aboutsummaryrefslogtreecommitdiffstatshomepage
path: root/libraries/sqlite/unix/sqlite-3.5.1/src/test_async.c
diff options
context:
space:
mode:
Diffstat (limited to 'libraries/sqlite/unix/sqlite-3.5.1/src/test_async.c')
-rw-r--r--libraries/sqlite/unix/sqlite-3.5.1/src/test_async.c1541
1 files changed, 1541 insertions, 0 deletions
diff --git a/libraries/sqlite/unix/sqlite-3.5.1/src/test_async.c b/libraries/sqlite/unix/sqlite-3.5.1/src/test_async.c
new file mode 100644
index 0000000..b018223
--- /dev/null
+++ b/libraries/sqlite/unix/sqlite-3.5.1/src/test_async.c
@@ -0,0 +1,1541 @@
1/*
2** 2005 December 14
3**
4** The author disclaims copyright to this source code. In place of
5** a legal notice, here is a blessing:
6**
7** May you do good and not evil.
8** May you find forgiveness for yourself and forgive others.
9** May you share freely, never taking more than you give.
10**
11*************************************************************************
12**
13** This file contains an example implementation of an asynchronous IO
14** backend for SQLite.
15**
16** WHAT IS ASYNCHRONOUS I/O?
17**
18** With asynchronous I/O, write requests are handled by a separate thread
19** running in the background. This means that the thread that initiates
20** a database write does not have to wait for (sometimes slow) disk I/O
21** to occur. The write seems to happen very quickly, though in reality
22** it is happening at its usual slow pace in the background.
23**
24** Asynchronous I/O appears to give better responsiveness, but at a price.
25** You lose the Durable property. With the default I/O backend of SQLite,
26** once a write completes, you know that the information you wrote is
27** safely on disk. With the asynchronous I/O, this is not the case. If
28** your program crashes or if a power lose occurs after the database
29** write but before the asynchronous write thread has completed, then the
30** database change might never make it to disk and the next user of the
31** database might not see your change.
32**
33** You lose Durability with asynchronous I/O, but you still retain the
34** other parts of ACID: Atomic, Consistent, and Isolated. Many
35** appliations get along fine without the Durablity.
36**
37** HOW IT WORKS
38**
39** Asynchronous I/O works by creating a special SQLite "vfs" structure
40** and registering it with sqlite3_vfs_register(). When files opened via
41** this vfs are written to (using sqlite3OsWrite()), the data is not
42** written directly to disk, but is placed in the "write-queue" to be
43** handled by the background thread.
44**
45** When files opened with the asynchronous vfs are read from
46** (using sqlite3OsRead()), the data is read from the file on
47** disk and the write-queue, so that from the point of view of
48** the vfs reader the OsWrite() appears to have already completed.
49**
50** The special vfs is registered (and unregistered) by calls to
51** function asyncEnable() (see below).
52**
53** LIMITATIONS
54**
55** This demonstration code is deliberately kept simple in order to keep
56** the main ideas clear and easy to understand. Real applications that
57** want to do asynchronous I/O might want to add additional capabilities.
58** For example, in this demonstration if writes are happening at a steady
59** stream that exceeds the I/O capability of the background writer thread,
60** the queue of pending write operations will grow without bound until we
61** run out of memory. Users of this technique may want to keep track of
62** the quantity of pending writes and stop accepting new write requests
63** when the buffer gets to be too big.
64**
65** LOCKING + CONCURRENCY
66**
67** Multiple connections from within a single process that use this
68** implementation of asynchronous IO may access a single database
69** file concurrently. From the point of view of the user, if all
70** connections are from within a single process, there is no difference
71** between the concurrency offered by "normal" SQLite and SQLite
72** using the asynchronous backend.
73**
74** If connections from within multiple database files may access the
75** database file, the ENABLE_FILE_LOCKING symbol (see below) must be
76** defined. If it is not defined, then no locks are established on
77** the database file. In this case, if multiple processes access
78** the database file, corruption will quickly result.
79**
80** If ENABLE_FILE_LOCKING is defined (the default), then connections
81** from within multiple processes may access a single database file
82** without risking corruption. However concurrency is reduced as
83** follows:
84**
85** * When a connection using asynchronous IO begins a database
86** transaction, the database is locked immediately. However the
87** lock is not released until after all relevant operations
88** in the write-queue have been flushed to disk. This means
89** (for example) that the database may remain locked for some
90** time after a "COMMIT" or "ROLLBACK" is issued.
91**
92** * If an application using asynchronous IO executes transactions
93** in quick succession, other database users may be effectively
94** locked out of the database. This is because when a BEGIN
95** is executed, a database lock is established immediately. But
96** when the corresponding COMMIT or ROLLBACK occurs, the lock
97** is not released until the relevant part of the write-queue
98** has been flushed through. As a result, if a COMMIT is followed
99** by a BEGIN before the write-queue is flushed through, the database
100** is never unlocked,preventing other processes from accessing
101** the database.
102**
103** Defining ENABLE_FILE_LOCKING when using an NFS or other remote
104** file-system may slow things down, as synchronous round-trips to the
105** server may be required to establish database file locks.
106*/
107#define ENABLE_FILE_LOCKING
108
109#include "sqliteInt.h"
110#include <tcl.h>
111
112/*
113** This test uses pthreads and hence only works on unix and with
114** a threadsafe build of SQLite.
115*/
116#if OS_UNIX && SQLITE_THREADSAFE
117
118/*
119** This demo uses pthreads. If you do not have a pthreads implementation
120** for your operating system, you will need to recode the threading
121** logic.
122*/
123#include <pthread.h>
124#include <sched.h>
125
126/* Useful macros used in several places */
127#define MIN(x,y) ((x)<(y)?(x):(y))
128#define MAX(x,y) ((x)>(y)?(x):(y))
129
130/* Forward references */
131typedef struct AsyncWrite AsyncWrite;
132typedef struct AsyncFile AsyncFile;
133typedef struct AsyncFileData AsyncFileData;
134typedef struct AsyncFileLock AsyncFileLock;
135typedef struct AsyncLock AsyncLock;
136
137/* Enable for debugging */
138static int sqlite3async_trace = 0;
139# define ASYNC_TRACE(X) if( sqlite3async_trace ) asyncTrace X
140static void asyncTrace(const char *zFormat, ...){
141 char *z;
142 va_list ap;
143 va_start(ap, zFormat);
144 z = sqlite3_vmprintf(zFormat, ap);
145 va_end(ap);
146 fprintf(stderr, "[%d] %s", (int)pthread_self(), z);
147 sqlite3_free(z);
148}
149
150/*
151** THREAD SAFETY NOTES
152**
153** Basic rules:
154**
155** * Both read and write access to the global write-op queue must be
156** protected by the async.queueMutex. As are the async.ioError and
157** async.nFile variables.
158**
159** * The async.aLock hash-table and all AsyncLock and AsyncFileLock
160** structures must be protected by teh async.lockMutex mutex.
161**
162** * The file handles from the underlying system are assumed not to
163** be thread safe.
164**
165** * See the last two paragraphs under "The Writer Thread" for
166** an assumption to do with file-handle synchronization by the Os.
167**
168** Deadlock prevention:
169**
170** There are three mutex used by the system: the "writer" mutex,
171** the "queue" mutex and the "lock" mutex. Rules are:
172**
173** * It is illegal to block on the writer mutex when any other mutex
174** are held, and
175**
176** * It is illegal to block on the queue mutex when the lock mutex
177** is held.
178**
179** i.e. mutex's must be grabbed in the order "writer", "queue", "lock".
180**
181** File system operations (invoked by SQLite thread):
182**
183** xOpen
184** xDelete
185** xFileExists
186**
187** File handle operations (invoked by SQLite thread):
188**
189** asyncWrite, asyncClose, asyncTruncate, asyncSync
190**
191** The operations above add an entry to the global write-op list. They
192** prepare the entry, acquire the async.queueMutex momentarily while
193** list pointers are manipulated to insert the new entry, then release
194** the mutex and signal the writer thread to wake up in case it happens
195** to be asleep.
196**
197**
198** asyncRead, asyncFileSize.
199**
200** Read operations. Both of these read from both the underlying file
201** first then adjust their result based on pending writes in the
202** write-op queue. So async.queueMutex is held for the duration
203** of these operations to prevent other threads from changing the
204** queue in mid operation.
205**
206**
207** asyncLock, asyncUnlock, asyncCheckReservedLock
208**
209** These primitives implement in-process locking using a hash table
210** on the file name. Files are locked correctly for connections coming
211** from the same process. But other processes cannot see these locks
212** and will therefore not honor them.
213**
214**
215** The writer thread:
216**
217** The async.writerMutex is used to make sure only there is only
218** a single writer thread running at a time.
219**
220** Inside the writer thread is a loop that works like this:
221**
222** WHILE (write-op list is not empty)
223** Do IO operation at head of write-op list
224** Remove entry from head of write-op list
225** END WHILE
226**
227** The async.queueMutex is always held during the <write-op list is
228** not empty> test, and when the entry is removed from the head
229** of the write-op list. Sometimes it is held for the interim
230** period (while the IO is performed), and sometimes it is
231** relinquished. It is relinquished if (a) the IO op is an
232** ASYNC_CLOSE or (b) when the file handle was opened, two of
233** the underlying systems handles were opened on the same
234** file-system entry.
235**
236** If condition (b) above is true, then one file-handle
237** (AsyncFile.pBaseRead) is used exclusively by sqlite threads to read the
238** file, the other (AsyncFile.pBaseWrite) by sqlite3_async_flush()
239** threads to perform write() operations. This means that read
240** operations are not blocked by asynchronous writes (although
241** asynchronous writes may still be blocked by reads).
242**
243** This assumes that the OS keeps two handles open on the same file
244** properly in sync. That is, any read operation that starts after a
245** write operation on the same file system entry has completed returns
246** data consistent with the write. We also assume that if one thread
247** reads a file while another is writing it all bytes other than the
248** ones actually being written contain valid data.
249**
250** If the above assumptions are not true, set the preprocessor symbol
251** SQLITE_ASYNC_TWO_FILEHANDLES to 0.
252*/
253
254#ifndef SQLITE_ASYNC_TWO_FILEHANDLES
255/* #define SQLITE_ASYNC_TWO_FILEHANDLES 0 */
256#define SQLITE_ASYNC_TWO_FILEHANDLES 1
257#endif
258
259/*
260** State information is held in the static variable "async" defined
261** as the following structure.
262**
263** Both async.ioError and async.nFile are protected by async.queueMutex.
264*/
265static struct TestAsyncStaticData {
266 pthread_mutex_t queueMutex; /* Mutex for access to write operation queue */
267 pthread_mutex_t writerMutex; /* Prevents multiple writer threads */
268 pthread_mutex_t lockMutex; /* For access to aLock hash table */
269 pthread_cond_t queueSignal; /* For waking up sleeping writer thread */
270 pthread_cond_t emptySignal; /* Notify when the write queue is empty */
271 AsyncWrite *pQueueFirst; /* Next write operation to be processed */
272 AsyncWrite *pQueueLast; /* Last write operation on the list */
273 Hash aLock; /* Files locked */
274 volatile int ioDelay; /* Extra delay between write operations */
275 volatile int writerHaltWhenIdle; /* Writer thread halts when queue empty */
276 volatile int writerHaltNow; /* Writer thread halts after next op */
277 int ioError; /* True if an IO error has occured */
278 int nFile; /* Number of open files (from sqlite pov) */
279} async = {
280 PTHREAD_MUTEX_INITIALIZER,
281 PTHREAD_MUTEX_INITIALIZER,
282 PTHREAD_MUTEX_INITIALIZER,
283 PTHREAD_COND_INITIALIZER,
284 PTHREAD_COND_INITIALIZER,
285};
286
287/* Possible values of AsyncWrite.op */
288#define ASYNC_NOOP 0
289#define ASYNC_WRITE 1
290#define ASYNC_SYNC 2
291#define ASYNC_TRUNCATE 3
292#define ASYNC_CLOSE 4
293#define ASYNC_DELETE 5
294#define ASYNC_OPENEXCLUSIVE 6
295#define ASYNC_UNLOCK 7
296
297/* Names of opcodes. Used for debugging only.
298** Make sure these stay in sync with the macros above!
299*/
300static const char *azOpcodeName[] = {
301 "NOOP", "WRITE", "SYNC", "TRUNCATE", "CLOSE", "DELETE", "OPENEX", "UNLOCK"
302};
303
304/*
305** Entries on the write-op queue are instances of the AsyncWrite
306** structure, defined here.
307**
308** The interpretation of the iOffset and nByte variables varies depending
309** on the value of AsyncWrite.op:
310**
311** ASYNC_NOOP:
312** No values used.
313**
314** ASYNC_WRITE:
315** iOffset -> Offset in file to write to.
316** nByte -> Number of bytes of data to write (pointed to by zBuf).
317**
318** ASYNC_SYNC:
319** nByte -> flags to pass to sqlite3OsSync().
320**
321** ASYNC_TRUNCATE:
322** iOffset -> Size to truncate file to.
323** nByte -> Unused.
324**
325** ASYNC_CLOSE:
326** iOffset -> Unused.
327** nByte -> Unused.
328**
329** ASYNC_DELETE:
330** iOffset -> Contains the "syncDir" flag.
331** nByte -> Number of bytes of zBuf points to (file name).
332**
333** ASYNC_OPENEXCLUSIVE:
334** iOffset -> Value of "delflag".
335** nByte -> Number of bytes of zBuf points to (file name).
336**
337** ASYNC_UNLOCK:
338** nByte -> Argument to sqlite3OsUnlock().
339**
340**
341** For an ASYNC_WRITE operation, zBuf points to the data to write to the file.
342** This space is sqlite3_malloc()d along with the AsyncWrite structure in a
343** single blob, so is deleted when sqlite3_free() is called on the parent
344** structure.
345*/
346struct AsyncWrite {
347 AsyncFileData *pFileData; /* File to write data to or sync */
348 int op; /* One of ASYNC_xxx etc. */
349 i64 iOffset; /* See above */
350 int nByte; /* See above */
351 char *zBuf; /* Data to write to file (or NULL if op!=ASYNC_WRITE) */
352 AsyncWrite *pNext; /* Next write operation (to any file) */
353};
354
355/*
356** An instance of this structure is created for each distinct open file
357** (i.e. if two handles are opened on the one file, only one of these
358** structures is allocated) and stored in the async.aLock hash table. The
359** keys for async.aLock are the full pathnames of the opened files.
360**
361** AsyncLock.pList points to the head of a linked list of AsyncFileLock
362** structures, one for each handle currently open on the file.
363**
364** If the opened file is not a main-database (the SQLITE_OPEN_MAIN_DB is
365** not passed to the sqlite3OsOpen() call), or if ENABLE_FILE_LOCKING is
366** not defined at compile time, variables AsyncLock.pFile and
367** AsyncLock.eLock are never used. Otherwise, pFile is a file handle
368** opened on the file in question and used to obtain the file-system
369** locks required by database connections within this process.
370**
371** See comments above the asyncLock() function for more details on
372** the implementation of database locking used by this backend.
373*/
374struct AsyncLock {
375 sqlite3_file *pFile;
376 int eLock;
377 AsyncFileLock *pList;
378};
379
380/*
381** An instance of the following structure is allocated along with each
382** AsyncFileData structure (see AsyncFileData.lock), but is only used if the
383** file was opened with the SQLITE_OPEN_MAIN_DB.
384*/
385struct AsyncFileLock {
386 int eLock; /* Internally visible lock state (sqlite pov) */
387 int eAsyncLock; /* Lock-state with write-queue unlock */
388 AsyncFileLock *pNext;
389};
390
391/*
392** The AsyncFile structure is a subclass of sqlite3_file used for
393** asynchronous IO.
394**
395** All of the actual data for the structure is stored in the structure
396** pointed to by AsyncFile.pData, which is allocated as part of the
397** sqlite3OsOpen() using sqlite3_malloc(). The reason for this is that the
398** lifetime of the AsyncFile structure is ended by the caller after OsClose()
399** is called, but the data in AsyncFileData may be required by the
400** writer thread after that point.
401*/
402struct AsyncFile {
403 sqlite3_io_methods *pMethod;
404 AsyncFileData *pData;
405};
406struct AsyncFileData {
407 char *zName; /* Underlying OS filename - used for debugging */
408 int nName; /* Number of characters in zName */
409 sqlite3_file *pBaseRead; /* Read handle to the underlying Os file */
410 sqlite3_file *pBaseWrite; /* Write handle to the underlying Os file */
411 AsyncFileLock lock;
412 AsyncWrite close;
413};
414
415/*
416** Add an entry to the end of the global write-op list. pWrite should point
417** to an AsyncWrite structure allocated using sqlite3_malloc(). The writer
418** thread will call sqlite3_free() to free the structure after the specified
419** operation has been completed.
420**
421** Once an AsyncWrite structure has been added to the list, it becomes the
422** property of the writer thread and must not be read or modified by the
423** caller.
424*/
425static void addAsyncWrite(AsyncWrite *pWrite){
426 /* We must hold the queue mutex in order to modify the queue pointers */
427 pthread_mutex_lock(&async.queueMutex);
428
429 /* Add the record to the end of the write-op queue */
430 assert( !pWrite->pNext );
431 if( async.pQueueLast ){
432 assert( async.pQueueFirst );
433 async.pQueueLast->pNext = pWrite;
434 }else{
435 async.pQueueFirst = pWrite;
436 }
437 async.pQueueLast = pWrite;
438 ASYNC_TRACE(("PUSH %p (%s %s %d)\n", pWrite, azOpcodeName[pWrite->op],
439 pWrite->pFileData ? pWrite->pFileData->zName : "-", pWrite->iOffset));
440
441 if( pWrite->op==ASYNC_CLOSE ){
442 async.nFile--;
443 }
444
445 /* Drop the queue mutex */
446 pthread_mutex_unlock(&async.queueMutex);
447
448 /* The writer thread might have been idle because there was nothing
449 ** on the write-op queue for it to do. So wake it up. */
450 pthread_cond_signal(&async.queueSignal);
451}
452
453/*
454** Increment async.nFile in a thread-safe manner.
455*/
456static void incrOpenFileCount(){
457 /* We must hold the queue mutex in order to modify async.nFile */
458 pthread_mutex_lock(&async.queueMutex);
459 if( async.nFile==0 ){
460 async.ioError = SQLITE_OK;
461 }
462 async.nFile++;
463 pthread_mutex_unlock(&async.queueMutex);
464}
465
466/*
467** This is a utility function to allocate and populate a new AsyncWrite
468** structure and insert it (via addAsyncWrite() ) into the global list.
469*/
470static int addNewAsyncWrite(
471 AsyncFileData *pFileData,
472 int op,
473 i64 iOffset,
474 int nByte,
475 const char *zByte
476){
477 AsyncWrite *p;
478 if( op!=ASYNC_CLOSE && async.ioError ){
479 return async.ioError;
480 }
481 p = sqlite3_malloc(sizeof(AsyncWrite) + (zByte?nByte:0));
482 if( !p ){
483 /* The upper layer does not expect operations like OsWrite() to
484 ** return SQLITE_NOMEM. This is partly because under normal conditions
485 ** SQLite is required to do rollback without calling malloc(). So
486 ** if malloc() fails here, treat it as an I/O error. The above
487 ** layer knows how to handle that.
488 */
489 return SQLITE_IOERR;
490 }
491 p->op = op;
492 p->iOffset = iOffset;
493 p->nByte = nByte;
494 p->pFileData = pFileData;
495 p->pNext = 0;
496 if( zByte ){
497 p->zBuf = (char *)&p[1];
498 memcpy(p->zBuf, zByte, nByte);
499 }else{
500 p->zBuf = 0;
501 }
502 addAsyncWrite(p);
503 return SQLITE_OK;
504}
505
506/*
507** Close the file. This just adds an entry to the write-op list, the file is
508** not actually closed.
509*/
510static int asyncClose(sqlite3_file *pFile){
511 AsyncFileData *p = ((AsyncFile *)pFile)->pData;
512
513 /* Unlock the file, if it is locked */
514 pthread_mutex_lock(&async.lockMutex);
515 p->lock.eLock = 0;
516 pthread_mutex_unlock(&async.lockMutex);
517
518 addAsyncWrite(&p->close);
519 return SQLITE_OK;
520}
521
522/*
523** Implementation of sqlite3OsWrite() for asynchronous files. Instead of
524** writing to the underlying file, this function adds an entry to the end of
525** the global AsyncWrite list. Either SQLITE_OK or SQLITE_NOMEM may be
526** returned.
527*/
528static int asyncWrite(sqlite3_file *pFile, const void *pBuf, int amt, i64 iOff){
529 AsyncFileData *p = ((AsyncFile *)pFile)->pData;
530 return addNewAsyncWrite(p, ASYNC_WRITE, iOff, amt, pBuf);
531}
532
533/*
534** Read data from the file. First we read from the filesystem, then adjust
535** the contents of the buffer based on ASYNC_WRITE operations in the
536** write-op queue.
537**
538** This method holds the mutex from start to finish.
539*/
540static int asyncRead(sqlite3_file *pFile, void *zOut, int iAmt, i64 iOffset){
541 AsyncFileData *p = ((AsyncFile *)pFile)->pData;
542 int rc = SQLITE_OK;
543 i64 filesize;
544 int nRead;
545 sqlite3_file *pBase = p->pBaseRead;
546
547 /* Grab the write queue mutex for the duration of the call */
548 pthread_mutex_lock(&async.queueMutex);
549
550 /* If an I/O error has previously occurred in this virtual file
551 ** system, then all subsequent operations fail.
552 */
553 if( async.ioError!=SQLITE_OK ){
554 rc = async.ioError;
555 goto asyncread_out;
556 }
557
558 if( pBase->pMethods ){
559 rc = sqlite3OsFileSize(pBase, &filesize);
560 if( rc!=SQLITE_OK ){
561 goto asyncread_out;
562 }
563 nRead = MIN(filesize - iOffset, iAmt);
564 if( nRead>0 ){
565 rc = sqlite3OsRead(pBase, zOut, nRead, iOffset);
566 ASYNC_TRACE(("READ %s %d bytes at %d\n", p->zName, nRead, iOffset));
567 }
568 }
569
570 if( rc==SQLITE_OK ){
571 AsyncWrite *pWrite;
572 char *zName = p->zName;
573
574 for(pWrite=async.pQueueFirst; pWrite; pWrite = pWrite->pNext){
575 if( pWrite->op==ASYNC_WRITE && pWrite->pFileData->zName==zName ){
576 int iBeginOut = (pWrite->iOffset-iOffset);
577 int iBeginIn = -iBeginOut;
578 int nCopy;
579
580 if( iBeginIn<0 ) iBeginIn = 0;
581 if( iBeginOut<0 ) iBeginOut = 0;
582 nCopy = MIN(pWrite->nByte-iBeginIn, iAmt-iBeginOut);
583
584 if( nCopy>0 ){
585 memcpy(&((char *)zOut)[iBeginOut], &pWrite->zBuf[iBeginIn], nCopy);
586 ASYNC_TRACE(("OVERREAD %d bytes at %d\n", nCopy, iBeginOut+iOffset));
587 }
588 }
589 }
590 }
591
592asyncread_out:
593 pthread_mutex_unlock(&async.queueMutex);
594 return rc;
595}
596
597/*
598** Truncate the file to nByte bytes in length. This just adds an entry to
599** the write-op list, no IO actually takes place.
600*/
601static int asyncTruncate(sqlite3_file *pFile, i64 nByte){
602 AsyncFileData *p = ((AsyncFile *)pFile)->pData;
603 return addNewAsyncWrite(p, ASYNC_TRUNCATE, nByte, 0, 0);
604}
605
606/*
607** Sync the file. This just adds an entry to the write-op list, the
608** sync() is done later by sqlite3_async_flush().
609*/
610static int asyncSync(sqlite3_file *pFile, int flags){
611 AsyncFileData *p = ((AsyncFile *)pFile)->pData;
612 return addNewAsyncWrite(p, ASYNC_SYNC, 0, flags, 0);
613}
614
615/*
616** Read the size of the file. First we read the size of the file system
617** entry, then adjust for any ASYNC_WRITE or ASYNC_TRUNCATE operations
618** currently in the write-op list.
619**
620** This method holds the mutex from start to finish.
621*/
622int asyncFileSize(sqlite3_file *pFile, i64 *piSize){
623 AsyncFileData *p = ((AsyncFile *)pFile)->pData;
624 int rc = SQLITE_OK;
625 i64 s = 0;
626 sqlite3_file *pBase;
627
628 pthread_mutex_lock(&async.queueMutex);
629
630 /* Read the filesystem size from the base file. If pBaseRead is NULL, this
631 ** means the file hasn't been opened yet. In this case all relevant data
632 ** must be in the write-op queue anyway, so we can omit reading from the
633 ** file-system.
634 */
635 pBase = p->pBaseRead;
636 if( pBase->pMethods ){
637 rc = sqlite3OsFileSize(pBase, &s);
638 }
639
640 if( rc==SQLITE_OK ){
641 AsyncWrite *pWrite;
642 for(pWrite=async.pQueueFirst; pWrite; pWrite = pWrite->pNext){
643 if( pWrite->op==ASYNC_DELETE && strcmp(p->zName, pWrite->zBuf)==0 ){
644 s = 0;
645 }else if( pWrite->pFileData && pWrite->pFileData->zName==p->zName){
646 switch( pWrite->op ){
647 case ASYNC_WRITE:
648 s = MAX(pWrite->iOffset + (i64)(pWrite->nByte), s);
649 break;
650 case ASYNC_TRUNCATE:
651 s = MIN(s, pWrite->iOffset);
652 break;
653 }
654 }
655 }
656 *piSize = s;
657 }
658 pthread_mutex_unlock(&async.queueMutex);
659 return rc;
660}
661
662/*
663** Lock or unlock the actual file-system entry.
664*/
665static int getFileLock(AsyncLock *pLock){
666 int rc = SQLITE_OK;
667 AsyncFileLock *pIter;
668 int eRequired = 0;
669
670 if( pLock->pFile ){
671 for(pIter=pLock->pList; pIter; pIter=pIter->pNext){
672 assert(pIter->eAsyncLock>=pIter->eLock);
673 if( pIter->eAsyncLock>eRequired ){
674 eRequired = pIter->eAsyncLock;
675 assert(eRequired>=0 && eRequired<=SQLITE_LOCK_EXCLUSIVE);
676 }
677 }
678
679 if( eRequired>pLock->eLock ){
680 rc = sqlite3OsLock(pLock->pFile, eRequired);
681 if( rc==SQLITE_OK ){
682 pLock->eLock = eRequired;
683 }
684 }
685 else if( eRequired<pLock->eLock && eRequired<=SQLITE_LOCK_SHARED ){
686 rc = sqlite3OsUnlock(pLock->pFile, eRequired);
687 if( rc==SQLITE_OK ){
688 pLock->eLock = eRequired;
689 }
690 }
691 }
692
693 return rc;
694}
695
696/*
697** The following two methods - asyncLock() and asyncUnlock() - are used
698** to obtain and release locks on database files opened with the
699** asynchronous backend.
700*/
701static int asyncLock(sqlite3_file *pFile, int eLock){
702 int rc = SQLITE_OK;
703 AsyncFileData *p = ((AsyncFile *)pFile)->pData;
704
705 pthread_mutex_lock(&async.lockMutex);
706 if( p->lock.eLock<eLock ){
707 AsyncLock *pLock;
708 AsyncFileLock *pIter;
709 pLock = (AsyncLock *)sqlite3HashFind(&async.aLock, p->zName, p->nName);
710 assert(pLock && pLock->pList);
711 for(pIter=pLock->pList; pIter; pIter=pIter->pNext){
712 if( pIter!=&p->lock && (
713 (eLock==SQLITE_LOCK_EXCLUSIVE && pIter->eLock>=SQLITE_LOCK_SHARED) ||
714 (eLock==SQLITE_LOCK_PENDING && pIter->eLock>=SQLITE_LOCK_RESERVED) ||
715 (eLock==SQLITE_LOCK_RESERVED && pIter->eLock>=SQLITE_LOCK_RESERVED) ||
716 (eLock==SQLITE_LOCK_SHARED && pIter->eLock>=SQLITE_LOCK_PENDING)
717 )){
718 rc = SQLITE_BUSY;
719 }
720 }
721 if( rc==SQLITE_OK ){
722 p->lock.eLock = eLock;
723 p->lock.eAsyncLock = MAX(p->lock.eAsyncLock, eLock);
724 }
725 assert(p->lock.eAsyncLock>=p->lock.eLock);
726 if( rc==SQLITE_OK ){
727 rc = getFileLock(pLock);
728 }
729 }
730 pthread_mutex_unlock(&async.lockMutex);
731
732 ASYNC_TRACE(("LOCK %d (%s) rc=%d\n", eLock, p->zName, rc));
733 return rc;
734}
735static int asyncUnlock(sqlite3_file *pFile, int eLock){
736 AsyncFileData *p = ((AsyncFile *)pFile)->pData;
737 AsyncFileLock *pLock = &p->lock;
738 pthread_mutex_lock(&async.lockMutex);
739 pLock->eLock = MIN(pLock->eLock, eLock);
740 pthread_mutex_unlock(&async.lockMutex);
741 return addNewAsyncWrite(p, ASYNC_UNLOCK, 0, eLock, 0);
742}
743
744/*
745** This function is called when the pager layer first opens a database file
746** and is checking for a hot-journal.
747*/
748static int asyncCheckReservedLock(sqlite3_file *pFile){
749 int ret = 0;
750 AsyncFileLock *pIter;
751 AsyncLock *pLock;
752 AsyncFileData *p = ((AsyncFile *)pFile)->pData;
753
754 pthread_mutex_lock(&async.lockMutex);
755 pLock = (AsyncLock *)sqlite3HashFind(&async.aLock, p->zName, p->nName);
756 for(pIter=pLock->pList; pIter; pIter=pIter->pNext){
757 if( pIter->eLock>=SQLITE_LOCK_RESERVED ){
758 ret = 1;
759 }
760 }
761 pthread_mutex_unlock(&async.lockMutex);
762
763 ASYNC_TRACE(("CHECK-LOCK %d (%s)\n", ret, p->zName));
764 return ret;
765}
766
767/*
768** This is a no-op, as the asynchronous backend does not support locking.
769*/
770static int asyncFileControl(sqlite3_file *id, int op, void *pArg){
771 switch( op ){
772 case SQLITE_FCNTL_LOCKSTATE: {
773 pthread_mutex_lock(&async.lockMutex);
774 *(int*)pArg = ((AsyncFile*)id)->pData->lock.eLock;
775 pthread_mutex_unlock(&async.lockMutex);
776 return SQLITE_OK;
777 }
778 }
779 return SQLITE_ERROR;
780}
781
782/*
783** Return the device characteristics and sector-size of the device. It
784** is not tricky to implement these correctly, as this backend might
785** not have an open file handle at this point.
786*/
787static int asyncSectorSize(sqlite3_file *pFile){
788 return 512;
789}
790static int asyncDeviceCharacteristics(sqlite3_file *pFile){
791 return 0;
792}
793
794static int unlinkAsyncFile(AsyncFileData *pData){
795 AsyncLock *pLock;
796 AsyncFileLock **ppIter;
797 int rc = SQLITE_OK;
798
799 pLock = sqlite3HashFind(&async.aLock, pData->zName, pData->nName);
800 for(ppIter=&pLock->pList; *ppIter; ppIter=&((*ppIter)->pNext)){
801 if( (*ppIter)==&pData->lock ){
802 *ppIter = pData->lock.pNext;
803 break;
804 }
805 }
806 if( !pLock->pList ){
807 if( pLock->pFile ){
808 sqlite3OsClose(pLock->pFile);
809 }
810 sqlite3_free(pLock);
811 sqlite3HashInsert(&async.aLock, pData->zName, pData->nName, 0);
812 if( !sqliteHashFirst(&async.aLock) ){
813 sqlite3HashClear(&async.aLock);
814 }
815 }else{
816 rc = getFileLock(pLock);
817 }
818
819 return rc;
820}
821
822/*
823** Open a file.
824*/
825static int asyncOpen(
826 sqlite3_vfs *pAsyncVfs,
827 const char *zName,
828 sqlite3_file *pFile,
829 int flags,
830 int *pOutFlags
831){
832 static sqlite3_io_methods async_methods = {
833 1, /* iVersion */
834 asyncClose, /* xClose */
835 asyncRead, /* xRead */
836 asyncWrite, /* xWrite */
837 asyncTruncate, /* xTruncate */
838 asyncSync, /* xSync */
839 asyncFileSize, /* xFileSize */
840 asyncLock, /* xLock */
841 asyncUnlock, /* xUnlock */
842 asyncCheckReservedLock, /* xCheckReservedLock */
843 asyncFileControl, /* xFileControl */
844 asyncSectorSize, /* xSectorSize */
845 asyncDeviceCharacteristics /* xDeviceCharacteristics */
846 };
847
848 sqlite3_vfs *pVfs = (sqlite3_vfs *)pAsyncVfs->pAppData;
849 AsyncFile *p = (AsyncFile *)pFile;
850 int nName = strlen(zName)+1;
851 int rc = SQLITE_OK;
852 int nByte;
853 AsyncFileData *pData;
854 AsyncLock *pLock = 0;
855 int isExclusive = (flags&SQLITE_OPEN_EXCLUSIVE);
856
857 nByte = (
858 sizeof(AsyncFileData) + /* AsyncFileData structure */
859 2 * pVfs->szOsFile + /* AsyncFileData.pBaseRead and pBaseWrite */
860 nName /* AsyncFileData.zName */
861 );
862 pData = sqlite3_malloc(nByte);
863 if( !pData ){
864 return SQLITE_NOMEM;
865 }
866 memset(pData, 0, nByte);
867 pData->zName = (char *)&pData[1];
868 pData->nName = nName;
869 pData->pBaseRead = (sqlite3_file *)&pData->zName[nName];
870 pData->pBaseWrite = (sqlite3_file *)&pData->zName[nName+pVfs->szOsFile];
871 pData->close.pFileData = pData;
872 pData->close.op = ASYNC_CLOSE;
873 memcpy(pData->zName, zName, nName);
874
875 if( !isExclusive ){
876 rc = sqlite3OsOpen(pVfs, zName, pData->pBaseRead, flags, pOutFlags);
877 if( rc==SQLITE_OK && ((*pOutFlags)&SQLITE_OPEN_READWRITE) ){
878 rc = sqlite3OsOpen(pVfs, zName, pData->pBaseWrite, flags, 0);
879 }
880 }
881
882 pthread_mutex_lock(&async.lockMutex);
883
884 if( rc==SQLITE_OK ){
885 pLock = sqlite3HashFind(&async.aLock, pData->zName, pData->nName);
886 if( !pLock ){
887 pLock = sqlite3MallocZero(pVfs->szOsFile + sizeof(AsyncLock));
888 if( pLock ){
889 AsyncLock *pDelete;
890#ifdef ENABLE_FILE_LOCKING
891 if( flags&SQLITE_OPEN_MAIN_DB ){
892 pLock->pFile = (sqlite3_file *)&pLock[1];
893 rc = sqlite3OsOpen(pVfs, zName, pLock->pFile, flags, 0);
894 if( rc!=SQLITE_OK ){
895 sqlite3_free(pLock);
896 pLock = 0;
897 }
898 }
899#endif
900 pDelete = sqlite3HashInsert(
901 &async.aLock, pData->zName, pData->nName, (void *)pLock
902 );
903 if( pDelete ){
904 rc = SQLITE_NOMEM;
905 sqlite3_free(pLock);
906 }
907 }else{
908 rc = SQLITE_NOMEM;
909 }
910 }
911 }
912
913 if( rc==SQLITE_OK ){
914 HashElem *pElem;
915 p->pMethod = &async_methods;
916 p->pData = pData;
917 incrOpenFileCount();
918
919 /* Link AsyncFileData.lock into the linked list of
920 ** AsyncFileLock structures for this file.
921 */
922 pData->lock.pNext = pLock->pList;
923 pLock->pList = &pData->lock;
924
925 pElem = sqlite3HashFindElem(&async.aLock, pData->zName, pData->nName);
926 pData->zName = (char *)sqliteHashKey(pElem);
927 }else{
928 sqlite3OsClose(pData->pBaseRead);
929 sqlite3OsClose(pData->pBaseWrite);
930 sqlite3_free(pData);
931 }
932
933 pthread_mutex_unlock(&async.lockMutex);
934
935 if( rc==SQLITE_OK && isExclusive ){
936 rc = addNewAsyncWrite(pData, ASYNC_OPENEXCLUSIVE, (i64)flags, 0, 0);
937 if( rc==SQLITE_OK ){
938 if( pOutFlags ) *pOutFlags = flags;
939 }else{
940 pthread_mutex_lock(&async.lockMutex);
941 unlinkAsyncFile(pData);
942 pthread_mutex_unlock(&async.lockMutex);
943 sqlite3_free(pData);
944 }
945 }
946 return rc;
947}
948
949/*
950** Implementation of sqlite3OsDelete. Add an entry to the end of the
951** write-op queue to perform the delete.
952*/
953static int asyncDelete(sqlite3_vfs *pAsyncVfs, const char *z, int syncDir){
954 return addNewAsyncWrite(0, ASYNC_DELETE, syncDir, strlen(z)+1, z);
955}
956
957/*
958** Implementation of sqlite3OsAccess. This method holds the mutex from
959** start to finish.
960*/
961static int asyncAccess(sqlite3_vfs *pAsyncVfs, const char *zName, int flags){
962 int ret;
963 AsyncWrite *p;
964 sqlite3_vfs *pVfs = (sqlite3_vfs *)pAsyncVfs->pAppData;
965
966 assert(flags==SQLITE_ACCESS_READWRITE
967 || flags==SQLITE_ACCESS_READ
968 || flags==SQLITE_ACCESS_EXISTS
969 );
970
971 pthread_mutex_lock(&async.queueMutex);
972 ret = sqlite3OsAccess(pVfs, zName, flags);
973 if( flags==SQLITE_ACCESS_EXISTS ){
974 for(p=async.pQueueFirst; p; p = p->pNext){
975 if( p->op==ASYNC_DELETE && 0==strcmp(p->zBuf, zName) ){
976 ret = 0;
977 }else if( p->op==ASYNC_OPENEXCLUSIVE
978 && 0==strcmp(p->pFileData->zName, zName)
979 ){
980 ret = 1;
981 }
982 }
983 }
984 ASYNC_TRACE(("ACCESS(%s): %s = %d\n",
985 flags==SQLITE_ACCESS_READWRITE?"read-write":
986 flags==SQLITE_ACCESS_READ?"read":"exists"
987 , zName, ret)
988 );
989 pthread_mutex_unlock(&async.queueMutex);
990 return ret;
991}
992
993static int asyncGetTempname(sqlite3_vfs *pAsyncVfs, int nBufOut, char *zBufOut){
994 sqlite3_vfs *pVfs = (sqlite3_vfs *)pAsyncVfs->pAppData;
995 return pVfs->xGetTempname(pVfs, nBufOut, zBufOut);
996}
997
998/*
999** Fill in zPathOut with the full path to the file identified by zPath.
1000*/
1001static int asyncFullPathname(
1002 sqlite3_vfs *pAsyncVfs,
1003 const char *zPath,
1004 int nPathOut,
1005 char *zPathOut
1006){
1007 int rc;
1008 sqlite3_vfs *pVfs = (sqlite3_vfs *)pAsyncVfs->pAppData;
1009 rc = sqlite3OsFullPathname(pVfs, zPath, nPathOut, zPathOut);
1010
1011 /* Because of the way intra-process file locking works, this backend
1012 ** needs to return a canonical path. The following block assumes the
1013 ** file-system uses unix style paths.
1014 */
1015 if( rc==SQLITE_OK ){
1016 int iIn;
1017 int iOut = 0;
1018 int nPathOut = strlen(zPathOut);
1019
1020 for(iIn=0; iIn<nPathOut; iIn++){
1021
1022 /* Replace any occurences of "//" with "/" */
1023 if( iIn<=(nPathOut-2) && zPathOut[iIn]=='/' && zPathOut[iIn+1]=='/'
1024 ){
1025 continue;
1026 }
1027
1028 /* Replace any occurences of "/./" with "/" */
1029 if( iIn<=(nPathOut-3)
1030 && zPathOut[iIn]=='/' && zPathOut[iIn+1]=='.' && zPathOut[iIn+2]=='/'
1031 ){
1032 iIn++;
1033 continue;
1034 }
1035
1036 /* Replace any occurences of "<path-component>/../" with "" */
1037 if( iOut>0 && iIn<=(nPathOut-4)
1038 && zPathOut[iIn]=='/' && zPathOut[iIn+1]=='.'
1039 && zPathOut[iIn+2]=='.' && zPathOut[iIn+3]=='/'
1040 ){
1041 iIn += 3;
1042 iOut--;
1043 for( ; iOut>0 && zPathOut[iOut-1]!='/'; iOut--);
1044 continue;
1045 }
1046
1047 zPathOut[iOut++] = zPathOut[iIn];
1048 }
1049 zPathOut[iOut] = '\0';
1050 }
1051
1052 return rc;
1053}
1054static void *asyncDlOpen(sqlite3_vfs *pAsyncVfs, const char *zPath){
1055 sqlite3_vfs *pVfs = (sqlite3_vfs *)pAsyncVfs->pAppData;
1056 return pVfs->xDlOpen(pVfs, zPath);
1057}
1058static void asyncDlError(sqlite3_vfs *pAsyncVfs, int nByte, char *zErrMsg){
1059 sqlite3_vfs *pVfs = (sqlite3_vfs *)pAsyncVfs->pAppData;
1060 pVfs->xDlError(pVfs, nByte, zErrMsg);
1061}
1062static void *asyncDlSym(
1063 sqlite3_vfs *pAsyncVfs,
1064 void *pHandle,
1065 const char *zSymbol
1066){
1067 sqlite3_vfs *pVfs = (sqlite3_vfs *)pAsyncVfs->pAppData;
1068 return pVfs->xDlSym(pVfs, pHandle, zSymbol);
1069}
1070static void asyncDlClose(sqlite3_vfs *pAsyncVfs, void *pHandle){
1071 sqlite3_vfs *pVfs = (sqlite3_vfs *)pAsyncVfs->pAppData;
1072 pVfs->xDlClose(pVfs, pHandle);
1073}
1074static int asyncRandomness(sqlite3_vfs *pAsyncVfs, int nByte, char *zBufOut){
1075 sqlite3_vfs *pVfs = (sqlite3_vfs *)pAsyncVfs->pAppData;
1076 return pVfs->xRandomness(pVfs, nByte, zBufOut);
1077}
1078static int asyncSleep(sqlite3_vfs *pAsyncVfs, int nMicro){
1079 sqlite3_vfs *pVfs = (sqlite3_vfs *)pAsyncVfs->pAppData;
1080 return pVfs->xSleep(pVfs, nMicro);
1081}
1082static int asyncCurrentTime(sqlite3_vfs *pAsyncVfs, double *pTimeOut){
1083 sqlite3_vfs *pVfs = (sqlite3_vfs *)pAsyncVfs->pAppData;
1084 return pVfs->xCurrentTime(pVfs, pTimeOut);
1085}
1086
1087static sqlite3_vfs async_vfs = {
1088 1, /* iVersion */
1089 sizeof(AsyncFile), /* szOsFile */
1090 0, /* mxPathname */
1091 0, /* pNext */
1092 "async", /* zName */
1093 0, /* pAppData */
1094 asyncOpen, /* xOpen */
1095 asyncDelete, /* xDelete */
1096 asyncAccess, /* xAccess */
1097 asyncGetTempname, /* xGetTempName */
1098 asyncFullPathname, /* xFullPathname */
1099 asyncDlOpen, /* xDlOpen */
1100 asyncDlError, /* xDlError */
1101 asyncDlSym, /* xDlSym */
1102 asyncDlClose, /* xDlClose */
1103 asyncRandomness, /* xDlError */
1104 asyncSleep, /* xDlSym */
1105 asyncCurrentTime /* xDlClose */
1106};
1107
1108/*
1109** Call this routine to enable or disable the
1110** asynchronous IO features implemented in this file.
1111**
1112** This routine is not even remotely threadsafe. Do not call
1113** this routine while any SQLite database connections are open.
1114*/
1115static void asyncEnable(int enable){
1116 if( enable ){
1117 if( !async_vfs.pAppData ){
1118 static int hashTableInit = 0;
1119 async_vfs.pAppData = (void *)sqlite3_vfs_find(0);
1120 async_vfs.mxPathname = ((sqlite3_vfs *)async_vfs.pAppData)->mxPathname;
1121 sqlite3_vfs_register(&async_vfs, 1);
1122 if( !hashTableInit ){
1123 sqlite3HashInit(&async.aLock, SQLITE_HASH_BINARY, 1);
1124 hashTableInit = 1;
1125 }
1126 }
1127 }else{
1128 if( async_vfs.pAppData ){
1129 sqlite3_vfs_unregister(&async_vfs);
1130 async_vfs.pAppData = 0;
1131 }
1132 }
1133}
1134
1135/*
1136** This procedure runs in a separate thread, reading messages off of the
1137** write queue and processing them one by one.
1138**
1139** If async.writerHaltNow is true, then this procedure exits
1140** after processing a single message.
1141**
1142** If async.writerHaltWhenIdle is true, then this procedure exits when
1143** the write queue is empty.
1144**
1145** If both of the above variables are false, this procedure runs
1146** indefinately, waiting for operations to be added to the write queue
1147** and processing them in the order in which they arrive.
1148**
1149** An artifical delay of async.ioDelay milliseconds is inserted before
1150** each write operation in order to simulate the effect of a slow disk.
1151**
1152** Only one instance of this procedure may be running at a time.
1153*/
1154static void *asyncWriterThread(void *NotUsed){
1155 sqlite3_vfs *pVfs = (sqlite3_vfs *)(async_vfs.pAppData);
1156 AsyncWrite *p = 0;
1157 int rc = SQLITE_OK;
1158 int holdingMutex = 0;
1159
1160 if( pthread_mutex_trylock(&async.writerMutex) ){
1161 return 0;
1162 }
1163 while( async.writerHaltNow==0 ){
1164 int doNotFree = 0;
1165 sqlite3_file *pBase = 0;
1166
1167 if( !holdingMutex ){
1168 pthread_mutex_lock(&async.queueMutex);
1169 }
1170 while( (p = async.pQueueFirst)==0 ){
1171 pthread_cond_broadcast(&async.emptySignal);
1172 if( async.writerHaltWhenIdle ){
1173 pthread_mutex_unlock(&async.queueMutex);
1174 break;
1175 }else{
1176 ASYNC_TRACE(("IDLE\n"));
1177 pthread_cond_wait(&async.queueSignal, &async.queueMutex);
1178 ASYNC_TRACE(("WAKEUP\n"));
1179 }
1180 }
1181 if( p==0 ) break;
1182 holdingMutex = 1;
1183
1184 /* Right now this thread is holding the mutex on the write-op queue.
1185 ** Variable 'p' points to the first entry in the write-op queue. In
1186 ** the general case, we hold on to the mutex for the entire body of
1187 ** the loop.
1188 **
1189 ** However in the cases enumerated below, we relinquish the mutex,
1190 ** perform the IO, and then re-request the mutex before removing 'p' from
1191 ** the head of the write-op queue. The idea is to increase concurrency with
1192 ** sqlite threads.
1193 **
1194 ** * An ASYNC_CLOSE operation.
1195 ** * An ASYNC_OPENEXCLUSIVE operation. For this one, we relinquish
1196 ** the mutex, call the underlying xOpenExclusive() function, then
1197 ** re-aquire the mutex before seting the AsyncFile.pBaseRead
1198 ** variable.
1199 ** * ASYNC_SYNC and ASYNC_WRITE operations, if
1200 ** SQLITE_ASYNC_TWO_FILEHANDLES was set at compile time and two
1201 ** file-handles are open for the particular file being "synced".
1202 */
1203 if( async.ioError!=SQLITE_OK && p->op!=ASYNC_CLOSE ){
1204 p->op = ASYNC_NOOP;
1205 }
1206 if( p->pFileData ){
1207 pBase = p->pFileData->pBaseWrite;
1208 if(
1209 p->op==ASYNC_CLOSE ||
1210 p->op==ASYNC_OPENEXCLUSIVE ||
1211 (pBase->pMethods && (p->op==ASYNC_SYNC || p->op==ASYNC_WRITE) )
1212 ){
1213 pthread_mutex_unlock(&async.queueMutex);
1214 holdingMutex = 0;
1215 }
1216 if( !pBase->pMethods ){
1217 pBase = p->pFileData->pBaseRead;
1218 }
1219 }
1220
1221 switch( p->op ){
1222 case ASYNC_NOOP:
1223 break;
1224
1225 case ASYNC_WRITE:
1226 assert( pBase );
1227 ASYNC_TRACE(("WRITE %s %d bytes at %d\n",
1228 p->pFileData->zName, p->nByte, p->iOffset));
1229 rc = sqlite3OsWrite(pBase, (void *)(p->zBuf), p->nByte, p->iOffset);
1230 break;
1231
1232 case ASYNC_SYNC:
1233 assert( pBase );
1234 ASYNC_TRACE(("SYNC %s\n", p->pFileData->zName));
1235 rc = sqlite3OsSync(pBase, p->nByte);
1236 break;
1237
1238 case ASYNC_TRUNCATE:
1239 assert( pBase );
1240 ASYNC_TRACE(("TRUNCATE %s to %d bytes\n",
1241 p->pFileData->zName, p->iOffset));
1242 rc = sqlite3OsTruncate(pBase, p->iOffset);
1243 break;
1244
1245 case ASYNC_CLOSE: {
1246 AsyncFileData *pData = p->pFileData;
1247 ASYNC_TRACE(("CLOSE %s\n", p->pFileData->zName));
1248 sqlite3OsClose(pData->pBaseWrite);
1249 sqlite3OsClose(pData->pBaseRead);
1250
1251 /* Unlink AsyncFileData.lock from the linked list of AsyncFileLock
1252 ** structures for this file. Obtain the async.lockMutex mutex
1253 ** before doing so.
1254 */
1255 pthread_mutex_lock(&async.lockMutex);
1256 rc = unlinkAsyncFile(pData);
1257 pthread_mutex_unlock(&async.lockMutex);
1258
1259 async.pQueueFirst = p->pNext;
1260 sqlite3_free(pData);
1261 doNotFree = 1;
1262 break;
1263 }
1264
1265 case ASYNC_UNLOCK: {
1266 AsyncLock *pLock;
1267 AsyncFileData *pData = p->pFileData;
1268 int eLock = p->nByte;
1269 pthread_mutex_lock(&async.lockMutex);
1270 pData->lock.eAsyncLock = MIN(
1271 pData->lock.eAsyncLock, MAX(pData->lock.eLock, eLock)
1272 );
1273 assert(pData->lock.eAsyncLock>=pData->lock.eLock);
1274 pLock = sqlite3HashFind(&async.aLock, pData->zName, pData->nName);
1275 rc = getFileLock(pLock);
1276 pthread_mutex_unlock(&async.lockMutex);
1277 break;
1278 }
1279
1280 case ASYNC_DELETE:
1281 ASYNC_TRACE(("DELETE %s\n", p->zBuf));
1282 rc = sqlite3OsDelete(pVfs, p->zBuf, (int)p->iOffset);
1283 break;
1284
1285 case ASYNC_OPENEXCLUSIVE: {
1286 int flags = (int)p->iOffset;
1287 AsyncFileData *pData = p->pFileData;
1288 ASYNC_TRACE(("OPEN %s flags=%d\n", p->zBuf, (int)p->iOffset));
1289 assert(pData->pBaseRead->pMethods==0 && pData->pBaseWrite->pMethods==0);
1290 rc = sqlite3OsOpen(pVfs, pData->zName, pData->pBaseRead, flags, 0);
1291 assert( holdingMutex==0 );
1292 pthread_mutex_lock(&async.queueMutex);
1293 holdingMutex = 1;
1294 break;
1295 }
1296
1297 default: assert(!"Illegal value for AsyncWrite.op");
1298 }
1299
1300 /* If we didn't hang on to the mutex during the IO op, obtain it now
1301 ** so that the AsyncWrite structure can be safely removed from the
1302 ** global write-op queue.
1303 */
1304 if( !holdingMutex ){
1305 pthread_mutex_lock(&async.queueMutex);
1306 holdingMutex = 1;
1307 }
1308 /* ASYNC_TRACE(("UNLINK %p\n", p)); */
1309 if( p==async.pQueueLast ){
1310 async.pQueueLast = 0;
1311 }
1312 if( !doNotFree ){
1313 async.pQueueFirst = p->pNext;
1314 sqlite3_free(p);
1315 }
1316 assert( holdingMutex );
1317
1318 /* An IO error has occured. We cannot report the error back to the
1319 ** connection that requested the I/O since the error happened
1320 ** asynchronously. The connection has already moved on. There
1321 ** really is nobody to report the error to.
1322 **
1323 ** The file for which the error occured may have been a database or
1324 ** journal file. Regardless, none of the currently queued operations
1325 ** associated with the same database should now be performed. Nor should
1326 ** any subsequently requested IO on either a database or journal file
1327 ** handle for the same database be accepted until the main database
1328 ** file handle has been closed and reopened.
1329 **
1330 ** Furthermore, no further IO should be queued or performed on any file
1331 ** handle associated with a database that may have been part of a
1332 ** multi-file transaction that included the database associated with
1333 ** the IO error (i.e. a database ATTACHed to the same handle at some
1334 ** point in time).
1335 */
1336 if( rc!=SQLITE_OK ){
1337 async.ioError = rc;
1338 }
1339
1340 if( async.ioError && !async.pQueueFirst ){
1341 pthread_mutex_lock(&async.lockMutex);
1342 if( 0==sqliteHashFirst(&async.aLock) ){
1343 async.ioError = SQLITE_OK;
1344 }
1345 pthread_mutex_unlock(&async.lockMutex);
1346 }
1347
1348 /* Drop the queue mutex before continuing to the next write operation
1349 ** in order to give other threads a chance to work with the write queue.
1350 */
1351 if( !async.pQueueFirst || !async.ioError ){
1352 pthread_mutex_unlock(&async.queueMutex);
1353 holdingMutex = 0;
1354 if( async.ioDelay>0 ){
1355 sqlite3OsSleep(pVfs, async.ioDelay);
1356 }else{
1357 sched_yield();
1358 }
1359 }
1360 }
1361
1362 pthread_mutex_unlock(&async.writerMutex);
1363 return 0;
1364}
1365
1366/**************************************************************************
1367** The remaining code defines a Tcl interface for testing the asynchronous
1368** IO implementation in this file.
1369**
1370** To adapt the code to a non-TCL environment, delete or comment out
1371** the code that follows.
1372*/
1373
1374/*
1375** sqlite3async_enable ?YES/NO?
1376**
1377** Enable or disable the asynchronous I/O backend. This command is
1378** not thread-safe. Do not call it while any database connections
1379** are open.
1380*/
1381static int testAsyncEnable(
1382 void * clientData,
1383 Tcl_Interp *interp,
1384 int objc,
1385 Tcl_Obj *CONST objv[]
1386){
1387 if( objc!=1 && objc!=2 ){
1388 Tcl_WrongNumArgs(interp, 1, objv, "?YES/NO?");
1389 return TCL_ERROR;
1390 }
1391 if( objc==1 ){
1392 Tcl_SetObjResult(interp, Tcl_NewBooleanObj(async_vfs.pAppData!=0));
1393 }else{
1394 int en;
1395 if( Tcl_GetBooleanFromObj(interp, objv[1], &en) ) return TCL_ERROR;
1396 asyncEnable(en);
1397 }
1398 return TCL_OK;
1399}
1400
1401/*
1402** sqlite3async_halt "now"|"idle"|"never"
1403**
1404** Set the conditions at which the writer thread will halt.
1405*/
1406static int testAsyncHalt(
1407 void * clientData,
1408 Tcl_Interp *interp,
1409 int objc,
1410 Tcl_Obj *CONST objv[]
1411){
1412 const char *zCond;
1413 if( objc!=2 ){
1414 Tcl_WrongNumArgs(interp, 1, objv, "\"now\"|\"idle\"|\"never\"");
1415 return TCL_ERROR;
1416 }
1417 zCond = Tcl_GetString(objv[1]);
1418 if( strcmp(zCond, "now")==0 ){
1419 async.writerHaltNow = 1;
1420 pthread_cond_broadcast(&async.queueSignal);
1421 }else if( strcmp(zCond, "idle")==0 ){
1422 async.writerHaltWhenIdle = 1;
1423 async.writerHaltNow = 0;
1424 pthread_cond_broadcast(&async.queueSignal);
1425 }else if( strcmp(zCond, "never")==0 ){
1426 async.writerHaltWhenIdle = 0;
1427 async.writerHaltNow = 0;
1428 }else{
1429 Tcl_AppendResult(interp,
1430 "should be one of: \"now\", \"idle\", or \"never\"", (char*)0);
1431 return TCL_ERROR;
1432 }
1433 return TCL_OK;
1434}
1435
1436/*
1437** sqlite3async_delay ?MS?
1438**
1439** Query or set the number of milliseconds of delay in the writer
1440** thread after each write operation. The default is 0. By increasing
1441** the memory delay we can simulate the effect of slow disk I/O.
1442*/
1443static int testAsyncDelay(
1444 void * clientData,
1445 Tcl_Interp *interp,
1446 int objc,
1447 Tcl_Obj *CONST objv[]
1448){
1449 if( objc!=1 && objc!=2 ){
1450 Tcl_WrongNumArgs(interp, 1, objv, "?MS?");
1451 return TCL_ERROR;
1452 }
1453 if( objc==1 ){
1454 Tcl_SetObjResult(interp, Tcl_NewIntObj(async.ioDelay));
1455 }else{
1456 int ioDelay;
1457 if( Tcl_GetIntFromObj(interp, objv[1], &ioDelay) ) return TCL_ERROR;
1458 async.ioDelay = ioDelay;
1459 }
1460 return TCL_OK;
1461}
1462
1463/*
1464** sqlite3async_start
1465**
1466** Start a new writer thread.
1467*/
1468static int testAsyncStart(
1469 void * clientData,
1470 Tcl_Interp *interp,
1471 int objc,
1472 Tcl_Obj *CONST objv[]
1473){
1474 pthread_t x;
1475 int rc;
1476 rc = pthread_create(&x, 0, asyncWriterThread, 0);
1477 if( rc ){
1478 Tcl_AppendResult(interp, "failed to create the thread", 0);
1479 return TCL_ERROR;
1480 }
1481 pthread_detach(x);
1482 return TCL_OK;
1483}
1484
1485/*
1486** sqlite3async_wait
1487**
1488** Wait for the current writer thread to terminate.
1489**
1490** If the current writer thread is set to run forever then this
1491** command would block forever. To prevent that, an error is returned.
1492*/
1493static int testAsyncWait(
1494 void * clientData,
1495 Tcl_Interp *interp,
1496 int objc,
1497 Tcl_Obj *CONST objv[]
1498){
1499 int cnt = 10;
1500 if( async.writerHaltNow==0 && async.writerHaltWhenIdle==0 ){
1501 Tcl_AppendResult(interp, "would block forever", (char*)0);
1502 return TCL_ERROR;
1503 }
1504
1505 while( cnt-- && !pthread_mutex_trylock(&async.writerMutex) ){
1506 pthread_mutex_unlock(&async.writerMutex);
1507 sched_yield();
1508 }
1509 if( cnt>=0 ){
1510 ASYNC_TRACE(("WAIT\n"));
1511 pthread_mutex_lock(&async.queueMutex);
1512 pthread_cond_broadcast(&async.queueSignal);
1513 pthread_mutex_unlock(&async.queueMutex);
1514 pthread_mutex_lock(&async.writerMutex);
1515 pthread_mutex_unlock(&async.writerMutex);
1516 }else{
1517 ASYNC_TRACE(("NO-WAIT\n"));
1518 }
1519 return TCL_OK;
1520}
1521
1522
1523#endif /* OS_UNIX and SQLITE_THREADSAFE */
1524
1525/*
1526** This routine registers the custom TCL commands defined in this
1527** module. This should be the only procedure visible from outside
1528** of this module.
1529*/
1530int Sqlitetestasync_Init(Tcl_Interp *interp){
1531#if OS_UNIX && SQLITE_THREADSAFE
1532 Tcl_CreateObjCommand(interp,"sqlite3async_enable",testAsyncEnable,0,0);
1533 Tcl_CreateObjCommand(interp,"sqlite3async_halt",testAsyncHalt,0,0);
1534 Tcl_CreateObjCommand(interp,"sqlite3async_delay",testAsyncDelay,0,0);
1535 Tcl_CreateObjCommand(interp,"sqlite3async_start",testAsyncStart,0,0);
1536 Tcl_CreateObjCommand(interp,"sqlite3async_wait",testAsyncWait,0,0);
1537 Tcl_LinkVar(interp, "sqlite3async_trace",
1538 (char*)&sqlite3async_trace, TCL_LINK_INT);
1539#endif /* OS_UNIX and SQLITE_THREADSAFE */
1540 return TCL_OK;
1541}