aboutsummaryrefslogtreecommitdiffstatshomepage
path: root/libraries/ode-0.9/OPCODE/Ice/IcePoint.cpp
diff options
context:
space:
mode:
Diffstat (limited to '')
-rw-r--r--libraries/ode-0.9/OPCODE/Ice/IcePoint.cpp193
1 files changed, 193 insertions, 0 deletions
diff --git a/libraries/ode-0.9/OPCODE/Ice/IcePoint.cpp b/libraries/ode-0.9/OPCODE/Ice/IcePoint.cpp
new file mode 100644
index 0000000..e715055
--- /dev/null
+++ b/libraries/ode-0.9/OPCODE/Ice/IcePoint.cpp
@@ -0,0 +1,193 @@
1///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
2/**
3 * Contains code for 3D vectors.
4 * \file IcePoint.cpp
5 * \author Pierre Terdiman
6 * \date April, 4, 2000
7 */
8///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
9
10///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
11/**
12 * 3D point.
13 *
14 * The name is "Point" instead of "Vector" since a vector is N-dimensional, whereas a point is an implicit "vector of dimension 3".
15 * So the choice was between "Point" and "Vector3", the first one looked better (IMHO).
16 *
17 * Some people, then, use a typedef to handle both points & vectors using the same class: typedef Point Vector3;
18 * This is bad since it opens the door to a lot of confusion while reading the code. I know it may sounds weird but check this out:
19 *
20 * \code
21 * Point P0,P1 = some 3D points;
22 * Point Delta = P1 - P0;
23 * \endcode
24 *
25 * This compiles fine, although you should have written:
26 *
27 * \code
28 * Point P0,P1 = some 3D points;
29 * Vector3 Delta = P1 - P0;
30 * \endcode
31 *
32 * Subtle things like this are not caught at compile-time, and when you find one in the code, you never know whether it's a mistake
33 * from the author or something you don't get.
34 *
35 * One way to handle it at compile-time would be to use different classes for Point & Vector3, only overloading operator "-" for vectors.
36 * But then, you get a lot of redundant code in thoses classes, and basically it's really a lot of useless work.
37 *
38 * Another way would be to use homogeneous points: w=1 for points, w=0 for vectors. That's why the HPoint class exists. Now, to store
39 * your model's vertices and in most cases, you really want to use Points to save ram.
40 *
41 * \class Point
42 * \author Pierre Terdiman
43 * \version 1.0
44 */
45///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
46
47///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
48// Precompiled Header
49#include "Stdafx.h"
50
51using namespace IceMaths;
52
53///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
54/**
55 * Creates a positive unit random vector.
56 * \return Self-reference
57 */
58///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
59Point& Point::PositiveUnitRandomVector()
60{
61 x = UnitRandomFloat();
62 y = UnitRandomFloat();
63 z = UnitRandomFloat();
64 Normalize();
65 return *this;
66}
67
68///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
69/**
70 * Creates a unit random vector.
71 * \return Self-reference
72 */
73///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
74Point& Point::UnitRandomVector()
75{
76 x = UnitRandomFloat() - 0.5f;
77 y = UnitRandomFloat() - 0.5f;
78 z = UnitRandomFloat() - 0.5f;
79 Normalize();
80 return *this;
81}
82
83// Cast operator
84// WARNING: not inlined
85Point::operator HPoint() const { return HPoint(x, y, z, 0.0f); }
86
87Point& Point::Refract(const Point& eye, const Point& n, float refractindex, Point& refracted)
88{
89 // Point EyePt = eye position
90 // Point p = current vertex
91 // Point n = vertex normal
92 // Point rv = refracted vector
93 // Eye vector - doesn't need to be normalized
94 Point Env;
95 Env.x = eye.x - x;
96 Env.y = eye.y - y;
97 Env.z = eye.z - z;
98
99 float NDotE = n|Env;
100 float NDotN = n|n;
101 NDotE /= refractindex;
102
103 // Refracted vector
104 refracted = n*NDotE - Env*NDotN;
105
106 return *this;
107}
108
109Point& Point::ProjectToPlane(const Plane& p)
110{
111 *this-= (p.d + (*this|p.n))*p.n;
112 return *this;
113}
114
115void Point::ProjectToScreen(float halfrenderwidth, float halfrenderheight, const Matrix4x4& mat, HPoint& projected) const
116{
117 projected = HPoint(x, y, z, 1.0f) * mat;
118 projected.w = 1.0f / projected.w;
119
120 projected.x*=projected.w;
121 projected.y*=projected.w;
122 projected.z*=projected.w;
123
124 projected.x *= halfrenderwidth; projected.x += halfrenderwidth;
125 projected.y *= -halfrenderheight; projected.y += halfrenderheight;
126}
127
128void Point::SetNotUsed()
129{
130 // We use a particular integer pattern : 0xffffffff everywhere. This is a NAN.
131 IR(x) = 0xffffffff;
132 IR(y) = 0xffffffff;
133 IR(z) = 0xffffffff;
134}
135
136BOOL Point::IsNotUsed() const
137{
138 if(IR(x)!=0xffffffff) return FALSE;
139 if(IR(y)!=0xffffffff) return FALSE;
140 if(IR(z)!=0xffffffff) return FALSE;
141 return TRUE;
142}
143
144Point& Point::Mult(const Matrix3x3& mat, const Point& a)
145{
146 x = a.x * mat.m[0][0] + a.y * mat.m[0][1] + a.z * mat.m[0][2];
147 y = a.x * mat.m[1][0] + a.y * mat.m[1][1] + a.z * mat.m[1][2];
148 z = a.x * mat.m[2][0] + a.y * mat.m[2][1] + a.z * mat.m[2][2];
149 return *this;
150}
151
152Point& Point::Mult2(const Matrix3x3& mat1, const Point& a1, const Matrix3x3& mat2, const Point& a2)
153{
154 x = a1.x * mat1.m[0][0] + a1.y * mat1.m[0][1] + a1.z * mat1.m[0][2] + a2.x * mat2.m[0][0] + a2.y * mat2.m[0][1] + a2.z * mat2.m[0][2];
155 y = a1.x * mat1.m[1][0] + a1.y * mat1.m[1][1] + a1.z * mat1.m[1][2] + a2.x * mat2.m[1][0] + a2.y * mat2.m[1][1] + a2.z * mat2.m[1][2];
156 z = a1.x * mat1.m[2][0] + a1.y * mat1.m[2][1] + a1.z * mat1.m[2][2] + a2.x * mat2.m[2][0] + a2.y * mat2.m[2][1] + a2.z * mat2.m[2][2];
157 return *this;
158}
159
160Point& Point::Mac(const Matrix3x3& mat, const Point& a)
161{
162 x += a.x * mat.m[0][0] + a.y * mat.m[0][1] + a.z * mat.m[0][2];
163 y += a.x * mat.m[1][0] + a.y * mat.m[1][1] + a.z * mat.m[1][2];
164 z += a.x * mat.m[2][0] + a.y * mat.m[2][1] + a.z * mat.m[2][2];
165 return *this;
166}
167
168Point& Point::TransMult(const Matrix3x3& mat, const Point& a)
169{
170 x = a.x * mat.m[0][0] + a.y * mat.m[1][0] + a.z * mat.m[2][0];
171 y = a.x * mat.m[0][1] + a.y * mat.m[1][1] + a.z * mat.m[2][1];
172 z = a.x * mat.m[0][2] + a.y * mat.m[1][2] + a.z * mat.m[2][2];
173 return *this;
174}
175
176Point& Point::Transform(const Point& r, const Matrix3x3& rotpos, const Point& linpos)
177{
178 x = r.x * rotpos.m[0][0] + r.y * rotpos.m[0][1] + r.z * rotpos.m[0][2] + linpos.x;
179 y = r.x * rotpos.m[1][0] + r.y * rotpos.m[1][1] + r.z * rotpos.m[1][2] + linpos.y;
180 z = r.x * rotpos.m[2][0] + r.y * rotpos.m[2][1] + r.z * rotpos.m[2][2] + linpos.z;
181 return *this;
182}
183
184Point& Point::InvTransform(const Point& r, const Matrix3x3& rotpos, const Point& linpos)
185{
186 float sx = r.x - linpos.x;
187 float sy = r.y - linpos.y;
188 float sz = r.z - linpos.z;
189 x = sx * rotpos.m[0][0] + sy * rotpos.m[1][0] + sz * rotpos.m[2][0];
190 y = sx * rotpos.m[0][1] + sy * rotpos.m[1][1] + sz * rotpos.m[2][1];
191 z = sx * rotpos.m[0][2] + sy * rotpos.m[1][2] + sz * rotpos.m[2][2];
192 return *this;
193}