diff options
Diffstat (limited to '')
-rw-r--r-- | libraries/ode-0.9/OPCODE/OPC_SphereTriOverlap.h | 187 |
1 files changed, 0 insertions, 187 deletions
diff --git a/libraries/ode-0.9/OPCODE/OPC_SphereTriOverlap.h b/libraries/ode-0.9/OPCODE/OPC_SphereTriOverlap.h deleted file mode 100644 index 77e59f3..0000000 --- a/libraries/ode-0.9/OPCODE/OPC_SphereTriOverlap.h +++ /dev/null | |||
@@ -1,187 +0,0 @@ | |||
1 | |||
2 | // This is collision detection. If you do another distance test for collision *response*, | ||
3 | // if might be useful to simply *skip* the test below completely, and report a collision. | ||
4 | // - if sphere-triangle overlap, result is ok | ||
5 | // - if they don't, we'll discard them during collision response with a similar test anyway | ||
6 | // Overall this approach should run faster. | ||
7 | |||
8 | // Original code by David Eberly in Magic. | ||
9 | BOOL SphereCollider::SphereTriOverlap(const Point& vert0, const Point& vert1, const Point& vert2) | ||
10 | { | ||
11 | // Stats | ||
12 | mNbVolumePrimTests++; | ||
13 | |||
14 | // Early exit if one of the vertices is inside the sphere | ||
15 | Point kDiff = vert2 - mCenter; | ||
16 | float fC = kDiff.SquareMagnitude(); | ||
17 | if(fC <= mRadius2) return TRUE; | ||
18 | |||
19 | kDiff = vert1 - mCenter; | ||
20 | fC = kDiff.SquareMagnitude(); | ||
21 | if(fC <= mRadius2) return TRUE; | ||
22 | |||
23 | kDiff = vert0 - mCenter; | ||
24 | fC = kDiff.SquareMagnitude(); | ||
25 | if(fC <= mRadius2) return TRUE; | ||
26 | |||
27 | // Else do the full distance test | ||
28 | Point TriEdge0 = vert1 - vert0; | ||
29 | Point TriEdge1 = vert2 - vert0; | ||
30 | |||
31 | //Point kDiff = vert0 - mCenter; | ||
32 | float fA00 = TriEdge0.SquareMagnitude(); | ||
33 | float fA01 = TriEdge0 | TriEdge1; | ||
34 | float fA11 = TriEdge1.SquareMagnitude(); | ||
35 | float fB0 = kDiff | TriEdge0; | ||
36 | float fB1 = kDiff | TriEdge1; | ||
37 | //float fC = kDiff.SquareMagnitude(); | ||
38 | float fDet = fabsf(fA00*fA11 - fA01*fA01); | ||
39 | float u = fA01*fB1-fA11*fB0; | ||
40 | float v = fA01*fB0-fA00*fB1; | ||
41 | float SqrDist; | ||
42 | |||
43 | if(u + v <= fDet) | ||
44 | { | ||
45 | if(u < 0.0f) | ||
46 | { | ||
47 | if(v < 0.0f) // region 4 | ||
48 | { | ||
49 | if(fB0 < 0.0f) | ||
50 | { | ||
51 | // v = 0.0f; | ||
52 | if(-fB0>=fA00) { /*u = 1.0f;*/ SqrDist = fA00+2.0f*fB0+fC; } | ||
53 | else { u = -fB0/fA00; SqrDist = fB0*u+fC; } | ||
54 | } | ||
55 | else | ||
56 | { | ||
57 | // u = 0.0f; | ||
58 | if(fB1>=0.0f) { /*v = 0.0f;*/ SqrDist = fC; } | ||
59 | else if(-fB1>=fA11) { /*v = 1.0f;*/ SqrDist = fA11+2.0f*fB1+fC; } | ||
60 | else { v = -fB1/fA11; SqrDist = fB1*v+fC; } | ||
61 | } | ||
62 | } | ||
63 | else // region 3 | ||
64 | { | ||
65 | // u = 0.0f; | ||
66 | if(fB1>=0.0f) { /*v = 0.0f;*/ SqrDist = fC; } | ||
67 | else if(-fB1>=fA11) { /*v = 1.0f;*/ SqrDist = fA11+2.0f*fB1+fC; } | ||
68 | else { v = -fB1/fA11; SqrDist = fB1*v+fC; } | ||
69 | } | ||
70 | } | ||
71 | else if(v < 0.0f) // region 5 | ||
72 | { | ||
73 | // v = 0.0f; | ||
74 | if(fB0>=0.0f) { /*u = 0.0f;*/ SqrDist = fC; } | ||
75 | else if(-fB0>=fA00) { /*u = 1.0f;*/ SqrDist = fA00+2.0f*fB0+fC; } | ||
76 | else { u = -fB0/fA00; SqrDist = fB0*u+fC; } | ||
77 | } | ||
78 | else // region 0 | ||
79 | { | ||
80 | // minimum at interior point | ||
81 | if(fDet==0.0f) | ||
82 | { | ||
83 | // u = 0.0f; | ||
84 | // v = 0.0f; | ||
85 | SqrDist = MAX_FLOAT; | ||
86 | } | ||
87 | else | ||
88 | { | ||
89 | float fInvDet = 1.0f/fDet; | ||
90 | u *= fInvDet; | ||
91 | v *= fInvDet; | ||
92 | SqrDist = u*(fA00*u+fA01*v+2.0f*fB0) + v*(fA01*u+fA11*v+2.0f*fB1)+fC; | ||
93 | } | ||
94 | } | ||
95 | } | ||
96 | else | ||
97 | { | ||
98 | float fTmp0, fTmp1, fNumer, fDenom; | ||
99 | |||
100 | if(u < 0.0f) // region 2 | ||
101 | { | ||
102 | fTmp0 = fA01 + fB0; | ||
103 | fTmp1 = fA11 + fB1; | ||
104 | if(fTmp1 > fTmp0) | ||
105 | { | ||
106 | fNumer = fTmp1 - fTmp0; | ||
107 | fDenom = fA00-2.0f*fA01+fA11; | ||
108 | if(fNumer >= fDenom) | ||
109 | { | ||
110 | // u = 1.0f; | ||
111 | // v = 0.0f; | ||
112 | SqrDist = fA00+2.0f*fB0+fC; | ||
113 | } | ||
114 | else | ||
115 | { | ||
116 | u = fNumer/fDenom; | ||
117 | v = 1.0f - u; | ||
118 | SqrDist = u*(fA00*u+fA01*v+2.0f*fB0) + v*(fA01*u+fA11*v+2.0f*fB1)+fC; | ||
119 | } | ||
120 | } | ||
121 | else | ||
122 | { | ||
123 | // u = 0.0f; | ||
124 | if(fTmp1 <= 0.0f) { /*v = 1.0f;*/ SqrDist = fA11+2.0f*fB1+fC; } | ||
125 | else if(fB1 >= 0.0f) { /*v = 0.0f;*/ SqrDist = fC; } | ||
126 | else { v = -fB1/fA11; SqrDist = fB1*v+fC; } | ||
127 | } | ||
128 | } | ||
129 | else if(v < 0.0f) // region 6 | ||
130 | { | ||
131 | fTmp0 = fA01 + fB1; | ||
132 | fTmp1 = fA00 + fB0; | ||
133 | if(fTmp1 > fTmp0) | ||
134 | { | ||
135 | fNumer = fTmp1 - fTmp0; | ||
136 | fDenom = fA00-2.0f*fA01+fA11; | ||
137 | if(fNumer >= fDenom) | ||
138 | { | ||
139 | // v = 1.0f; | ||
140 | // u = 0.0f; | ||
141 | SqrDist = fA11+2.0f*fB1+fC; | ||
142 | } | ||
143 | else | ||
144 | { | ||
145 | v = fNumer/fDenom; | ||
146 | u = 1.0f - v; | ||
147 | SqrDist = u*(fA00*u+fA01*v+2.0f*fB0) + v*(fA01*u+fA11*v+2.0f*fB1)+fC; | ||
148 | } | ||
149 | } | ||
150 | else | ||
151 | { | ||
152 | // v = 0.0f; | ||
153 | if(fTmp1 <= 0.0f) { /*u = 1.0f;*/ SqrDist = fA00+2.0f*fB0+fC; } | ||
154 | else if(fB0 >= 0.0f) { /*u = 0.0f;*/ SqrDist = fC; } | ||
155 | else { u = -fB0/fA00; SqrDist = fB0*u+fC; } | ||
156 | } | ||
157 | } | ||
158 | else // region 1 | ||
159 | { | ||
160 | fNumer = fA11 + fB1 - fA01 - fB0; | ||
161 | if(fNumer <= 0.0f) | ||
162 | { | ||
163 | // u = 0.0f; | ||
164 | // v = 1.0f; | ||
165 | SqrDist = fA11+2.0f*fB1+fC; | ||
166 | } | ||
167 | else | ||
168 | { | ||
169 | fDenom = fA00-2.0f*fA01+fA11; | ||
170 | if(fNumer >= fDenom) | ||
171 | { | ||
172 | // u = 1.0f; | ||
173 | // v = 0.0f; | ||
174 | SqrDist = fA00+2.0f*fB0+fC; | ||
175 | } | ||
176 | else | ||
177 | { | ||
178 | u = fNumer/fDenom; | ||
179 | v = 1.0f - u; | ||
180 | SqrDist = u*(fA00*u+fA01*v+2.0f*fB0) + v*(fA01*u+fA11*v+2.0f*fB1)+fC; | ||
181 | } | ||
182 | } | ||
183 | } | ||
184 | } | ||
185 | |||
186 | return fabsf(SqrDist) < mRadius2; | ||
187 | } | ||