | ||
506 | if( pFrom->z ){ | ||
507 | pTo->n = pFrom->n; | ||
508 | pTo->z = (u8*)sqlite3DbStrNDup(db, (char*)pFrom->z, pFrom->n); | ||
509 | pTo->dyn = 1; | ||
510 | }else{ | ||
511 | pTo->z = 0; | ||
512 | } | ||
513 | } | ||
514 | ExprList *sqlite3ExprListDup(sqlite3 *db, ExprList *p){ | ||
515 | ExprList *pNew; | ||
516 | struct ExprList_item *pItem, *pOldItem; | ||
517 | int i; | ||
518 | if( p==0 ) return 0; | ||
519 | pNew = sqlite3DbMallocRaw(db, sizeof(*pNew) ); | ||
520 | if( pNew==0 ) return 0; | ||
521 | pNew->iECursor = 0; | ||
522 | pNew->nExpr = pNew->nAlloc = p->nExpr; | ||
523 | pNew->a = pItem = sqlite3DbMallocRaw(db, p->nExpr*sizeof(p->a[0]) ); | ||
524 | if( pItem==0 ){ | ||
525 | sqlite3_free(pNew); | ||
526 | return 0; | ||
527 | } | ||
528 | pOldItem = p->a; | ||
529 | for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){ | ||
530 | Expr *pNewExpr, *pOldExpr; | ||
531 | pItem->pExpr = pNewExpr = sqlite3ExprDup(db, pOldExpr = pOldItem->pExpr); | ||
532 | if( pOldExpr->span.z!=0 && pNewExpr ){ | ||
533 | /* Always make a copy of the span for top-level expressions in the | ||
534 | ** expression list. The logic in SELECT processing that determines | ||
535 | ** the names of columns in the result set needs this information */ | ||
536 | sqlite3TokenCopy(db, &pNewExpr->span, &pOldExpr->span); | ||
537 | } | ||
538 | assert( pNewExpr==0 || pNewExpr->span.z!=0 | ||
539 | || pOldExpr->span.z==0 | ||
540 | || db->mallocFailed ); | ||
541 | pItem->zName = sqlite3DbStrDup(db, pOldItem->zName); | ||
542 | pItem->sortOrder = pOldItem->sortOrder; | ||
543 | pItem->isAgg = pOldItem->isAgg; | ||
544 | pItem->done = 0; | ||
545 | } | ||
546 | return pNew; | ||
547 | } | ||
548 | |||
549 | /* | ||
550 | ** If cursors, triggers, views and subqueries are all omitted from | ||
551 | ** the build, then none of the following routines, except for | ||
552 | ** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes | ||
553 | ** called with a NULL argument. | ||
554 | */ | ||
555 | #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \ | ||
556 | || !defined(SQLITE_OMIT_SUBQUERY) | ||
557 | SrcList *sqlite3SrcListDup(sqlite3 *db, SrcList *p){ | ||
558 | SrcList *pNew; | ||
559 | int i; | ||
560 | int nByte; | ||
561 | if( p==0 ) return 0; | ||
562 | nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0); | ||
563 | pNew = sqlite3DbMallocRaw(db, nByte ); | ||
564 | if( pNew==0 ) return 0; | ||
565 | pNew->nSrc = pNew->nAlloc = p->nSrc; | ||
566 | for(i=0; i<p->nSrc; i++){ | ||
567 | struct SrcList_item *pNewItem = &pNew->a[i]; | ||
568 | struct SrcList_item *pOldItem = &p->a[i]; | ||
569 | Table *pTab; | ||
570 | pNewItem->zDatabase = sqlite3DbStrDup(db, pOldItem->zDatabase); | ||
571 | pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName); | ||
572 | pNewItem->zAlias = sqlite3DbStrDup(db, pOldItem->zAlias); | ||
573 | pNewItem->jointype = pOldItem->jointype; | ||
574 | pNewItem->iCursor = pOldItem->iCursor; | ||
575 | pNewItem->isPopulated = pOldItem->isPopulated; | ||
576 | pTab = pNewItem->pTab = pOldItem->pTab; | ||
577 | if( pTab ){ | ||
578 | pTab->nRef++; | ||
579 | } | ||
580 | pNewItem->pSelect = sqlite3SelectDup(db, pOldItem->pSelect); | ||
581 | pNewItem->pOn = sqlite3ExprDup(db, pOldItem->pOn); | ||
582 | pNewItem->pUsing = sqlite3IdListDup(db, pOldItem->pUsing); | ||
583 | pNewItem->colUsed = pOldItem->colUsed; | ||
584 | } | ||
585 | return pNew; | ||
586 | } | ||
587 | IdList *sqlite3IdListDup(sqlite3 *db, IdList *p){ | ||
588 | IdList *pNew; | ||
589 | int i; | ||
590 | if( p==0 ) return 0; | ||
591 | pNew = sqlite3DbMallocRaw(db, sizeof(*pNew) ); | ||
592 | if( pNew==0 ) return 0; | ||
593 | pNew->nId = pNew->nAlloc = p->nId; | ||
594 | pNew->a = sqlite3DbMallocRaw(db, p->nId*sizeof(p->a[0]) ); | ||
595 | if( pNew->a==0 ){ | ||
596 | sqlite3_free(pNew); | ||
597 | return 0; | ||
598 | } | ||
599 | for(i=0; i<p->nId; i++){ | ||
600 | struct IdList_item *pNewItem = &pNew->a[i]; | ||
601 | struct IdList_item *pOldItem = &p->a[i]; | ||
602 | pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName); | ||
603 | pNewItem->idx = pOldItem->idx; | ||
604 | } | ||
605 | return pNew; | ||
606 | } | ||
607 | Select *sqlite3SelectDup(sqlite3 *db, Select *p){ | ||
608 | Select *pNew; | ||
609 | if( p==0 ) return 0; | ||
610 | pNew = sqlite3DbMallocRaw(db, sizeof(*p) ); | ||
611 | if( pNew==0 ) return 0; | ||
612 | pNew->isDistinct = p->isDistinct; | ||
613 | pNew->pEList = sqlite3ExprListDup(db, p->pEList); | ||
614 | pNew->pSrc = sqlite3SrcListDup(db, p->pSrc); | ||
615 | pNew->pWhere = sqlite3ExprDup(db, p->pWhere); | ||
616 | pNew->pGroupBy = sqlite3ExprListDup(db, p->pGroupBy); | ||
617 | pNew->pHaving = sqlite3ExprDup(db, p->pHaving); | ||
618 | pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy); | ||
619 | pNew->op = p->op; | ||
620 | pNew->pPrior = sqlite3SelectDup(db, p->pPrior); | ||
621 | pNew->pLimit = sqlite3ExprDup(db, p->pLimit); | ||
622 | pNew->pOffset = sqlite3ExprDup(db, p->pOffset); | ||
623 | pNew->iLimit = -1; | ||
624 | pNew->iOffset = -1; | ||
625 | pNew->isResolved = p->isResolved; | ||
626 | pNew->isAgg = p->isAgg; | ||
627 | pNew->usesEphm = 0; | ||
628 | pNew->disallowOrderBy = 0; | ||
629 | pNew->pRightmost = 0; | ||
630 | pNew->addrOpenEphm[0] = -1; | ||
631 | pNew->addrOpenEphm[1] = -1; | ||
632 | pNew->addrOpenEphm[2] = -1; | ||
633 | return pNew; | ||
634 | } | ||
635 | #else | ||
636 | Select *sqlite3SelectDup(sqlite3 *db, Select *p){ | ||
637 | assert( p==0 ); | ||
638 | return 0; | ||
639 | } | ||
640 | #endif | ||
641 | |||
642 | |||
643 | /* | ||
644 | ** Add a new element to the end of an expression list. If pList is | ||
645 | ** initially NULL, then create a new expression list. | ||
646 | */ | ||
647 | ExprList *sqlite3ExprListAppend( | ||
648 | Parse *pParse, /* Parsing context */ | ||
649 | ExprList *pList, /* List to which to append. Might be NULL */ | ||
650 | Expr *pExpr, /* Expression to be appended */ | ||
651 | Token *pName /* AS keyword for the expression */ | ||
652 | ){ | ||
653 | sqlite3 *db = pParse->db; | ||
654 | if( pList==0 ){ | ||
655 | pList = sqlite3DbMallocZero(db, sizeof(ExprList) ); | ||
656 | if( pList==0 ){ | ||
657 | goto no_mem; | ||
658 | } | ||
659 | assert( pList->nAlloc==0 ); | ||
660 | } | ||
661 | if( pList->nAlloc<=pList->nExpr ){ | ||
662 | struct ExprList_item *a; | ||
663 | int n = pList->nAlloc*2 + 4; | ||
664 | a = sqlite3DbRealloc(db, pList->a, n*sizeof(pList->a[0])); | ||
665 | if( a==0 ){ | ||
666 | goto no_mem; | ||
667 | } | ||
668 | pList->a = a; | ||
669 | pList->nAlloc = n; | ||
670 | } | ||
671 | assert( pList->a!=0 ); | ||
672 | if( pExpr || pName ){ | ||
673 | struct ExprList_item *pItem = &pList->a[pList->nExpr++]; | ||
674 | memset(pItem, 0, sizeof(*pItem)); | ||
675 | pItem->zName = sqlite3NameFromToken(db, pName); | ||
676 | pItem->pExpr = pExpr; | ||
677 | } | ||
678 | return pList; | ||
679 | |||
680 | no_mem: | ||
681 | /* Avoid leaking memory if malloc has failed. */ | ||
682 | sqlite3ExprDelete(pExpr); | ||
683 | sqlite3ExprListDelete(pList); | ||
684 | return 0; | ||
685 | } | ||
686 | |||
687 | /* | ||
688 | ** If the expression list pEList contains more than iLimit elements, | ||
689 | ** leave an error message in pParse. | ||
690 | */ | ||
691 | void sqlite3ExprListCheckLength( | ||
692 | Parse *pParse, | ||
693 | ExprList *pEList, | ||
694 | int iLimit, | ||
695 | const char *zObject | ||
696 | ){ | ||
697 | if( pEList && pEList->nExpr>iLimit ){ | ||
698 | sqlite3ErrorMsg(pParse, "too many columns in %s", zObject); | ||
699 | } | ||
700 | } | ||
701 | |||
702 | |||
703 | #if defined(SQLITE_TEST) || SQLITE_MAX_EXPR_DEPTH>0 | ||
704 | /* The following three functions, heightOfExpr(), heightOfExprList() | ||
705 | ** and heightOfSelect(), are used to determine the maximum height | ||
706 | ** of any expression tree referenced by the structure passed as the | ||
707 | ** first argument. | ||
708 | ** | ||
709 | ** If this maximum height is greater than the current value pointed | ||
710 | ** to by pnHeight, the second parameter, then set *pnHeight to that | ||
711 | ** value. | ||
712 | */ | ||
713 | static void heightOfExpr(Expr *p, int *pnHeight){ | ||
714 | if( p ){ | ||
715 | if( p->nHeight>*pnHeight ){ | ||
716 | *pnHeight = p->nHeight; | ||
717 | } | ||
718 | } | ||
719 | } | ||
720 | static void heightOfExprList(ExprList *p, int *pnHeight){ | ||
721 | if( p ){ | ||
722 | int i; | ||
723 | for(i=0; i<p->nExpr; i++){ | ||
724 | heightOfExpr(p->a[i].pExpr, pnHeight); | ||
725 | } | ||
726 | } | ||
727 | } | ||
728 | static void heightOfSelect(Select *p, int *pnHeight){ | ||
729 | if( p ){ | ||
730 | heightOfExpr(p->pWhere, pnHeight); | ||
731 | heightOfExpr(p->pHaving, pnHeight); | ||
732 | heightOfExpr(p->pLimit, pnHeight); | ||
733 | heightOfExpr(p->pOffset, pnHeight); | ||
734 | heightOfExprList(p->pEList, pnHeight); | ||
735 | heightOfExprList(p->pGroupBy, pnHeight); | ||
736 | heightOfExprList(p->pOrderBy, pnHeight); | ||
737 | heightOfSelect(p->pPrior, pnHeight); | ||
738 | } | ||
739 | } | ||
740 | |||
741 | /* | ||
742 | ** Set the Expr.nHeight variable in the structure passed as an | ||
743 | ** argument. An expression with no children, Expr.pList or | ||
744 | ** Expr.pSelect member has a height of 1. Any other expression | ||
745 | ** has a height equal to the maximum height of any other | ||
746 | ** referenced Expr plus one. | ||
747 | */ | ||
748 | void sqlite3ExprSetHeight(Expr *p){ | ||
749 | int nHeight = 0; | ||
750 | heightOfExpr(p->pLeft, &nHeight); | ||
751 | heightOfExpr(p->pRight, &nHeight); | ||
752 | heightOfExprList(p->pList, &nHeight); | ||
753 | heightOfSelect(p->pSelect, &nHeight); | ||
754 | p->nHeight = nHeight + 1; | ||
755 | } | ||
756 | |||
757 | /* | ||
758 | ** Return the maximum height of any expression tree referenced | ||
759 | ** by the select statement passed as an argument. | ||
760 | */ | ||
761 | int sqlite3SelectExprHeight(Select *p){ | ||
762 | int nHeight = 0; | ||
763 | heightOfSelect(p, &nHeight); | ||
764 | return nHeight; | ||
765 | } | ||
766 | #endif | ||
767 | |||
768 | /* | ||
769 | ** Delete an entire expression list. | ||
770 | */ | ||
771 | void sqlite3ExprListDelete(ExprList *pList){ | ||
772 | int i; | ||
773 | struct ExprList_item *pItem; | ||
774 | if( pList==0 ) return; | ||
775 | assert( pList->a!=0 || (pList->nExpr==0 && pList->nAlloc==0) ); | ||
776 | assert( pList->nExpr<=pList->nAlloc ); | ||
777 | for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){ | ||
778 | sqlite3ExprDelete(pItem->pExpr); | ||
779 | sqlite3_free(pItem->zName); | ||
780 | } | ||
781 | sqlite3_free(pList->a); | ||
782 | sqlite3_free(pList); | ||
783 | } | ||
784 | |||
785 | /* | ||
786 | ** Walk an expression tree. Call xFunc for each node visited. | ||
787 | ** | ||
788 | ** The return value from xFunc determines whether the tree walk continues. | ||
789 | ** 0 means continue walking the tree. 1 means do not walk children | ||
790 | ** of the current node but continue with siblings. 2 means abandon | ||
791 | ** the tree walk completely. | ||
792 | ** | ||
793 | ** The return value from this routine is 1 to abandon the tree walk | ||
794 | ** and 0 to continue. | ||
795 | ** | ||
796 | ** NOTICE: This routine does *not* descend into subqueries. | ||
797 | */ | ||
798 | static int walkExprList(ExprList *, int (*)(void *, Expr*), void *); | ||
799 | static int walkExprTree(Expr *pExpr, int (*xFunc)(void*,Expr*), void *pArg){ | ||
800 | int rc; | ||
801 | if( pExpr==0 ) return 0; | ||
802 | rc = (*xFunc)(pArg, pExpr); | ||
803 | if( rc==0 ){ | ||
804 | if( walkExprTree(pExpr->pLeft, xFunc, pArg) ) return 1; | ||
805 | if( walkExprTree(pExpr->pRight, xFunc, pArg) ) return 1; | ||
806 | if( walkExprList(pExpr->pList, xFunc, pArg) ) return 1; | ||
807 | } | ||
808 | return rc>1; | ||
809 | } | ||
810 | |||
811 | /* | ||
812 | ** Call walkExprTree() for every expression in list p. | ||
813 | */ | ||
814 | static int walkExprList(ExprList *p, int (*xFunc)(void *, Expr*), void *pArg){ | ||
815 | int i; | ||
816 | struct ExprList_item *pItem; | ||
817 | if( !p ) return 0; | ||
818 | for(i=p->nExpr, pItem=p->a; i>0; i--, pItem++){ | ||
819 | if( walkExprTree(pItem->pExpr, xFunc, pArg) ) return 1; | ||
820 | } | ||
821 | return 0; | ||
822 | } | ||
823 | |||
824 | /* | ||
825 | ** Call walkExprTree() for every expression in Select p, not including | ||
826 | ** expressions that are part of sub-selects in any FROM clause or the LIMIT | ||
827 | ** or OFFSET expressions.. | ||
828 | */ | ||
829 | static int walkSelectExpr(Select *p, int (*xFunc)(void *, Expr*), void *pArg){ | ||
830 | walkExprList(p->pEList, xFunc, pArg); | ||
831 | walkExprTree(p->pWhere, xFunc, pArg); | ||
832 | walkExprList(p->pGroupBy, xFunc, pArg); | ||
833 | walkExprTree(p->pHaving, xFunc, pArg); | ||
834 | walkExprList(p->pOrderBy, xFunc, pArg); | ||
835 | if( p->pPrior ){ | ||
836 | walkSelectExpr(p->pPrior, xFunc, pArg); | ||
837 | } | ||
838 | return 0; | ||
839 | } | ||
840 | |||
841 | |||
842 | /* | ||
843 | ** This routine is designed as an xFunc for walkExprTree(). | ||
844 | ** | ||
845 | ** pArg is really a pointer to an integer. If we can tell by looking | ||
846 | ** at pExpr that the expression that contains pExpr is not a constant | ||
847 | ** expression, then set *pArg to 0 and return 2 to abandon the tree walk. | ||
848 | ** If pExpr does does not disqualify the expression from being a constant | ||
849 | ** then do nothing. | ||
850 | ** | ||
851 | ** After walking the whole tree, if no nodes are found that disqualify | ||
852 | ** the expression as constant, then we assume the whole expression | ||
853 | ** is constant. See sqlite3ExprIsConstant() for additional information. | ||
854 | */ | ||
855 | static int exprNodeIsConstant(void *pArg, Expr *pExpr){ | ||
856 | int *pN = (int*)pArg; | ||
857 | |||
858 | /* If *pArg is 3 then any term of the expression that comes from | ||
859 | ** the ON or USING clauses of a join disqualifies the expression | ||
860 | ** from being considered constant. */ | ||
861 | if( (*pN)==3 && ExprHasAnyProperty(pExpr, EP_FromJoin) ){ | ||
862 | *pN = 0; | ||
863 | return 2; | ||
864 | } | ||
865 | |||
866 | switch( pExpr->op ){ | ||
867 | /* Consider functions to be constant if all their arguments are constant | ||
868 | ** and *pArg==2 */ | ||
869 | case TK_FUNCTION: | ||
870 | if( (*pN)==2 ) return 0; | ||
871 | /* Fall through */ | ||
872 | case TK_ID: | ||
873 | case TK_COLUMN: | ||
874 | case TK_DOT: | ||
875 | case TK_AGG_FUNCTION: | ||
876 | case TK_AGG_COLUMN: | ||
877 | #ifndef SQLITE_OMIT_SUBQUERY | ||
878 | case TK_SELECT: | ||
879 | case TK_EXISTS: | ||
880 | #endif | ||
881 | *pN = 0; | ||
882 | return 2; | ||
883 | case TK_IN: | ||
884 | if( pExpr->pSelect ){ | ||
885 | *pN = 0; | ||
886 | return 2; | ||
887 | } | ||
888 | default: | ||
889 | return 0; | ||
890 | } | ||
891 | } | ||
892 | |||
893 | /* | ||
894 | ** Walk an expression tree. Return 1 if the expression is constant | ||
895 | ** and 0 if it involves variables or function calls. | ||
896 | ** | ||
897 | ** For the purposes of this function, a double-quoted string (ex: "abc") | ||
898 | ** is considered a variable but a single-quoted string (ex: 'abc') is | ||
899 | ** a constant. | ||
900 | */ | ||
901 | int sqlite3ExprIsConstant(Expr *p){ | ||
902 | int isConst = 1; | ||
903 | walkExprTree(p, exprNodeIsConstant, &isConst); | ||
904 | return isConst; | ||
905 | } | ||
906 | |||
907 | /* | ||
908 | ** Walk an expression tree. Return 1 if the expression is constant | ||
909 | ** that does no originate from the ON or USING clauses of a join. | ||
910 | ** Return 0 if it involves variables or function calls or terms from | ||
911 | ** an ON or USING clause. | ||
912 | */ | ||
913 | int sqlite3ExprIsConstantNotJoin(Expr *p){ | ||
914 | int isConst = 3; | ||
915 | walkExprTree(p, exprNodeIsConstant, &isConst); | ||
916 | return isConst!=0; | ||
917 | } | ||
918 | |||
919 | /* | ||
920 | ** Walk an expression tree. Return 1 if the expression is constant | ||
921 | ** or a function call with constant arguments. Return and 0 if there | ||
922 | ** are any variables. | ||
923 | ** | ||
924 | ** For the purposes of this function, a double-quoted string (ex: "abc") | ||
925 | ** is considered a variable but a single-quoted string (ex: 'abc') is | ||
926 | ** a constant. | ||
927 | */ | ||
928 | int sqlite3ExprIsConstantOrFunction(Expr *p){ | ||
929 | int isConst = 2; | ||
930 | walkExprTree(p, exprNodeIsConstant, &isConst); | ||
931 | return isConst!=0; | ||
932 | } | ||
933 | |||
934 | /* | ||
935 | ** If the expression p codes a constant integer that is small enough | ||
936 | ** to fit in a 32-bit integer, return 1 and put the value of the integer | ||
937 | ** in *pValue. If the expression is not an integer or if it is too big | ||
938 | ** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged. | ||
939 | */ | ||
940 | int sqlite3ExprIsInteger(Expr *p, int *pValue){ | ||
941 | switch( p->op ){ | ||
942 | case TK_INTEGER: { | ||
943 | if( sqlite3GetInt32((char*)p->token.z, pValue) ){ | ||
944 | return 1; | ||
945 | } | ||
946 | break; | ||
947 | } | ||
948 | case TK_UPLUS: { | ||
949 | return sqlite3ExprIsInteger(p->pLeft, pValue); | ||
950 | } | ||
951 | case TK_UMINUS: { | ||
952 | int v; | ||
953 | if( sqlite3ExprIsInteger(p->pLeft, &v) ){ | ||
954 | *pValue = -v; | ||
955 | return 1; | ||
956 | } | ||
957 | break; | ||
958 | } | ||
959 | default: break; | ||
960 | } | ||
961 | return 0; | ||
962 | } | ||
963 | |||
964 | /* | ||
965 | ** Return TRUE if the given string is a row-id column name. | ||
966 | */ | ||
967 | int sqlite3IsRowid(const char *z){ | ||
968 | if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1; | ||
969 | if( sqlite3StrICmp(z, "ROWID")==0 ) return 1; | ||
970 | if( sqlite3StrICmp(z, "OID")==0 ) return 1; | ||
971 | return 0; | ||
972 | } | ||
973 | |||
974 | /* | ||
975 | ** Given the name of a column of the form X.Y.Z or Y.Z or just Z, look up | ||
976 | ** that name in the set of source tables in pSrcList and make the pExpr | ||
977 | ** expression node refer back to that source column. The following changes | ||
978 | ** are made to pExpr: | ||
979 | ** | ||
980 | ** pExpr->iDb Set the index in db->aDb[] of the database holding | ||
981 | ** the table. | ||
982 | ** pExpr->iTable Set to the cursor number for the table obtained | ||
983 | ** from pSrcList. | ||
984 | ** pExpr->iColumn Set to the column number within the table. | ||
985 | ** pExpr->op Set to TK_COLUMN. | ||
986 | ** pExpr->pLeft Any expression this points to is deleted | ||
987 | ** pExpr->pRight Any expression this points to is deleted. | ||
988 | ** | ||
989 | ** The pDbToken is the name of the database (the "X"). This value may be | ||
990 | ** NULL meaning that name is of the form Y.Z or Z. Any available database | ||
991 | ** can be used. The pTableToken is the name of the table (the "Y"). This | ||
992 | ** value can be NULL if pDbToken is also NULL. If pTableToken is NULL it | ||
993 | ** means that the form of the name is Z and that columns from any table | ||
994 | ** can be used. | ||
995 | ** | ||
996 | ** If the name cannot be resolved unambiguously, leave an error message | ||
997 | ** in pParse and return non-zero. Return zero on success. | ||
998 | */ | ||
999 | static int lookupName( | ||
1000 | Parse *pParse, /* The parsing context */ | ||
1001 | Token *pDbToken, /* Name of the database containing table, or NULL */ | ||
1002 | Token *pTableToken, /* Name of table containing column, or NULL */ | ||
1003 | Token *pColumnToken, /* Name of the column. */ | ||
1004 | NameContext *pNC, /* The name context used to resolve the name */ | ||
1005 | Expr *pExpr /* Make this EXPR node point to the selected column */ | ||
1006 | ){ | ||
1007 | char *zDb = 0; /* Name of the database. The "X" in X.Y.Z */ | ||
1008 | char *zTab = 0; /* Name of the table. The "Y" in X.Y.Z or Y.Z */ | ||
1009 | char *zCol = 0; /* Name of the column. The "Z" */ | ||
1010 | int i, j; /* Loop counters */ | ||
1011 | int cnt = 0; /* Number of matching column names */ | ||
1012 | int cntTab = 0; /* Number of matching table names */ | ||
1013 | sqlite3 *db = pParse->db; /* The database */ | ||
1014 | struct SrcList_item *pItem; /* Use for looping over pSrcList items */ | ||
1015 | struct SrcList_item *pMatch = 0; /* The matching pSrcList item */ | ||
1016 | NameContext *pTopNC = pNC; /* First namecontext in the list */ | ||
1017 | Schema *pSchema = 0; /* Schema of the expression */ | ||
1018 | |||
1019 | assert( pColumnToken && pColumnToken->z ); /* The Z in X.Y.Z cannot be NULL */ | ||
1020 | zDb = sqlite3NameFromToken(db, pDbToken); | ||
1021 | zTab = sqlite3NameFromToken(db, pTableToken); | ||
1022 | zCol = sqlite3NameFromToken(db, pColumnToken); | ||
1023 | if( db->mallocFailed ){ | ||
1024 | goto lookupname_end; | ||
1025 | } | ||
1026 | |||
1027 | pExpr->iTable = -1; | ||
1028 | while( pNC && cnt==0 ){ | ||
1029 | ExprList *pEList; | ||
1030 | SrcList *pSrcList = pNC->pSrcList; | ||
1031 | |||
1032 | if( pSrcList ){ | ||
1033 | for(i=0, pItem=pSrcList->a; i<pSrcList->nSrc; i++, pItem++){ | ||
1034 | Table *pTab; | ||
1035 | int iDb; | ||
1036 | Column *pCol; | ||
1037 | |||
1038 | pTab = pItem->pTab; | ||
1039 | assert( pTab!=0 ); | ||
1040 | iDb = sqlite3SchemaToIndex(db, pTab->pSchema); | ||
1041 | assert( pTab->nCol>0 ); | ||
1042 | if( zTab ){ | ||
1043 | if( pItem->zAlias ){ | ||
1044 | char *zTabName = pItem->zAlias; | ||
1045 | if( sqlite3StrICmp(zTabName, zTab)!=0 ) continue; | ||
1046 | }else{ | ||
1047 | char *zTabName = pTab->zName; | ||
1048 | if( zTabName==0 || sqlite3StrICmp(zTabName, zTab)!=0 ) continue; | ||
1049 | if( zDb!=0 && sqlite3StrICmp(db->aDb[iDb].zName, zDb)!=0 ){ | ||
1050 | continue; | ||
1051 | } | ||
1052 | } | ||
1053 | } | ||
1054 | if( 0==(cntTab++) ){ | ||
1055 | pExpr->iTable = pItem->iCursor; | ||
1056 | pSchema = pTab->pSchema; | ||
1057 | pMatch = pItem; | ||
1058 | } | ||
1059 | for(j=0, pCol=pTab->aCol; j<pTab->nCol; j++, pCol++){ | ||
1060 | if( sqlite3StrICmp(pCol->zName, zCol)==0 ){ | ||
1061 | const char *zColl = pTab->aCol[j].zColl; | ||
1062 | IdList *pUsing; | ||
1063 | cnt++; | ||
1064 | pExpr->iTable = pItem->iCursor; | ||
1065 | pMatch = pItem; | ||
1066 | pSchema = pTab->pSchema; | ||
1067 | /* Substitute the rowid (column -1) for the INTEGER PRIMARY KEY */ | ||
1068 | pExpr->iColumn = j==pTab->iPKey ? -1 : j; | ||
1069 | pExpr->affinity = pTab->aCol[j].affinity; | ||
1070 | if( (pExpr->flags & EP_ExpCollate)==0 ){ | ||
1071 | pExpr->pColl = sqlite3FindCollSeq(db, ENC(db), zColl,-1, 0); | ||
1072 | } | ||
1073 | if( i<pSrcList->nSrc-1 ){ | ||
1074 | if( pItem[1].jointype & JT_NATURAL ){ | ||
1075 | /* If this match occurred in the left table of a natural join, | ||
1076 | ** then skip the right table to avoid a duplicate match */ | ||
1077 | pItem++; | ||
1078 | i++; | ||
1079 | }else if( (pUsing = pItem[1].pUsing)!=0 ){ | ||
1080 | /* If this match occurs on a column that is in the USING clause | ||
1081 | ** of a join, skip the search of the right table of the join | ||
1082 | ** to avoid a duplicate match there. */ | ||
1083 | int k; | ||
1084 | for(k=0; k<pUsing->nId; k++){ | ||
1085 | if( sqlite3StrICmp(pUsing->a[k].zName, zCol)==0 ){ | ||
1086 | pItem++; | ||
1087 | i++; | ||
1088 | break; | ||
1089 | } | ||
1090 | } | ||
1091 | } | ||
1092 | } | ||
1093 | break; | ||
1094 | } | ||
1095 | } | ||
1096 | } | ||
1097 | } | ||
1098 | |||
1099 | #ifndef SQLITE_OMIT_TRIGGER | ||
1100 | /* If we have not already resolved the name, then maybe | ||
1101 | ** it is a new.* or old.* trigger argument reference | ||
1102 | */ | ||
1103 | if( zDb==0 && zTab!=0 && cnt==0 && pParse->trigStack!=0 ){ | ||
1104 | TriggerStack *pTriggerStack = pParse->trigStack; | ||
1105 | Table *pTab = 0; | ||
1106 | if( pTriggerStack->newIdx != -1 && sqlite3StrICmp("new", zTab) == 0 ){ | ||
1107 | pExpr->iTable = pTriggerStack->newIdx; | ||
1108 | assert( pTriggerStack->pTab ); | ||
1109 | pTab = pTriggerStack->pTab; | ||
1110 | }else if( pTriggerStack->oldIdx != -1 && sqlite3StrICmp("old", zTab)==0 ){ | ||
1111 | pExpr->iTable = pTriggerStack->oldIdx; | ||
1112 | assert( pTriggerStack->pTab ); | ||
1113 | pTab = pTriggerStack->pTab; | ||
1114 | } | ||
1115 | |||
1116 | if( pTab ){ | ||
1117 | int iCol; | ||
1118 | Column *pCol = pTab->aCol; | ||
1119 | |||
1120 | pSchema = pTab->pSchema; | ||
1121 | cntTab++; | ||
1122 | for(iCol=0; iCol < pTab->nCol; iCol++, pCol++) { | ||
1123 | if( sqlite3StrICmp(pCol->zName, zCol)==0 ){ | ||
1124 | const char *zColl = pTab->aCol[iCol].zColl; | ||
1125 | cnt++; | ||
1126 | pExpr->iColumn = iCol==pTab->iPKey ? -1 : iCol; | ||
1127 | pExpr->affinity = pTab->aCol[iCol].affinity; | ||
1128 | if( (pExpr->flags & EP_ExpCollate)==0 ){ | ||
1129 | pExpr->pColl = sqlite3FindCollSeq(db, ENC(db), zColl,-1, 0); | ||
1130 | } | ||
1131 | pExpr->pTab = pTab; | ||
1132 | break; | ||
1133 | } | ||
1134 | } | ||
1135 | } | ||
1136 | } | ||
1137 | #endif /* !defined(SQLITE_OMIT_TRIGGER) */ | ||
1138 | |||
1139 | /* | ||
1140 | ** Perhaps the name is a reference to the ROWID | ||
1141 | */ | ||
1142 | if( cnt==0 && cntTab==1 && sqlite3IsRowid(zCol) ){ | ||
1143 | cnt = 1; | ||
1144 | pExpr->iColumn = -1; | ||
1145 | pExpr->affinity = SQLITE_AFF_INTEGER; | ||
1146 | } | ||
1147 | |||
1148 | /* | ||
1149 | ** If the input is of the form Z (not Y.Z or X.Y.Z) then the name Z | ||
1150 | ** might refer to an result-set alias. This happens, for example, when | ||
1151 | ** we are resolving names in the WHERE clause of the following command: | ||
1152 | ** | ||
1153 | ** SELECT a+b AS x FROM table WHERE x<10; | ||
1154 | ** | ||
1155 | ** In cases like this, replace pExpr with a copy of the expression that | ||
1156 | ** forms the result set entry ("a+b" in the example) and return immediately. | ||
1157 | ** Note that the expression in the result set should have already been | ||
1158 | ** resolved by the time the WHERE clause is resolved. | ||
1159 | */ | ||
1160 | if( cnt==0 && (pEList = pNC->pEList)!=0 && zTab==0 ){ | ||
1161 | for(j=0; j<pEList->nExpr; j++){ | ||
1162 | char *zAs = pEList->a[j].zName; | ||
1163 | if( zAs!=0 && sqlite3StrICmp(zAs, zCol)==0 ){ | ||
1164 | Expr *pDup, *pOrig; | ||
1165 | assert( pExpr->pLeft==0 && pExpr->pRight==0 ); | ||
1166 | assert( pExpr->pList==0 ); | ||
1167 | assert( pExpr->pSelect==0 ); | ||
1168 | pOrig = pEList->a[j].pExpr; | ||
1169 | if( !pNC->allowAgg && ExprHasProperty(pOrig, EP_Agg) ){ | ||
1170 | sqlite3ErrorMsg(pParse, "misuse of aliased aggregate %s", zAs); | ||
1171 | sqlite3_free(zCol); | ||
1172 | return 2; | ||
1173 | } | ||
1174 | pDup = sqlite3ExprDup(db, pOrig); | ||
1175 | if( pExpr->flags & EP_ExpCollate ){ | ||
1176 | pDup->pColl = pExpr->pColl; | ||
1177 | pDup->flags |= EP_ExpCollate; | ||
1178 | } | ||
1179 | if( pExpr->span.dyn ) sqlite3_free((char*)pExpr->span.z); | ||
1180 | if( pExpr->token.dyn ) sqlite3_free((char*)pExpr->token.z); | ||
1181 | memcpy(pExpr, pDup, sizeof(*pExpr)); | ||
1182 | sqlite3_free(pDup); | ||
1183 | cnt = 1; | ||
1184 | pMatch = 0; | ||
1185 | assert( zTab==0 && zDb==0 ); | ||
1186 | goto lookupname_end_2; | ||
1187 | } | ||
1188 | } | ||
1189 | } | ||
1190 | |||
1191 | /* Advance to the next name context. The loop will exit when either | ||
1192 | ** we have a match (cnt>0) or when we run out of name contexts. | ||
1193 | */ | ||
1194 | if( cnt==0 ){ | ||
1195 | pNC = pNC->pNext; | ||
1196 | } | ||
1197 | } | ||
1198 | |||
1199 | /* | ||
1200 | ** If X and Y are NULL (in other words if only the column name Z is | ||
1201 | ** supplied) and the value of Z is enclosed in double-quotes, then | ||
1202 | ** Z is a string literal if it doesn't match any column names. In that | ||
1203 | ** case, we need to return right away and not make any changes to | ||
1204 | ** pExpr. | ||
1205 | ** | ||
1206 | ** Because no reference was made to outer contexts, the pNC->nRef | ||
1207 | ** fields are not changed in any context. | ||
1208 | */ | ||
1209 | if( cnt==0 && zTab==0 && pColumnToken->z[0]=='"' ){ | ||
1210 | sqlite3_free(zCol); | ||
1211 | return 0; | ||
1212 | } | ||
1213 | |||
1214 | /* | ||
1215 | ** cnt==0 means there was not match. cnt>1 means there were two or | ||
1216 | ** more matches. Either way, we have an error. | ||
1217 | */ | ||
1218 | if( cnt!=1 ){ | ||
1219 | char *z = 0; | ||
1220 | char *zErr; | ||
1221 | zErr = cnt==0 ? "no such column: %s" : "ambiguous column name: %s"; | ||
1222 | if( zDb ){ | ||
1223 | sqlite3SetString(&z, zDb, ".", zTab, ".", zCol, (char*)0); | ||
1224 | }else if( zTab ){ | ||
1225 | sqlite3SetString(&z, zTab, ".", zCol, (char*)0); | ||
1226 | }else{ | ||
1227 | z = sqlite3StrDup(zCol); | ||
1228 | } | ||
1229 | if( z ){ | ||
1230 | sqlite3ErrorMsg(pParse, zErr, z); | ||
1231 | sqlite3_free(z); | ||
1232 | pTopNC->nErr++; | ||
1233 | }else{ | ||
1234 | db->mallocFailed = 1; | ||
1235 | } | ||
1236 | } | ||
1237 | |||
1238 | /* If a column from a table in pSrcList is referenced, then record | ||
1239 | ** this fact in the pSrcList.a[].colUsed bitmask. Column 0 causes | ||
1240 | ** bit 0 to be set. Column 1 sets bit 1. And so forth. If the | ||
1241 | ** column number is greater than the number of bits in the bitmask | ||
1242 | ** then set the high-order bit of the bitmask. | ||
1243 | */ | ||
1244 | if( pExpr->iColumn>=0 && pMatch!=0 ){ | ||
1245 | int n = pExpr->iColumn; | ||
1246 | if( n>=sizeof(Bitmask)*8 ){ | ||
1247 | n = sizeof(Bitmask)*8-1; | ||
1248 | } | ||
1249 | assert( pMatch->iCursor==pExpr->iTable ); | ||
1250 | pMatch->colUsed |= ((Bitmask)1)<<n; | ||
1251 | } | ||
1252 | |||
1253 | lookupname_end: | ||
1254 | /* Clean up and return | ||
1255 | */ | ||
1256 | sqlite3_free(zDb); | ||
1257 | sqlite3_free(zTab); | ||
1258 | sqlite3ExprDelete(pExpr->pLeft); | ||
1259 | pExpr->pLeft = 0; | ||
1260 | sqlite3ExprDelete(pExpr->pRight); | ||
1261 | pExpr->pRight = 0; | ||
1262 | pExpr->op = TK_COLUMN; | ||
1263 | lookupname_end_2: | ||
1264 | sqlite3_free(zCol); | ||
1265 | if( cnt==1 ){ | ||
1266 | assert( pNC!=0 ); | ||
1267 | sqlite3AuthRead(pParse, pExpr, pSchema, pNC->pSrcList); | ||
1268 | if( pMatch && !pMatch->pSelect ){ | ||
1269 | pExpr->pTab = pMatch->pTab; | ||
1270 | } | ||
1271 | /* Increment the nRef value on all name contexts from TopNC up to | ||
1272 | ** the point where the name matched. */ | ||
1273 | for(;;){ | ||
1274 | assert( pTopNC!=0 ); | ||
1275 | pTopNC->nRef++; | ||
1276 | if( pTopNC==pNC ) break; | ||
1277 | pTopNC = pTopNC->pNext; | ||
1278 | } | ||
1279 | return 0; | ||
1280 | } else { | ||
1281 | return 1; | ||
1282 | } | ||
1283 | } | ||
1284 | |||
1285 | /* | ||
1286 | ** This routine is designed as an xFunc for walkExprTree(). | ||
1287 | ** | ||
1288 | ** Resolve symbolic names into TK_COLUMN operators for the current | ||
1289 | ** node in the expression tree. Return 0 to continue the search down | ||
1290 | ** the tree or 2 to abort the tree walk. | ||
1291 | ** | ||
1292 | ** This routine also does error checking and name resolution for | ||
1293 | ** function names. The operator for aggregate functions is changed | ||
1294 | ** to TK_AGG_FUNCTION. | ||
1295 | */ | ||
1296 | static int nameResolverStep(void *pArg, Expr *pExpr){ | ||
1297 | NameContext *pNC = (NameContext*)pArg; | ||
1298 | Parse *pParse; | ||
1299 | |||
1300 | if( pExpr==0 ) return 1; | ||
1301 | assert( pNC!=0 ); | ||
1302 | pParse = pNC->pParse; | ||
1303 | |||
1304 | if( ExprHasAnyProperty(pExpr, EP_Resolved) ) return 1; | ||
1305 | ExprSetProperty(pExpr, EP_Resolved); | ||
1306 | #ifndef NDEBUG | ||
1307 | if( pNC->pSrcList && pNC->pSrcList->nAlloc>0 ){ | ||
1308 | SrcList *pSrcList = pNC->pSrcList; | ||
1309 | int i; | ||
1310 | for(i=0; i<pNC->pSrcList->nSrc; i++){ | ||
1311 | assert( pSrcList->a[i].iCursor>=0 && pSrcList->a[i].iCursor<pParse->nTab); | ||
1312 | } | ||
1313 | } | ||
1314 | #endif | ||
1315 | switch( pExpr->op ){ | ||
1316 | /* Double-quoted strings (ex: "abc") are used as identifiers if | ||
1317 | ** possible. Otherwise they remain as strings. Single-quoted | ||
1318 | ** strings (ex: 'abc') are always string literals. | ||
1319 | */ | ||
1320 | case TK_STRING: { | ||
1321 | if( pExpr->token.z[0]=='\'' ) break; | ||
1322 | /* Fall thru into the TK_ID case if this is a double-quoted string */ | ||
1323 | } | ||
1324 | /* A lone identifier is the name of a column. | ||
1325 | */ | ||
1326 | case TK_ID: { | ||
1327 | lookupName(pParse, 0, 0, &pExpr->token, pNC, pExpr); | ||
1328 | return 1; | ||
1329 | } | ||
1330 | |||
1331 | /* A table name and column name: ID.ID | ||
1332 | ** Or a database, table and column: ID.ID.ID | ||
1333 | */ | ||
1334 | case TK_DOT: { | ||
1335 | Token *pColumn; | ||
1336 | Token *pTable; | ||
1337 | Token *pDb; | ||
1338 | Expr *pRight; | ||
1339 | |||
1340 | /* if( pSrcList==0 ) break; */ | ||
1341 | pRight = pExpr->pRight; | ||
1342 | if( pRight->op==TK_ID ){ | ||
1343 | pDb = 0; | ||
1344 | pTable = &pExpr->pLeft->token; | ||
1345 | pColumn = &pRight->token; | ||
1346 | }else{ | ||
1347 | assert( pRight->op==TK_DOT ); | ||
1348 | pDb = &pExpr->pLeft->token; | ||
1349 | pTable = &pRight->pLeft->token; | ||
1350 | pColumn = &pRight->pRight->token; | ||
1351 | } | ||
1352 | lookupName(pParse, pDb, pTable, pColumn, pNC, pExpr); | ||
1353 | return 1; | ||
1354 | } | ||
1355 | |||
1356 | /* Resolve function names | ||
1357 | */ | ||
1358 | case TK_CONST_FUNC: | ||
1359 | case TK_FUNCTION: { | ||
1360 | ExprList *pList = pExpr->pList; /* The argument list */ | ||
1361 | int n = pList ? pList->nExpr : 0; /* Number of arguments */ | ||
1362 | int no_such_func = 0; /* True if no such function exists */ | ||
1363 | int wrong_num_args = 0; /* True if wrong number of arguments */ | ||
1364 | int is_agg = 0; /* True if is an aggregate function */ | ||
1365 | int i; | ||
1366 | int auth; /* Authorization to use the function */ | ||
1367 | int nId; /* Number of characters in function name */ | ||
1368 | const char *zId; /* The function name. */ | ||
1369 | FuncDef *pDef; /* Information about the function */ | ||
1370 | int enc = ENC(pParse->db); /* The database encoding */ | ||
1371 | |||
1372 | zId = (char*)pExpr->token.z; | ||
1373 | nId = pExpr->token.n; | ||
1374 | pDef = sqlite3FindFunction(pParse->db, zId, nId, n, enc, 0); | ||
1375 | if( pDef==0 ){ | ||
1376 | pDef = sqlite3FindFunction(pParse->db, zId, nId, -1, enc, 0); | ||
1377 | if( pDef==0 ){ | ||
1378 | no_such_func = 1; | ||
1379 | }else{ | ||
1380 | wrong_num_args = 1; | ||
1381 | } | ||
1382 | }else{ | ||
1383 | is_agg = pDef->xFunc==0; | ||
1384 | } | ||
1385 | #ifndef SQLITE_OMIT_AUTHORIZATION | ||
1386 | if( pDef ){ | ||
1387 | auth = sqlite3AuthCheck(pParse, SQLITE_FUNCTION, 0, pDef->zName, 0); | ||
1388 | if( auth!=SQLITE_OK ){ | ||
1389 | if( auth==SQLITE_DENY ){ | ||
1390 | sqlite3ErrorMsg(pParse, "not authorized to use function: %s", | ||
1391 | pDef->zName); | ||
1392 | pNC->nErr++; | ||
1393 | } | ||
1394 | pExpr->op = TK_NULL; | ||
1395 | return 1; | ||
1396 | } | ||
1397 | } | ||
1398 | #endif | ||
1399 | if( is_agg && !pNC->allowAgg ){ | ||
1400 | sqlite3ErrorMsg(pParse, "misuse of aggregate function %.*s()", nId,zId); | ||
1401 | pNC->nErr++; | ||
1402 | is_agg = 0; | ||
1403 | }else if( no_such_func ){ | ||
1404 | sqlite3ErrorMsg(pParse, "no such function: %.*s", nId, zId); | ||
1405 | pNC->nErr++; | ||
1406 | }else if( wrong_num_args ){ | ||
1407 | sqlite3ErrorMsg(pParse,"wrong number of arguments to function %.*s()", | ||
1408 | nId, zId); | ||
1409 | pNC->nErr++; | ||
1410 | } | ||
1411 | if( is_agg ){ | ||
1412 | pExpr->op = TK_AGG_FUNCTION; | ||
1413 | pNC->hasAgg = 1; | ||
1414 | } | ||
1415 | if( is_agg ) pNC->allowAgg = 0; | ||
1416 | for(i=0; pNC->nErr==0 && i<n; i++){ | ||
1417 | walkExprTree(pList->a[i].pExpr, nameResolverStep, pNC); | ||
1418 | } | ||
1419 | if( is_agg ) pNC->allowAgg = 1; | ||
1420 | /* FIX ME: Compute pExpr->affinity based on the expected return | ||
1421 | ** type of the function | ||
1422 | */ | ||
1423 | return is_agg; | ||
1424 | } | ||
1425 | #ifndef SQLITE_OMIT_SUBQUERY | ||
1426 | case TK_SELECT: | ||
1427 | case TK_EXISTS: | ||
1428 | #endif | ||
1429 | case TK_IN: { | ||
1430 | if( pExpr->pSelect ){ | ||
1431 | int nRef = pNC->nRef; | ||
1432 | #ifndef SQLITE_OMIT_CHECK | ||
1433 | if( pNC->isCheck ){ | ||
1434 | sqlite3ErrorMsg(pParse,"subqueries prohibited in CHECK constraints"); | ||
1435 | } | ||
1436 | #endif | ||
1437 | sqlite3SelectResolve(pParse, pExpr->pSelect, pNC); | ||
1438 | assert( pNC->nRef>=nRef ); | ||
1439 | if( nRef!=pNC->nRef ){ | ||
1440 | ExprSetProperty(pExpr, EP_VarSelect); | ||
1441 | } | ||
1442 | } | ||
1443 | break; | ||
1444 | } | ||
1445 | #ifndef SQLITE_OMIT_CHECK | ||
1446 | case TK_VARIABLE: { | ||
1447 | if( pNC->isCheck ){ | ||
1448 | sqlite3ErrorMsg(pParse,"parameters prohibited in CHECK constraints"); | ||
1449 | } | ||
1450 | break; | ||
1451 | } | ||
1452 | #endif | ||
1453 | } | ||
1454 | return 0; | ||
1455 | } | ||
1456 | |||
1457 | /* | ||
1458 | ** This routine walks an expression tree and resolves references to | ||
1459 | ** table columns. Nodes of the form ID.ID or ID resolve into an | ||
1460 | ** index to the table in the table list and a column offset. The | ||
1461 | ** Expr.opcode for such nodes is changed to TK_COLUMN. The Expr.iTable | ||
1462 | ** value is changed to the index of the referenced table in pTabList | ||
1463 | ** plus the "base" value. The base value will ultimately become the | ||
1464 | ** VDBE cursor number for a cursor that is pointing into the referenced | ||
1465 | ** table. The Expr.iColumn value is changed to the index of the column | ||
1466 | ** of the referenced table. The Expr.iColumn value for the special | ||
1467 | ** ROWID column is -1. Any INTEGER PRIMARY KEY column is tried as an | ||
1468 | ** alias for ROWID. | ||
1469 | ** | ||
1470 | ** Also resolve function names and check the functions for proper | ||
1471 | ** usage. Make sure all function names are recognized and all functions | ||
1472 | ** have the correct number of arguments. Leave an error message | ||
1473 | ** in pParse->zErrMsg if anything is amiss. Return the number of errors. | ||
1474 | ** | ||
1475 | ** If the expression contains aggregate functions then set the EP_Agg | ||
1476 | ** property on the expression. | ||
1477 | */ | ||
1478 | int sqlite3ExprResolveNames( | ||
1479 | NameContext *pNC, /* Namespace to resolve expressions in. */ | ||
1480 | Expr *pExpr /* The expression to be analyzed. */ | ||
1481 | ){ | ||
1482 | int savedHasAgg; | ||
1483 | if( pExpr==0 ) return 0; | ||
1484 | #if defined(SQLITE_TEST) || SQLITE_MAX_EXPR_DEPTH>0 | ||
1485 | if( (pExpr->nHeight+pNC->pParse->nHeight)>SQLITE_MAX_EXPR_DEPTH ){ | ||
1486 | sqlite3ErrorMsg(pNC->pParse, | ||
1487 | "Expression tree is too large (maximum depth %d)", | ||
1488 | SQLITE_MAX_EXPR_DEPTH | ||
1489 | ); | ||
1490 | return 1; | ||
1491 | } | ||
1492 | pNC->pParse->nHeight += pExpr->nHeight; | ||
1493 | #endif | ||
1494 | savedHasAgg = pNC->hasAgg; | ||
1495 | pNC->hasAgg = 0; | ||
1496 | walkExprTree(pExpr, nameResolverStep, pNC); | ||
1497 | #if defined(SQLITE_TEST) || SQLITE_MAX_EXPR_DEPTH>0 | ||
1498 | pNC->pParse->nHeight -= pExpr->nHeight; | ||
1499 | #endif | ||
1500 | if( pNC->nErr>0 ){ | ||
1501 | ExprSetProperty(pExpr, EP_Error); | ||
1502 | } | ||
1503 | if( pNC->hasAgg ){ | ||
1504 | ExprSetProperty(pExpr, EP_Agg); | ||
1505 | }else if( savedHasAgg ){ | ||
1506 | pNC->hasAgg = 1; | ||
1507 | } | ||
1508 | return ExprHasProperty(pExpr, EP_Error); | ||
1509 | } | ||
1510 | |||
1511 | /* | ||
1512 | ** A pointer instance of this structure is used to pass information | ||
1513 | ** through walkExprTree into codeSubqueryStep(). | ||
1514 | */ | ||
1515 | typedef struct QueryCoder QueryCoder; | ||
1516 | struct QueryCoder { | ||
1517 | Parse *pParse; /* The parsing context */ | ||
1518 | NameContext *pNC; /* Namespace of first enclosing query */ | ||
1519 | }; | ||
1520 | |||
1521 | |||
1522 | /* | ||
1523 | ** Generate code for scalar subqueries used as an expression | ||
1524 | ** and IN operators. Examples: | ||
1525 | ** | ||
1526 | ** (SELECT a FROM b) -- subquery | ||
1527 | ** EXISTS (SELECT a FROM b) -- EXISTS subquery | ||
1528 | ** x IN (4,5,11) -- IN operator with list on right-hand side | ||
1529 | ** x IN (SELECT a FROM b) -- IN operator with subquery on the right | ||
1530 | ** | ||
1531 | ** The pExpr parameter describes the expression that contains the IN | ||
1532 | ** operator or subquery. | ||
1533 | */ | ||
1534 | #ifndef SQLITE_OMIT_SUBQUERY | ||
1535 | void sqlite3CodeSubselect(Parse *pParse, Expr *pExpr){ | ||
1536 | int testAddr = 0; /* One-time test address */ | ||
1537 | Vdbe *v = sqlite3GetVdbe(pParse); | ||
1538 | if( v==0 ) return; | ||
1539 | |||
1540 | |||
1541 | /* This code must be run in its entirety every time it is encountered | ||
1542 | ** if any of the following is true: | ||
1543 | ** | ||
1544 | ** * The right-hand side is a correlated subquery | ||
1545 | ** * The right-hand side is an expression list containing variables | ||
1546 | ** * We are inside a trigger | ||
1547 | ** | ||
1548 | ** If all of the above are false, then we can run this code just once | ||
1549 | ** save the results, and reuse the same result on subsequent invocations. | ||
1550 | */ | ||
1551 | if( !ExprHasAnyProperty(pExpr, EP_VarSelect) && !pParse->trigStack ){ | ||
1552 | int mem = pParse->nMem++; | ||
1553 | sqlite3VdbeAddOp(v, OP_MemLoad, mem, 0); | ||
1554 | testAddr = sqlite3VdbeAddOp(v, OP_If, 0, 0); | ||
1555 | assert( testAddr>0 || pParse->db->mallocFailed ); | ||
1556 | sqlite3VdbeAddOp(v, OP_MemInt, 1, mem); | ||
1557 | } | ||
1558 | |||
1559 | switch( pExpr->op ){ | ||
1560 | case TK_IN: { | ||
1561 | char affinity; | ||
1562 | KeyInfo keyInfo; | ||
1563 | int addr; /* Address of OP_OpenEphemeral instruction */ | ||
1564 | |||
1565 | affinity = sqlite3ExprAffinity(pExpr->pLeft); | ||
1566 | |||
1567 | /* Whether this is an 'x IN(SELECT...)' or an 'x IN(<exprlist>)' | ||
1568 | ** expression it is handled the same way. A virtual table is | ||
1569 | ** filled with single-field index keys representing the results | ||
1570 | ** from the SELECT or the <exprlist>. | ||
1571 | ** | ||
1572 | ** If the 'x' expression is a column value, or the SELECT... | ||
1573 | ** statement returns a column value, then the affinity of that | ||
1574 | ** column is used to build the index keys. If both 'x' and the | ||
1575 | ** SELECT... statement are columns, then numeric affinity is used | ||
1576 | ** if either column has NUMERIC or INTEGER affinity. If neither | ||
1577 | ** 'x' nor the SELECT... statement are columns, then numeric affinity | ||
1578 | ** is used. | ||
1579 | */ | ||
1580 | pExpr->iTable = pParse->nTab++; | ||
1581 | addr = sqlite3VdbeAddOp(v, OP_OpenEphemeral, pExpr->iTable, 0); | ||
1582 | memset(&keyInfo, 0, sizeof(keyInfo)); | ||
1583 | keyInfo.nField = 1; | ||
1584 | sqlite3VdbeAddOp(v, OP_SetNumColumns, pExpr->iTable, 1); | ||
1585 | |||
1586 | if( pExpr->pSelect ){ | ||
1587 | /* Case 1: expr IN (SELECT ...) | ||
1588 | ** | ||
1589 | ** Generate code to write the results of the select into the temporary | ||
1590 | ** table allocated and opened above. | ||
1591 | */ | ||
1592 | int iParm = pExpr->iTable + (((int)affinity)<<16); | ||
1593 | ExprList *pEList; | ||
1594 | assert( (pExpr->iTable&0x0000FFFF)==pExpr->iTable ); | ||
1595 | if( sqlite3Select(pParse, pExpr->pSelect, SRT_Set, iParm, 0, 0, 0, 0) ){ | ||
1596 | return; | ||
1597 | } | ||
1598 | pEList = pExpr->pSelect->pEList; | ||
1599 | if( pEList && pEList->nExpr>0 ){ | ||
1600 | keyInfo.aColl[0] = sqlite3BinaryCompareCollSeq(pParse, pExpr->pLeft, | ||
1601 | pEList->a[0].pExpr); | ||
1602 | } | ||
1603 | }else if( pExpr->pList ){ | ||
1604 | /* Case 2: expr IN (exprlist) | ||
1605 | ** | ||
1606 | ** For each expression, build an index key from the evaluation and | ||
1607 | ** store it in the temporary table. If <expr> is a column, then use | ||
1608 | ** that columns affinity when building index keys. If <expr> is not | ||
1609 | ** a column, use numeric affinity. | ||
1610 | */ | ||
1611 | int i; | ||
1612 | ExprList *pList = pExpr->pList; | ||
1613 | struct ExprList_item *pItem; | ||
1614 | |||
1615 | if( !affinity ){ | ||
1616 | affinity = SQLITE_AFF_NONE; | ||
1617 | } | ||
1618 | keyInfo.aColl[0] = pExpr->pLeft->pColl; | ||
1619 | |||
1620 | /* Loop through each expression in <exprlist>. */ | ||
1621 | for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){ | ||
1622 | Expr *pE2 = pItem->pExpr; | ||
1623 | |||
1624 | /* If the expression is not constant then we will need to | ||
1625 | ** disable the test that was generated above that makes sure | ||
1626 | ** this code only executes once. Because for a non-constant | ||
1627 | ** expression we need to rerun this code each time. | ||
1628 | */ | ||
1629 | if( testAddr>0 && !sqlite3ExprIsConstant(pE2) ){ | ||
1630 | sqlite3VdbeChangeToNoop(v, testAddr-1, 3); | ||
1631 | testAddr = 0; | ||
1632 | } | ||
1633 | |||
1634 | /* Evaluate the expression and insert it into the temp table */ | ||
1635 | sqlite3ExprCode(pParse, pE2); | ||
1636 | sqlite3VdbeOp3(v, OP_MakeRecord, 1, 0, &affinity, 1); | ||
1637 | sqlite3VdbeAddOp(v, OP_IdxInsert, pExpr->iTable, 0); | ||
1638 | } | ||
1639 | } | ||
1640 | sqlite3VdbeChangeP3(v, addr, (void *)&keyInfo, P3_KEYINFO); | ||
1641 | break; | ||
1642 | } | ||
1643 | |||
1644 | case TK_EXISTS: | ||
1645 | case TK_SELECT: { | ||
1646 | /* This has to be a scalar SELECT. Generate code to put the | ||
1647 | ** value of this select in a memory cell and record the number | ||
1648 | ** of the memory cell in iColumn. | ||
1649 | */ | ||
1650 | static const Token one = { (u8*)"1", 0, 1 }; | ||
1651 | Select *pSel; | ||
1652 | int iMem; | ||
1653 | int sop; | ||
1654 | |||
1655 | pExpr->iColumn = iMem = pParse->nMem++; | ||
1656 | pSel = pExpr->pSelect; | ||
1657 | if( pExpr->op==TK_SELECT ){ | ||
1658 | sop = SRT_Mem; | ||
1659 | sqlite3VdbeAddOp(v, OP_MemNull, iMem, 0); | ||
1660 | VdbeComment((v, "# Init subquery result")); | ||
1661 | }else{ | ||
1662 | sop = SRT_Exists; | ||
1663 | sqlite3VdbeAddOp(v, OP_MemInt, 0, iMem); | ||
1664 | VdbeComment((v, "# Init EXISTS result")); | ||
1665 | } | ||
1666 | sqlite3ExprDelete(pSel->pLimit); | ||
1667 | pSel->pLimit = sqlite3PExpr(pParse, TK_INTEGER, 0, 0, &one); | ||
1668 | if( sqlite3Select(pParse, pSel, sop, iMem, 0, 0, 0, 0) ){ | ||
1669 | return; | ||
1670 | } | ||
1671 | break; | ||
1672 | } | ||
1673 | } | ||
1674 | |||
1675 | if( testAddr ){ | ||
1676 | sqlite3VdbeJumpHere(v, testAddr); | ||
1677 | } | ||
1678 | |||
1679 | return; | ||
1680 | } | ||
1681 | #endif /* SQLITE_OMIT_SUBQUERY */ | ||
1682 | |||
1683 | /* | ||
1684 | ** Generate an instruction that will put the integer describe by | ||
1685 | ** text z[0..n-1] on the stack. | ||
1686 | */ | ||
1687 | static void codeInteger(Vdbe *v, const char *z, int n){ | ||
1688 | assert( z || v==0 || sqlite3VdbeDb(v)->mallocFailed ); | ||
1689 | if( z ){ | ||
1690 | int i; | ||
1691 | if( sqlite3GetInt32(z, &i) ){ | ||
1692 | sqlite3VdbeAddOp(v, OP_Integer, i, 0); | ||
1693 | }else if( sqlite3FitsIn64Bits(z) ){ | ||
1694 | sqlite3VdbeOp3(v, OP_Int64, 0, 0, z, n); | ||
1695 | }else{ | ||
1696 | sqlite3VdbeOp3(v, OP_Real, 0, 0, z, n); | ||
1697 | } | ||
1698 | } | ||
1699 | } | ||
1700 | |||
1701 | |||
1702 | /* | ||
1703 | ** Generate code that will extract the iColumn-th column from | ||
1704 | ** table pTab and push that column value on the stack. There | ||
1705 | ** is an open cursor to pTab in iTable. If iColumn<0 then | ||
1706 | ** code is generated that extracts the rowid. | ||
1707 | */ | ||
1708 | void sqlite3ExprCodeGetColumn(Vdbe *v, Table *pTab, int iColumn, int iTable){ | ||
1709 | if( iColumn<0 ){ | ||
1710 | int op = (pTab && IsVirtual(pTab)) ? OP_VRowid : OP_Rowid; | ||
1711 | sqlite3VdbeAddOp(v, op, iTable, 0); | ||
1712 | }else if( pTab==0 ){ | ||
1713 | sqlite3VdbeAddOp(v, OP_Column, iTable, iColumn); | ||
1714 | }else{ | ||
1715 | int op = IsVirtual(pTab) ? OP_VColumn : OP_Column; | ||
1716 | sqlite3VdbeAddOp(v, op, iTable, iColumn); | ||
1717 | sqlite3ColumnDefault(v, pTab, iColumn); | ||
1718 | #ifndef SQLITE_OMIT_FLOATING_POINT | ||
1719 | if( pTab->aCol[iColumn].affinity==SQLITE_AFF_REAL ){ | ||
1720 | sqlite3VdbeAddOp(v, OP_RealAffinity, 0, 0); | ||
1721 | } | ||
1722 | #endif | ||
1723 | } | ||
1724 | } | ||
1725 | |||
1726 | /* | ||
1727 | ** Generate code into the current Vdbe to evaluate the given | ||
1728 | ** expression and leave the result on the top of stack. | ||
1729 | ** | ||
1730 | ** This code depends on the fact that certain token values (ex: TK_EQ) | ||
1731 | ** are the same as opcode values (ex: OP_Eq) that implement the corresponding | ||
1732 | ** operation. Special comments in vdbe.c and the mkopcodeh.awk script in | ||
1733 | ** the make process cause these values to align. Assert()s in the code | ||
1734 | ** below verify that the numbers are aligned correctly. | ||
1735 | */ | ||
1736 | void sqlite3ExprCode(Parse *pParse, Expr *pExpr){ | ||
1737 | Vdbe *v = pParse->pVdbe; | ||
1738 | int op; | ||
1739 | int stackChng = 1; /* Amount of change to stack depth */ | ||
1740 | |||
1741 | if( v==0 ) return; | ||
1742 | if( pExpr==0 ){ | ||
1743 | sqlite3VdbeAddOp(v, OP_Null, 0, 0); | ||
1744 | return; | ||
1745 | } | ||
1746 | op = pExpr->op; | ||
1747 | switch( op ){ | ||
1748 | case TK_AGG_COLUMN: { | ||
1749 | AggInfo *pAggInfo = pExpr->pAggInfo; | ||
1750 | struct AggInfo_col *pCol = &pAggInfo->aCol[pExpr->iAgg]; | ||
1751 | if( !pAggInfo->directMode ){ | ||
1752 | sqlite3VdbeAddOp(v, OP_MemLoad, pCol->iMem, 0); | ||
1753 | break; | ||
1754 | }else if( pAggInfo->useSortingIdx ){ | ||
1755 | sqlite3VdbeAddOp(v, OP_Column, pAggInfo->sortingIdx, | ||
1756 | pCol->iSorterColumn); | ||
1757 | break; | ||
1758 | } | ||
1759 | /* Otherwise, fall thru into the TK_COLUMN case */ | ||
1760 | } | ||
1761 | case TK_COLUMN: { | ||
1762 | if( pExpr->iTable<0 ){ | ||
1763 | /* This only happens when coding check constraints */ | ||
1764 | assert( pParse->ckOffset>0 ); | ||
1765 | sqlite3VdbeAddOp(v, OP_Dup, pParse->ckOffset-pExpr->iColumn-1, 1); | ||
1766 | }else{ | ||
1767 | sqlite3ExprCodeGetColumn(v, pExpr->pTab, pExpr->iColumn, pExpr->iTable); | ||
1768 | } | ||
1769 | break; | ||
1770 | } | ||
1771 | case TK_INTEGER: { | ||
1772 | codeInteger(v, (char*)pExpr->token.z, pExpr->token.n); | ||
1773 | break; | ||
1774 | } | ||
1775 | case TK_FLOAT: | ||
1776 | case TK_STRING: { | ||
1777 | assert( TK_FLOAT==OP_Real ); | ||
1778 | assert( TK_STRING==OP_String8 ); | ||
1779 | sqlite3DequoteExpr(pParse->db, pExpr); | ||
1780 | sqlite3VdbeOp3(v, op, 0, 0, (char*)pExpr->token.z, pExpr->token.n); | ||
1781 | break; | ||
1782 | } | ||
1783 | case TK_NULL: { | ||
1784 | sqlite3VdbeAddOp(v, OP_Null, 0, 0); | ||
1785 | break; | ||
1786 | } | ||
1787 | #ifndef SQLITE_OMIT_BLOB_LITERAL | ||
1788 | case TK_BLOB: { | ||
1789 | int n; | ||
1790 | const char *z; | ||
1791 | assert( TK_BLOB==OP_HexBlob ); | ||
1792 | n = pExpr->token.n - 3; | ||
1793 | z = (char*)pExpr->token.z + 2; | ||
1794 | assert( n>=0 ); | ||
1795 | if( n==0 ){ | ||
1796 | z = ""; | ||
1797 | } | ||
1798 | sqlite3VdbeOp3(v, op, 0, 0, z, n); | ||
1799 | break; | ||
1800 | } | ||
1801 | #endif | ||
1802 | case TK_VARIABLE: { | ||
1803 | sqlite3VdbeAddOp(v, OP_Variable, pExpr->iTable, 0); | ||
1804 | if( pExpr->token.n>1 ){ | ||
1805 | sqlite3VdbeChangeP3(v, -1, (char*)pExpr->token.z, pExpr->token.n); | ||
1806 | } | ||
1807 | break; | ||
1808 | } | ||
1809 | case TK_REGISTER: { | ||
1810 | sqlite3VdbeAddOp(v, OP_MemLoad, pExpr->iTable, 0); | ||
1811 | break; | ||
1812 | } | ||
1813 | #ifndef SQLITE_OMIT_CAST | ||
1814 | case TK_CAST: { | ||
1815 | /* Expressions of the form: CAST(pLeft AS token) */ | ||
1816 | int aff, to_op; | ||
1817 | sqlite3ExprCode(pParse, pExpr->pLeft); | ||
1818 | aff = sqlite3AffinityType(&pExpr->token); | ||
1819 | to_op = aff - SQLITE_AFF_TEXT + OP_ToText; | ||
1820 | assert( to_op==OP_ToText || aff!=SQLITE_AFF_TEXT ); | ||
1821 | assert( to_op==OP_ToBlob || aff!=SQLITE_AFF_NONE ); | ||
1822 | assert( to_op==OP_ToNumeric || aff!=SQLITE_AFF_NUMERIC ); | ||
1823 | assert( to_op==OP_ToInt || aff!=SQLITE_AFF_INTEGER ); | ||
1824 | assert( to_op==OP_ToReal || aff!=SQLITE_AFF_REAL ); | ||
1825 | sqlite3VdbeAddOp(v, to_op, 0, 0); | ||
1826 | stackChng = 0; | ||
1827 | break; | ||
1828 | } | ||
1829 | #endif /* SQLITE_OMIT_CAST */ | ||
1830 | case TK_LT: | ||
1831 | case TK_LE: | ||
1832 | case TK_GT: | ||
1833 | case TK_GE: | ||
1834 | case TK_NE: | ||
1835 | case TK_EQ: { | ||
1836 | assert( TK_LT==OP_Lt ); | ||
1837 | assert( TK_LE==OP_Le ); | ||
1838 | assert( TK_GT==OP_Gt ); | ||
1839 | assert( TK_GE==OP_Ge ); | ||
1840 | assert( TK_EQ==OP_Eq ); | ||
1841 | assert( TK_NE==OP_Ne ); | ||
1842 | sqlite3ExprCode(pParse, pExpr->pLeft); | ||
1843 | sqlite3ExprCode(pParse, pExpr->pRight); | ||
1844 | codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 0, 0); | ||
1845 | stackChng = -1; | ||
1846 | break; | ||
1847 | } | ||
1848 | case TK_AND: | ||
1849 | case TK_OR: | ||
1850 | case TK_PLUS: | ||
1851 | case TK_STAR: | ||
1852 | case TK_MINUS: | ||
1853 | case TK_REM: | ||
1854 | case TK_BITAND: | ||
1855 | case TK_BITOR: | ||
1856 | case TK_SLASH: | ||
1857 | case TK_LSHIFT: | ||
1858 | case TK_RSHIFT: | ||
1859 | case TK_CONCAT: { | ||
1860 | assert( TK_AND==OP_And ); | ||
1861 | assert( TK_OR==OP_Or ); | ||
1862 | assert( TK_PLUS==OP_Add ); | ||
1863 | assert( TK_MINUS==OP_Subtract ); | ||
1864 | assert( TK_REM==OP_Remainder ); | ||
1865 | assert( TK_BITAND==OP_BitAnd ); | ||
1866 | assert( TK_BITOR==OP_BitOr ); | ||
1867 | assert( TK_SLASH==OP_Divide ); | ||
1868 | assert( TK_LSHIFT==OP_ShiftLeft ); | ||
1869 | assert( TK_RSHIFT==OP_ShiftRight ); | ||
1870 | assert( TK_CONCAT==OP_Concat ); | ||
1871 | sqlite3ExprCode(pParse, pExpr->pLeft); | ||
1872 | sqlite3ExprCode(pParse, pExpr->pRight); | ||
1873 | sqlite3VdbeAddOp(v, op, 0, 0); | ||
1874 | stackChng = -1; | ||
1875 | break; | ||
1876 | } | ||
1877 | case TK_UMINUS: { | ||
1878 | Expr *pLeft = pExpr->pLeft; | ||
1879 | assert( pLeft ); | ||
1880 | if( pLeft->op==TK_FLOAT || pLeft->op==TK_INTEGER ){ | ||
1881 | Token *p = &pLeft->token; | ||
1882 | char *z = sqlite3MPrintf(pParse->db, "-%.*s", p->n, p->z); | ||
1883 | if( pLeft->op==TK_FLOAT ){ | ||
1884 | sqlite3VdbeOp3(v, OP_Real, 0, 0, z, p->n+1); | ||
1885 | }else{ | ||
1886 | codeInteger(v, z, p->n+1); | ||
1887 | } | ||
1888 | sqlite3_free(z); | ||
1889 | break; | ||
1890 | } | ||
1891 | /* Fall through into TK_NOT */ | ||
1892 | } | ||
1893 | case TK_BITNOT: | ||
1894 | case TK_NOT: { | ||
1895 | assert( TK_BITNOT==OP_BitNot ); | ||
1896 | assert( TK_NOT==OP_Not ); | ||
1897 | sqlite3ExprCode(pParse, pExpr->pLeft); | ||
1898 | sqlite3VdbeAddOp(v, op, 0, 0); | ||
1899 | stackChng = 0; | ||
1900 | break; | ||
1901 | } | ||
1902 | case TK_ISNULL: | ||
1903 | case TK_NOTNULL: { | ||
1904 | int dest; | ||
1905 | assert( TK_ISNULL==OP_IsNull ); | ||
1906 | assert( TK_NOTNULL==OP_NotNull ); | ||
1907 | sqlite3VdbeAddOp(v, OP_Integer, 1, 0); | ||
1908 | sqlite3ExprCode(pParse, pExpr->pLeft); | ||
1909 | dest = sqlite3VdbeCurrentAddr(v) + 2; | ||
1910 | sqlite3VdbeAddOp(v, op, 1, dest); | ||
1911 | sqlite3VdbeAddOp(v, OP_AddImm, -1, 0); | ||
1912 | stackChng = 0; | ||
1913 | break; | ||
1914 | } | ||
1915 | case TK_AGG_FUNCTION: { | ||
1916 | AggInfo *pInfo = pExpr->pAggInfo; | ||
1917 | if( pInfo==0 ){ | ||
1918 | sqlite3ErrorMsg(pParse, "misuse of aggregate: %T", | ||
1919 | &pExpr->span); | ||
1920 | }else{ | ||
1921 | sqlite3VdbeAddOp(v, OP_MemLoad, pInfo->aFunc[pExpr->iAgg].iMem, 0); | ||
1922 | } | ||
1923 | break; | ||
1924 | } | ||
1925 | case TK_CONST_FUNC: | ||
1926 | case TK_FUNCTION: { | ||
1927 | ExprList *pList = pExpr->pList; | ||
1928 | int nExpr = pList ? pList->nExpr : 0; | ||
1929 | FuncDef *pDef; | ||
1930 | int nId; | ||
1931 | const char *zId; | ||
1932 | int constMask = 0; | ||
1933 | int i; | ||
1934 | sqlite3 *db = pParse->db; | ||
1935 | u8 enc = ENC(db); | ||
1936 | CollSeq *pColl = 0; | ||
1937 | |||
1938 | zId = (char*)pExpr->token.z; | ||
1939 | nId = pExpr->token.n; | ||
1940 | pDef = sqlite3FindFunction(pParse->db, zId, nId, nExpr, enc, 0); | ||
1941 | assert( pDef!=0 ); | ||
1942 | nExpr = sqlite3ExprCodeExprList(pParse, pList); | ||
1943 | #ifndef SQLITE_OMIT_VIRTUALTABLE | ||
1944 | /* Possibly overload the function if the first argument is | ||
1945 | ** a virtual table column. | ||
1946 | ** | ||
1947 | ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the | ||
1948 | ** second argument, not the first, as the argument to test to | ||
1949 | ** see if it is a column in a virtual table. This is done because | ||
1950 | ** the left operand of infix functions (the operand we want to | ||
1951 | ** control overloading) ends up as the second argument to the | ||
1952 | ** function. The expression "A glob B" is equivalent to | ||
1953 | ** "glob(B,A). We want to use the A in "A glob B" to test | ||
1954 | ** for function overloading. But we use the B term in "glob(B,A)". | ||
1955 | */ | ||
1956 | if( nExpr>=2 && (pExpr->flags & EP_InfixFunc) ){ | ||
1957 | pDef = sqlite3VtabOverloadFunction(db, pDef, nExpr, pList->a[1].pExpr); | ||
1958 | }else if( nExpr>0 ){ | ||
1959 | pDef = sqlite3VtabOverloadFunction(db, pDef, nExpr, pList->a[0].pExpr); | ||
1960 | } | ||
1961 | #endif | ||
1962 | for(i=0; i<nExpr && i<32; i++){ | ||
1963 | if( sqlite3ExprIsConstant(pList->a[i].pExpr) ){ | ||
1964 | constMask |= (1<<i); | ||
1965 | } | ||
1966 | if( pDef->needCollSeq && !pColl ){ | ||
1967 | pColl = sqlite3ExprCollSeq(pParse, pList->a[i].pExpr); | ||
1968 | } | ||
1969 | } | ||
1970 | if( pDef->needCollSeq ){ | ||
1971 | if( !pColl ) pColl = pParse->db->pDfltColl; | ||
1972 | sqlite3VdbeOp3(v, OP_CollSeq, 0, 0, (char *)pColl, P3_COLLSEQ); | ||
1973 | } | ||
1974 | sqlite3VdbeOp3(v, OP_Function, constMask, nExpr, (char*)pDef, P3_FUNCDEF); | ||
1975 | stackChng = 1-nExpr; | ||
1976 | break; | ||
1977 | } | ||
1978 | #ifndef SQLITE_OMIT_SUBQUERY | ||
1979 | case TK_EXISTS: | ||
1980 | case TK_SELECT: { | ||
1981 | if( pExpr->iColumn==0 ){ | ||
1982 | sqlite3CodeSubselect(pParse, pExpr); | ||
1983 | } | ||
1984 | sqlite3VdbeAddOp(v, OP_MemLoad, pExpr->iColumn, 0); | ||
1985 | VdbeComment((v, "# load subquery result")); | ||
1986 | break; | ||
1987 | } | ||
1988 | case TK_IN: { | ||
1989 | int addr; | ||
1990 | char affinity; | ||
1991 | int ckOffset = pParse->ckOffset; | ||
1992 | sqlite3CodeSubselect(pParse, pExpr); | ||
1993 | |||
1994 | /* Figure out the affinity to use to create a key from the results | ||
1995 | ** of the expression. affinityStr stores a static string suitable for | ||
1996 | ** P3 of OP_MakeRecord. | ||
1997 | */ | ||
1998 | affinity = comparisonAffinity(pExpr); | ||
1999 | |||
2000 | sqlite3VdbeAddOp(v, OP_Integer, 1, 0); | ||
2001 | pParse->ckOffset = (ckOffset ? (ckOffset+1) : 0); | ||
2002 | |||
2003 | /* Code the <expr> from "<expr> IN (...)". The temporary table | ||
2004 | ** pExpr->iTable contains the values that make up the (...) set. | ||
2005 | */ | ||
2006 | sqlite3ExprCode(pParse, pExpr->pLeft); | ||
2007 | addr = sqlite3VdbeCurrentAddr(v); | ||
2008 | sqlite3VdbeAddOp(v, OP_NotNull, -1, addr+4); /* addr + 0 */ | ||
2009 | sqlite3VdbeAddOp(v, OP_Pop, 2, 0); | ||
2010 | sqlite3VdbeAddOp(v, OP_Null, 0, 0); | ||
2011 | sqlite3VdbeAddOp(v, OP_Goto, 0, addr+7); | ||
2012 | sqlite3VdbeOp3(v, OP_MakeRecord, 1, 0, &affinity, 1); /* addr + 4 */ | ||
2013 | sqlite3VdbeAddOp(v, OP_Found, pExpr->iTable, addr+7); | ||
2014 | sqlite3VdbeAddOp(v, OP_AddImm, -1, 0); /* addr + 6 */ | ||
2015 | |||
2016 | break; | ||
2017 | } | ||
2018 | #endif | ||
2019 | case TK_BETWEEN: { | ||
2020 | Expr *pLeft = pExpr->pLeft; | ||
2021 | struct ExprList_item *pLItem = pExpr->pList->a; | ||
2022 | Expr *pRight = pLItem->pExpr; | ||
2023 | sqlite3ExprCode(pParse, pLeft); | ||
2024 | sqlite3VdbeAddOp(v, OP_Dup, 0, 0); | ||
2025 | sqlite3ExprCode(pParse, pRight); | ||
2026 | codeCompare(pParse, pLeft, pRight, OP_Ge, 0, 0); | ||
2027 | sqlite3VdbeAddOp(v, OP_Pull, 1, 0); | ||
2028 | pLItem++; | ||
2029 | pRight = pLItem->pExpr; | ||
2030 | sqlite3ExprCode(pParse, pRight); | ||
2031 | codeCompare(pParse, pLeft, pRight, OP_Le, 0, 0); | ||
2032 | sqlite3VdbeAddOp(v, OP_And, 0, 0); | ||
2033 | break; | ||
2034 | } | ||
2035 | case TK_UPLUS: { | ||
2036 | sqlite3ExprCode(pParse, pExpr->pLeft); | ||
2037 | stackChng = 0; | ||
2038 | break; | ||
2039 | } | ||
2040 | case TK_CASE: { | ||
2041 | int expr_end_label; | ||
2042 | int jumpInst; | ||
2043 | int nExpr; | ||
2044 | int i; | ||
2045 | ExprList *pEList; | ||
2046 | struct ExprList_item *aListelem; | ||
2047 | |||
2048 | assert(pExpr->pList); | ||
2049 | assert((pExpr->pList->nExpr % 2) == 0); | ||
2050 | assert(pExpr->pList->nExpr > 0); | ||
2051 | pEList = pExpr->pList; | ||
2052 | aListelem = pEList->a; | ||
2053 | nExpr = pEList->nExpr; | ||
2054 | expr_end_label = sqlite3VdbeMakeLabel(v); | ||
2055 | if( pExpr->pLeft ){ | ||
2056 | sqlite3ExprCode(pParse, pExpr->pLeft); | ||
2057 | } | ||
2058 | for(i=0; i<nExpr; i=i+2){ | ||
2059 | sqlite3ExprCode(pParse, aListelem[i].pExpr); | ||
2060 | if( pExpr->pLeft ){ | ||
2061 | sqlite3VdbeAddOp(v, OP_Dup, 1, 1); | ||
2062 | jumpInst = codeCompare(pParse, pExpr->pLeft, aListelem[i].pExpr, | ||
2063 | OP_Ne, 0, 1); | ||
2064 | sqlite3VdbeAddOp(v, OP_Pop, 1, 0); | ||
2065 | }else{ | ||
2066 | jumpInst = sqlite3VdbeAddOp(v, OP_IfNot, 1, 0); | ||
2067 | } | ||
2068 | sqlite3ExprCode(pParse, aListelem[i+1].pExpr); | ||
2069 | sqlite3VdbeAddOp(v, OP_Goto, 0, expr_end_label); | ||
2070 | sqlite3VdbeJumpHere(v, jumpInst); | ||
2071 | } | ||
2072 | if( pExpr->pLeft ){ | ||
2073 | sqlite3VdbeAddOp(v, OP_Pop, 1, 0); | ||
2074 | } | ||
2075 | if( pExpr->pRight ){ | ||
2076 | sqlite3ExprCode(pParse, pExpr->pRight); | ||
2077 | }else{ | ||
2078 | sqlite3VdbeAddOp(v, OP_Null, 0, 0); | ||
2079 | } | ||
2080 | sqlite3VdbeResolveLabel(v, expr_end_label); | ||
2081 | break; | ||
2082 | } | ||
2083 | #ifndef SQLITE_OMIT_TRIGGER | ||
2084 | case TK_RAISE: { | ||
2085 | if( !pParse->trigStack ){ | ||
2086 | sqlite3ErrorMsg(pParse, | ||
2087 | "RAISE() may only be used within a trigger-program"); | ||
2088 | return; | ||
2089 | } | ||
2090 | if( pExpr->iColumn!=OE_Ignore ){ | ||
2091 | assert( pExpr->iColumn==OE_Rollback || | ||
2092 | pExpr->iColumn == OE_Abort || | ||
2093 | pExpr->iColumn == OE_Fail ); | ||
2094 | sqlite3DequoteExpr(pParse->db, pExpr); | ||
2095 | sqlite3VdbeOp3(v, OP_Halt, SQLITE_CONSTRAINT, pExpr->iColumn, | ||
2096 | (char*)pExpr->token.z, pExpr->token.n); | ||
2097 | } else { | ||
2098 | assert( pExpr->iColumn == OE_Ignore ); | ||
2099 | sqlite3VdbeAddOp(v, OP_ContextPop, 0, 0); | ||
2100 | sqlite3VdbeAddOp(v, OP_Goto, 0, pParse->trigStack->ignoreJump); | ||
2101 | VdbeComment((v, "# raise(IGNORE)")); | ||
2102 | } | ||
2103 | stackChng = 0; | ||
2104 | break; | ||
2105 | } | ||
2106 | #endif | ||
2107 | } | ||
2108 | |||
2109 | if( pParse->ckOffset ){ | ||
2110 | pParse->ckOffset += stackChng; | ||
2111 | assert( pParse->ckOffset ); | ||
2112 | } | ||
2113 | } | ||
2114 | |||
2115 | #ifndef SQLITE_OMIT_TRIGGER | ||
2116 | /* | ||
2117 | ** Generate code that evalutes the given expression and leaves the result | ||
2118 | ** on the stack. See also sqlite3ExprCode(). | ||
2119 | ** | ||
2120 | ** This routine might also cache the result and modify the pExpr tree | ||
2121 | ** so that it will make use of the cached result on subsequent evaluations | ||
2122 | ** rather than evaluate the whole expression again. Trivial expressions are | ||
2123 | ** not cached. If the expression is cached, its result is stored in a | ||
2124 | ** memory location. | ||
2125 | */ | ||
2126 | void sqlite3ExprCodeAndCache(Parse *pParse, Expr *pExpr){ | ||
2127 | Vdbe *v = pParse->pVdbe; | ||
2128 | int iMem; | ||
2129 | int addr1, addr2; | ||
2130 | if( v==0 ) return; | ||
2131 | addr1 = sqlite3VdbeCurrentAddr(v); | ||
2132 | sqlite3ExprCode(pParse, pExpr); | ||
2133 | addr2 = sqlite3VdbeCurrentAddr(v); | ||
2134 | if( addr2>addr1+1 || sqlite3VdbeGetOp(v, addr1)->opcode==OP_Function ){ | ||
2135 | iMem = pExpr->iTable = pParse->nMem++; | ||
2136 | sqlite3VdbeAddOp(v, OP_MemStore, iMem, 0); | ||
2137 | pExpr->op = TK_REGISTER; | ||
2138 | } | ||
2139 | } | ||
2140 | #endif | ||
2141 | |||
2142 | /* | ||
2143 | ** Generate code that pushes the value of every element of the given | ||
2144 | ** expression list onto the stack. | ||
2145 | ** | ||
2146 | ** Return the number of elements pushed onto the stack. | ||
2147 | */ | ||
2148 | int sqlite3ExprCodeExprList( | ||
2149 | Parse *pParse, /* Parsing context */ | ||
2150 | ExprList *pList /* The expression list to be coded */ | ||
2151 | ){ | ||
2152 | struct ExprList_item *pItem; | ||
2153 | int i, n; | ||
2154 | if( pList==0 ) return 0; | ||
2155 | n = pList->nExpr; | ||
2156 | for(pItem=pList->a, i=n; i>0; i--, pItem++){ | ||
2157 | sqlite3ExprCode(pParse, pItem->pExpr); | ||
2158 | } | ||
2159 | return n; | ||
2160 | } | ||
2161 | |||
2162 | /* | ||
2163 | ** Generate code for a boolean expression such that a jump is made | ||
2164 | ** to the label "dest" if the expression is true but execution | ||
2165 | ** continues straight thru if the expression is false. | ||
2166 | ** | ||
2167 | ** If the expression evaluates to NULL (neither true nor false), then | ||
2168 | ** take the jump if the jumpIfNull flag is true. | ||
2169 | ** | ||
2170 | ** This code depends on the fact that certain token values (ex: TK_EQ) | ||
2171 | ** are the same as opcode values (ex: OP_Eq) that implement the corresponding | ||
2172 | ** operation. Special comments in vdbe.c and the mkopcodeh.awk script in | ||
2173 | ** the make process cause these values to align. Assert()s in the code | ||
2174 | ** below verify that the numbers are aligned correctly. | ||
2175 | */ | ||
2176 | void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ | ||
2177 | Vdbe *v = pParse->pVdbe; | ||
2178 | int op = 0; | ||
2179 | int ckOffset = pParse->ckOffset; | ||
2180 | if( v==0 || pExpr==0 ) return; | ||
2181 | op = pExpr->op; | ||
2182 | switch( op ){ | ||
2183 | case TK_AND: { | ||
2184 | int d2 = sqlite3VdbeMakeLabel(v); | ||
2185 | sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2, !jumpIfNull); | ||
2186 | sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); | ||
2187 | sqlite3VdbeResolveLabel(v, d2); | ||
2188 | break; | ||
2189 | } | ||
2190 | case TK_OR: { | ||
2191 | sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); | ||
2192 | sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); | ||
2193 | break; | ||
2194 | } | ||
2195 | case TK_NOT: { | ||
2196 | sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); | ||
2197 | break; | ||
2198 | } | ||
2199 | case TK_LT: | ||
2200 | case TK_LE: | ||
2201 | case TK_GT: | ||
2202 | case TK_GE: | ||
2203 | case TK_NE: | ||
2204 | case TK_EQ: { | ||
2205 | assert( TK_LT==OP_Lt ); | ||
2206 | assert( TK_LE==OP_Le ); | ||
2207 | assert( TK_GT==OP_Gt ); | ||
2208 | assert( TK_GE==OP_Ge ); | ||
2209 | assert( TK_EQ==OP_Eq ); | ||
2210 | assert( TK_NE==OP_Ne ); | ||
2211 | sqlite3ExprCode(pParse, pExpr->pLeft); | ||
2212 | sqlite3ExprCode(pParse, pExpr->pRight); | ||
2213 | codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, dest, jumpIfNull); | ||
2214 | break; | ||
2215 | } | ||
2216 | case TK_ISNULL: | ||
2217 | case TK_NOTNULL: { | ||
2218 | assert( TK_ISNULL==OP_IsNull ); | ||
2219 | assert( TK_NOTNULL==OP_NotNull ); | ||
2220 | sqlite3ExprCode(pParse, pExpr->pLeft); | ||
2221 | sqlite3VdbeAddOp(v, op, 1, dest); | ||
2222 | break; | ||
2223 | } | ||
2224 | case TK_BETWEEN: { | ||
2225 | /* The expression "x BETWEEN y AND z" is implemented as: | ||
2226 | ** | ||
2227 | ** 1 IF (x < y) GOTO 3 | ||
2228 | ** 2 IF (x <= z) GOTO <dest> | ||
2229 | ** 3 ... | ||
2230 | */ | ||
2231 | int addr; | ||
2232 | Expr *pLeft = pExpr->pLeft; | ||
2233 | Expr *pRight = pExpr->pList->a[0].pExpr; | ||
2234 | sqlite3ExprCode(pParse, pLeft); | ||
2235 | sqlite3VdbeAddOp(v, OP_Dup, 0, 0); | ||
2236 | sqlite3ExprCode(pParse, pRight); | ||
2237 | addr = codeCompare(pParse, pLeft, pRight, OP_Lt, 0, !jumpIfNull); | ||
2238 | |||
2239 | pRight = pExpr->pList->a[1].pExpr; | ||
2240 | sqlite3ExprCode(pParse, pRight); | ||
2241 | codeCompare(pParse, pLeft, pRight, OP_Le, dest, jumpIfNull); | ||
2242 | |||
2243 | sqlite3VdbeAddOp(v, OP_Integer, 0, 0); | ||
2244 | sqlite3VdbeJumpHere(v, addr); | ||
2245 | sqlite3VdbeAddOp(v, OP_Pop, 1, 0); | ||
2246 | break; | ||
2247 | } | ||
2248 | default: { | ||
2249 | sqlite3ExprCode(pParse, pExpr); | ||
2250 | sqlite3VdbeAddOp(v, OP_If, jumpIfNull, dest); | ||
2251 | break; | ||
2252 | } | ||
2253 | } | ||
2254 | pParse->ckOffset = ckOffset; | ||
2255 | } | ||
2256 | |||
2257 | /* | ||
2258 | ** Generate code for a boolean expression such that a jump is made | ||
2259 | ** to the label "dest" if the expression is false but execution | ||
2260 | ** continues straight thru if the expression is true. | ||
2261 | ** | ||
2262 | ** If the expression evaluates to NULL (neither true nor false) then | ||
2263 | ** jump if jumpIfNull is true or fall through if jumpIfNull is false. | ||
2264 | */ | ||
2265 | void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ | ||
2266 | Vdbe *v = pParse->pVdbe; | ||
2267 | int op = 0; | ||
2268 | int ckOffset = pParse->ckOffset; | ||
2269 | if( v==0 || pExpr==0 ) return; | ||
2270 | |||
2271 | /* The value of pExpr->op and op are related as follows: | ||
2272 | ** | ||
2273 | ** pExpr->op op | ||
2274 | ** --------- ---------- | ||
2275 | ** TK_ISNULL OP_NotNull | ||
2276 | ** TK_NOTNULL OP_IsNull | ||
2277 | ** TK_NE OP_Eq | ||
2278 | ** TK_EQ OP_Ne | ||
2279 | ** TK_GT OP_Le | ||
2280 | ** TK_LE OP_Gt | ||
2281 | ** TK_GE OP_Lt | ||
2282 | ** TK_LT OP_Ge | ||
2283 | ** | ||
2284 | ** For other values of pExpr->op, op is undefined and unused. | ||
2285 | ** The value of TK_ and OP_ constants are arranged such that we | ||
2286 | ** can compute the mapping above using the following expression. | ||
2287 | ** Assert()s verify that the computation is correct. | ||
2288 | */ | ||
2289 | op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1); | ||
2290 | |||
2291 | /* Verify correct alignment of TK_ and OP_ constants | ||
2292 | */ | ||
2293 | assert( pExpr->op!=TK_ISNULL || op==OP_NotNull ); | ||
2294 | assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull ); | ||
2295 | assert( pExpr->op!=TK_NE || op==OP_Eq ); | ||
2296 | assert( pExpr->op!=TK_EQ || op==OP_Ne ); | ||
2297 | assert( pExpr->op!=TK_LT || op==OP_Ge ); | ||
2298 | assert( pExpr->op!=TK_LE || op==OP_Gt ); | ||
2299 | assert( pExpr->op!=TK_GT || op==OP_Le ); | ||
2300 | assert( pExpr->op!=TK_GE || op==OP_Lt ); | ||
2301 | |||
2302 | switch( pExpr->op ){ | ||
2303 | case TK_AND: { | ||
2304 | sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); | ||
2305 | sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); | ||
2306 | break; | ||
2307 | } | ||
2308 | case TK_OR: { | ||
2309 | int d2 = sqlite3VdbeMakeLabel(v); | ||
2310 | sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2, !jumpIfNull); | ||
2311 | sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); | ||
2312 | sqlite3VdbeResolveLabel(v, d2); | ||
2313 | break; | ||
2314 | } | ||
2315 | case TK_NOT: { | ||
2316 | sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); | ||
2317 | break; | ||
2318 | } | ||
2319 | case TK_LT: | ||
2320 | case TK_LE: | ||
2321 | case TK_GT: | ||
2322 | case TK_GE: | ||
2323 | case TK_NE: | ||
2324 | case TK_EQ: { | ||
2325 | sqlite3ExprCode(pParse, pExpr->pLeft); | ||
2326 | sqlite3ExprCode(pParse, pExpr->pRight); | ||
2327 | codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, dest, jumpIfNull); | ||
2328 | break; | ||
2329 | } | ||
2330 | case TK_ISNULL: | ||
2331 | case TK_NOTNULL: { | ||
2332 | sqlite3ExprCode(pParse, pExpr->pLeft); | ||
2333 | sqlite3VdbeAddOp(v, op, 1, dest); | ||
2334 | break; | ||
2335 | } | ||
2336 | case TK_BETWEEN: { | ||
2337 | /* The expression is "x BETWEEN y AND z". It is implemented as: | ||
2338 | ** | ||
2339 | ** 1 IF (x >= y) GOTO 3 | ||
2340 | ** 2 GOTO <dest> | ||
2341 | ** 3 IF (x > z) GOTO <dest> | ||
2342 | */ | ||
2343 | int addr; | ||
2344 | Expr *pLeft = pExpr->pLeft; | ||
2345 | Expr *pRight = pExpr->pList->a[0].pExpr; | ||
2346 | sqlite3ExprCode(pParse, pLeft); | ||
2347 | sqlite3VdbeAddOp(v, OP_Dup, 0, 0); | ||
2348 | sqlite3ExprCode(pParse, pRight); | ||
2349 | addr = sqlite3VdbeCurrentAddr(v); | ||
2350 | codeCompare(pParse, pLeft, pRight, OP_Ge, addr+3, !jumpIfNull); | ||
2351 | |||
2352 | sqlite3VdbeAddOp(v, OP_Pop, 1, 0); | ||
2353 | sqlite3VdbeAddOp(v, OP_Goto, 0, dest); | ||
2354 | pRight = pExpr->pList->a[1].pExpr; | ||
2355 | sqlite3ExprCode(pParse, pRight); | ||
2356 | codeCompare(pParse, pLeft, pRight, OP_Gt, dest, jumpIfNull); | ||
2357 | break; | ||
2358 | } | ||
2359 | default: { | ||
2360 | sqlite3ExprCode(pParse, pExpr); | ||
2361 | sqlite3VdbeAddOp(v, OP_IfNot, jumpIfNull, dest); | ||
2362 | break; | ||
2363 | } | ||
2364 | } | ||
2365 | pParse->ckOffset = ckOffset; | ||
2366 | } | ||
2367 | |||
2368 | /* | ||
2369 | ** Do a deep comparison of two expression trees. Return TRUE (non-zero) | ||
2370 | ** if they are identical and return FALSE if they differ in any way. | ||
2371 | ** | ||
2372 | ** Sometimes this routine will return FALSE even if the two expressions | ||
2373 | ** really are equivalent. If we cannot prove that the expressions are | ||
2374 | ** identical, we return FALSE just to be safe. So if this routine | ||
2375 | ** returns false, then you do not really know for certain if the two | ||
2376 | ** expressions are the same. But if you get a TRUE return, then you | ||
2377 | ** can be sure the expressions are the same. In the places where | ||
2378 | ** this routine is used, it does not hurt to get an extra FALSE - that | ||
2379 | ** just might result in some slightly slower code. But returning | ||
2380 | ** an incorrect TRUE could lead to a malfunction. | ||
2381 | */ | ||
2382 | int sqlite3ExprCompare(Expr *pA, Expr *pB){ | ||
2383 | int i; | ||
2384 | if( pA==0||pB==0 ){ | ||
2385 | return pB==pA; | ||
2386 | } | ||
2387 | if( pA->op!=pB->op ) return 0; | ||
2388 | if( (pA->flags & EP_Distinct)!=(pB->flags & EP_Distinct) ) return 0; | ||
2389 | if( !sqlite3ExprCompare(pA->pLeft, pB->pLeft) ) return 0; | ||
2390 | if( !sqlite3ExprCompare(pA->pRight, pB->pRight) ) return 0; | ||
2391 | if( pA->pList ){ | ||
2392 | if( pB->pList==0 ) return 0; | ||
2393 | if( pA->pList->nExpr!=pB->pList->nExpr ) return 0; | ||
2394 | for(i=0; i<pA->pList->nExpr; i++){ | ||
2395 | if( !sqlite3ExprCompare(pA->pList->a[i].pExpr, pB->pList->a[i].pExpr) ){ | ||
2396 | return 0; | ||
2397 | } | ||
2398 | } | ||
2399 | }else if( pB->pList ){ | ||
2400 | return 0; | ||
2401 | } | ||
2402 | if( pA->pSelect || pB->pSelect ) return 0; | ||
2403 | if( pA->iTable!=pB->iTable || pA->iColumn!=pB->iColumn ) return 0; | ||
2404 | if( pA->op!=TK_COLUMN && pA->token.z ){ | ||
2405 | if( pB->token.z==0 ) return 0; | ||
2406 | if( pB->token.n!=pA->token.n ) return 0; | ||
2407 | if( sqlite3StrNICmp((char*)pA->token.z,(char*)pB->token.z,pB->token.n)!=0 ){ | ||
2408 | return 0; | ||
2409 | } | ||
2410 | } | ||
2411 | return 1; | ||
2412 | } | ||
2413 | |||
2414 | |||
2415 | /* | ||
2416 | ** Add a new element to the pAggInfo->aCol[] array. Return the index of | ||
2417 | ** the new element. Return a negative number if malloc fails. | ||
2418 | */ | ||
2419 | static int addAggInfoColumn(sqlite3 *db, AggInfo *pInfo){ | ||
2420 | int i; | ||
2421 | pInfo->aCol = sqlite3ArrayAllocate( | ||
2422 | db, | ||
2423 | pInfo->aCol, | ||
2424 | sizeof(pInfo->aCol[0]), | ||
2425 | 3, | ||
2426 | &pInfo->nColumn, | ||
2427 | &pInfo->nColumnAlloc, | ||
2428 | &i | ||
2429 | ); | ||
2430 | return i; | ||
2431 | } | ||
2432 | |||
2433 | /* | ||
2434 | ** Add a new element to the pAggInfo->aFunc[] array. Return the index of | ||
2435 | ** the new element. Return a negative number if malloc fails. | ||
2436 | */ | ||
2437 | static int addAggInfoFunc(sqlite3 *db, AggInfo *pInfo){ | ||
2438 | int i; | ||
2439 | pInfo->aFunc = sqlite3ArrayAllocate( | ||
2440 | db, | ||
2441 | pInfo->aFunc, | ||
2442 | sizeof(pInfo->aFunc[0]), | ||
2443 | 3, | ||
2444 | &pInfo->nFunc, | ||
2445 | &pInfo->nFuncAlloc, | ||
2446 | &i | ||
2447 | ); | ||
2448 | return i; | ||
2449 | } | ||
2450 | |||
2451 | /* | ||
2452 | ** This is an xFunc for walkExprTree() used to implement | ||
2453 | ** sqlite3ExprAnalyzeAggregates(). See sqlite3ExprAnalyzeAggregates | ||
2454 | ** for additional information. | ||
2455 | ** | ||
2456 | ** This routine analyzes the aggregate function at pExpr. | ||
2457 | */ | ||
2458 | static int analyzeAggregate(void *pArg, Expr *pExpr){ | ||
2459 | int i; | ||
2460 | NameContext *pNC = (NameContext *)pArg; | ||
2461 | Parse *pParse = pNC->pParse; | ||
2462 | SrcList *pSrcList = pNC->pSrcList; | ||
2463 | AggInfo *pAggInfo = pNC->pAggInfo; | ||
2464 | |||
2465 | switch( pExpr->op ){ | ||
2466 | case TK_AGG_COLUMN: | ||
2467 | case TK_COLUMN: { | ||
2468 | /* Check to see if the column is in one of the tables in the FROM | ||
2469 | ** clause of the aggregate query */ | ||
2470 | if( pSrcList ){ | ||
2471 | struct SrcList_item *pItem = pSrcList->a; | ||
2472 | for(i=0; i<pSrcList->nSrc; i++, pItem++){ | ||
2473 | struct AggInfo_col *pCol; | ||
2474 | if( pExpr->iTable==pItem->iCursor ){ | ||
2475 | /* If we reach this point, it means that pExpr refers to a table | ||
2476 | ** that is in the FROM clause of the aggregate query. | ||
2477 | ** | ||
2478 | ** Make an entry for the column in pAggInfo->aCol[] if there | ||
2479 | ** is not an entry there already. | ||
2480 | */ | ||
2481 | int k; | ||
2482 | pCol = pAggInfo->aCol; | ||
2483 | for(k=0; k<pAggInfo->nColumn; k++, pCol++){ | ||
2484 | if( pCol->iTable==pExpr->iTable && | ||
2485 | pCol->iColumn==pExpr->iColumn ){ | ||
2486 | break; | ||
2487 | } | ||
2488 | } | ||
2489 | if( (k>=pAggInfo->nColumn) | ||
2490 | && (k = addAggInfoColumn(pParse->db, pAggInfo))>=0 | ||
2491 | ){ | ||
2492 | pCol = &pAggInfo->aCol[k]; | ||
2493 | pCol->pTab = pExpr->pTab; | ||
2494 | pCol->iTable = pExpr->iTable; | ||
2495 | pCol->iColumn = pExpr->iColumn; | ||
2496 | pCol->iMem = pParse->nMem++; | ||
2497 | pCol->iSorterColumn = -1; | ||
2498 | pCol->pExpr = pExpr; | ||
2499 | if( pAggInfo->pGroupBy ){ | ||
2500 | int j, n; | ||
2501 | ExprList *pGB = pAggInfo->pGroupBy; | ||
2502 | struct ExprList_item *pTerm = pGB->a; | ||
2503 | n = pGB->nExpr; | ||
2504 | for(j=0; j<n; j++, pTerm++){ | ||
2505 | Expr *pE = pTerm->pExpr; | ||
2506 | if( pE->op==TK_COLUMN && pE->iTable==pExpr->iTable && | ||
2507 | pE->iColumn==pExpr->iColumn ){ | ||
2508 | pCol->iSorterColumn = j; | ||
2509 | break; | ||
2510 | } | ||
2511 | } | ||
2512 | } | ||
2513 | if( pCol->iSorterColumn<0 ){ | ||
2514 | pCol->iSorterColumn = pAggInfo->nSortingColumn++; | ||
2515 | } | ||
2516 | } | ||
2517 | /* There is now an entry for pExpr in pAggInfo->aCol[] (either | ||
2518 | ** because it was there before or because we just created it). | ||
2519 | ** Convert the pExpr to be a TK_AGG_COLUMN referring to that | ||
2520 | ** pAggInfo->aCol[] entry. | ||
2521 | */ | ||
2522 | pExpr->pAggInfo = pAggInfo; | ||
2523 | pExpr->op = TK_AGG_COLUMN; | ||
2524 | pExpr->iAgg = k; | ||
2525 | break; | ||
2526 | } /* endif pExpr->iTable==pItem->iCursor */ | ||
2527 | } /* end loop over pSrcList */ | ||
2528 | } | ||
2529 | return 1; | ||
2530 | } | ||
2531 | case TK_AGG_FUNCTION: { | ||
2532 | /* The pNC->nDepth==0 test causes aggregate functions in subqueries | ||
2533 | ** to be ignored */ | ||
2534 | if( pNC->nDepth==0 ){ | ||
2535 | /* Check to see if pExpr is a duplicate of another aggregate | ||
2536 | ** function that is already in the pAggInfo structure | ||
2537 | */ | ||
2538 | struct AggInfo_func *pItem = pAggInfo->aFunc; | ||
2539 | for(i=0; i<pAggInfo->nFunc; i++, pItem++){ | ||
2540 | if( sqlite3ExprCompare(pItem->pExpr, pExpr) ){ | ||
2541 | break; | ||
2542 | } | ||
2543 | } | ||
2544 | if( i>=pAggInfo->nFunc ){ | ||
2545 | /* pExpr is original. Make a new entry in pAggInfo->aFunc[] | ||
2546 | */ | ||
2547 | u8 enc = ENC(pParse->db); | ||
2548 | i = addAggInfoFunc(pParse->db, pAggInfo); | ||
2549 | if( i>=0 ){ | ||
2550 | pItem = &pAggInfo->aFunc[i]; | ||
2551 | pItem->pExpr = pExpr; | ||
2552 | pItem->iMem = pParse->nMem++; | ||
2553 | pItem->pFunc = sqlite3FindFunction(pParse->db, | ||
2554 | (char*)pExpr->token.z, pExpr->token.n, | ||
2555 | pExpr->pList ? pExpr->pList->nExpr : 0, enc, 0); | ||
2556 | if( pExpr->flags & EP_Distinct ){ | ||
2557 | pItem->iDistinct = pParse->nTab++; | ||
2558 | }else{ | ||
2559 | pItem->iDistinct = -1; | ||
2560 | } | ||
2561 | } | ||
2562 | } | ||
2563 | /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry | ||
2564 | */ | ||
2565 | pExpr->iAgg = i; | ||
2566 | pExpr->pAggInfo = pAggInfo; | ||
2567 | return 1; | ||
2568 | } | ||
2569 | } | ||
2570 | } | ||
2571 | |||
2572 | /* Recursively walk subqueries looking for TK_COLUMN nodes that need | ||
2573 | ** to be changed to TK_AGG_COLUMN. But increment nDepth so that | ||
2574 | ** TK_AGG_FUNCTION nodes in subqueries will be unchanged. | ||
2575 | */ | ||
2576 | if( pExpr->pSelect ){ | ||
2577 | pNC->nDepth++; | ||
2578 | walkSelectExpr(pExpr->pSelect, analyzeAggregate, pNC); | ||
2579 | pNC->nDepth--; | ||
2580 | } | ||
2581 | return 0; | ||
2582 | } | ||
2583 | |||
2584 | /* | ||
2585 | ** Analyze the given expression looking for aggregate functions and | ||
2586 | ** for variables that need to be added to the pParse->aAgg[] array. | ||
2587 | ** Make additional entries to the pParse->aAgg[] array as necessary. | ||
2588 | ** | ||
2589 | ** This routine should only be called after the expression has been | ||
2590 | ** analyzed by sqlite3ExprResolveNames(). | ||
2591 | ** | ||
2592 | ** If errors are seen, leave an error message in zErrMsg and return | ||
2593 | ** the number of errors. | ||
2594 | */ | ||
2595 | int sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){ | ||
2596 | int nErr = pNC->pParse->nErr; | ||
2597 | walkExprTree(pExpr, analyzeAggregate, pNC); | ||
2598 | return pNC->pParse->nErr - nErr; | ||
2599 | } | ||
2600 | |||
2601 | /* | ||
2602 | ** Call sqlite3ExprAnalyzeAggregates() for every expression in an | ||
2603 | ** expression list. Return the number of errors. | ||
2604 | ** | ||
2605 | ** If an error is found, the analysis is cut short. | ||
2606 | */ | ||
2607 | int sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){ | ||
2608 | struct ExprList_item *pItem; | ||
2609 | int i; | ||
2610 | int nErr = 0; | ||
2611 | if( pList ){ | ||
2612 | for(pItem=pList->a, i=0; nErr==0 && i<pList->nExpr; i++, pItem++){ | ||
2613 | nErr += sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr); | ||
2614 | } | ||
2615 | } | ||
2616 | return nErr; | ||
2617 | } | ||