diff options
Diffstat (limited to 'libraries/ode-0.9\/ode/src/rotation.cpp')
-rwxr-xr-x | libraries/ode-0.9\/ode/src/rotation.cpp | 316 |
1 files changed, 316 insertions, 0 deletions
diff --git a/libraries/ode-0.9\/ode/src/rotation.cpp b/libraries/ode-0.9\/ode/src/rotation.cpp new file mode 100755 index 0000000..adb933b --- /dev/null +++ b/libraries/ode-0.9\/ode/src/rotation.cpp | |||
@@ -0,0 +1,316 @@ | |||
1 | /************************************************************************* | ||
2 | * * | ||
3 | * Open Dynamics Engine, Copyright (C) 2001,2002 Russell L. Smith. * | ||
4 | * All rights reserved. Email: russ@q12.org Web: www.q12.org * | ||
5 | * * | ||
6 | * This library is free software; you can redistribute it and/or * | ||
7 | * modify it under the terms of EITHER: * | ||
8 | * (1) The GNU Lesser General Public License as published by the Free * | ||
9 | * Software Foundation; either version 2.1 of the License, or (at * | ||
10 | * your option) any later version. The text of the GNU Lesser * | ||
11 | * General Public License is included with this library in the * | ||
12 | * file LICENSE.TXT. * | ||
13 | * (2) The BSD-style license that is included with this library in * | ||
14 | * the file LICENSE-BSD.TXT. * | ||
15 | * * | ||
16 | * This library is distributed in the hope that it will be useful, * | ||
17 | * but WITHOUT ANY WARRANTY; without even the implied warranty of * | ||
18 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the files * | ||
19 | * LICENSE.TXT and LICENSE-BSD.TXT for more details. * | ||
20 | * * | ||
21 | *************************************************************************/ | ||
22 | |||
23 | /* | ||
24 | |||
25 | quaternions have the format: (s,vx,vy,vz) where (vx,vy,vz) is the | ||
26 | "rotation axis" and s is the "rotation angle". | ||
27 | |||
28 | */ | ||
29 | |||
30 | #include <ode/rotation.h> | ||
31 | #include <ode/odemath.h> | ||
32 | |||
33 | |||
34 | #define _R(i,j) R[(i)*4+(j)] | ||
35 | |||
36 | #define SET_3x3_IDENTITY \ | ||
37 | _R(0,0) = REAL(1.0); \ | ||
38 | _R(0,1) = REAL(0.0); \ | ||
39 | _R(0,2) = REAL(0.0); \ | ||
40 | _R(0,3) = REAL(0.0); \ | ||
41 | _R(1,0) = REAL(0.0); \ | ||
42 | _R(1,1) = REAL(1.0); \ | ||
43 | _R(1,2) = REAL(0.0); \ | ||
44 | _R(1,3) = REAL(0.0); \ | ||
45 | _R(2,0) = REAL(0.0); \ | ||
46 | _R(2,1) = REAL(0.0); \ | ||
47 | _R(2,2) = REAL(1.0); \ | ||
48 | _R(2,3) = REAL(0.0); | ||
49 | |||
50 | |||
51 | void dRSetIdentity (dMatrix3 R) | ||
52 | { | ||
53 | dAASSERT (R); | ||
54 | SET_3x3_IDENTITY; | ||
55 | } | ||
56 | |||
57 | |||
58 | void dRFromAxisAndAngle (dMatrix3 R, dReal ax, dReal ay, dReal az, | ||
59 | dReal angle) | ||
60 | { | ||
61 | dAASSERT (R); | ||
62 | dQuaternion q; | ||
63 | dQFromAxisAndAngle (q,ax,ay,az,angle); | ||
64 | dQtoR (q,R); | ||
65 | } | ||
66 | |||
67 | |||
68 | void dRFromEulerAngles (dMatrix3 R, dReal phi, dReal theta, dReal psi) | ||
69 | { | ||
70 | dReal sphi,cphi,stheta,ctheta,spsi,cpsi; | ||
71 | dAASSERT (R); | ||
72 | sphi = dSin(phi); | ||
73 | cphi = dCos(phi); | ||
74 | stheta = dSin(theta); | ||
75 | ctheta = dCos(theta); | ||
76 | spsi = dSin(psi); | ||
77 | cpsi = dCos(psi); | ||
78 | _R(0,0) = cpsi*ctheta; | ||
79 | _R(0,1) = spsi*ctheta; | ||
80 | _R(0,2) =-stheta; | ||
81 | _R(0,3) = REAL(0.0); | ||
82 | _R(1,0) = cpsi*stheta*sphi - spsi*cphi; | ||
83 | _R(1,1) = spsi*stheta*sphi + cpsi*cphi; | ||
84 | _R(1,2) = ctheta*sphi; | ||
85 | _R(1,3) = REAL(0.0); | ||
86 | _R(2,0) = cpsi*stheta*cphi + spsi*sphi; | ||
87 | _R(2,1) = spsi*stheta*cphi - cpsi*sphi; | ||
88 | _R(2,2) = ctheta*cphi; | ||
89 | _R(2,3) = REAL(0.0); | ||
90 | } | ||
91 | |||
92 | |||
93 | void dRFrom2Axes (dMatrix3 R, dReal ax, dReal ay, dReal az, | ||
94 | dReal bx, dReal by, dReal bz) | ||
95 | { | ||
96 | dReal l,k; | ||
97 | dAASSERT (R); | ||
98 | l = dSqrt (ax*ax + ay*ay + az*az); | ||
99 | if (l <= REAL(0.0)) { | ||
100 | dDEBUGMSG ("zero length vector"); | ||
101 | return; | ||
102 | } | ||
103 | l = dRecip(l); | ||
104 | ax *= l; | ||
105 | ay *= l; | ||
106 | az *= l; | ||
107 | k = ax*bx + ay*by + az*bz; | ||
108 | bx -= k*ax; | ||
109 | by -= k*ay; | ||
110 | bz -= k*az; | ||
111 | l = dSqrt (bx*bx + by*by + bz*bz); | ||
112 | if (l <= REAL(0.0)) { | ||
113 | dDEBUGMSG ("zero length vector"); | ||
114 | return; | ||
115 | } | ||
116 | l = dRecip(l); | ||
117 | bx *= l; | ||
118 | by *= l; | ||
119 | bz *= l; | ||
120 | _R(0,0) = ax; | ||
121 | _R(1,0) = ay; | ||
122 | _R(2,0) = az; | ||
123 | _R(0,1) = bx; | ||
124 | _R(1,1) = by; | ||
125 | _R(2,1) = bz; | ||
126 | _R(0,2) = - by*az + ay*bz; | ||
127 | _R(1,2) = - bz*ax + az*bx; | ||
128 | _R(2,2) = - bx*ay + ax*by; | ||
129 | _R(0,3) = REAL(0.0); | ||
130 | _R(1,3) = REAL(0.0); | ||
131 | _R(2,3) = REAL(0.0); | ||
132 | } | ||
133 | |||
134 | |||
135 | void dRFromZAxis (dMatrix3 R, dReal ax, dReal ay, dReal az) | ||
136 | { | ||
137 | dVector3 n,p,q; | ||
138 | n[0] = ax; | ||
139 | n[1] = ay; | ||
140 | n[2] = az; | ||
141 | dNormalize3 (n); | ||
142 | dPlaneSpace (n,p,q); | ||
143 | _R(0,0) = p[0]; | ||
144 | _R(1,0) = p[1]; | ||
145 | _R(2,0) = p[2]; | ||
146 | _R(0,1) = q[0]; | ||
147 | _R(1,1) = q[1]; | ||
148 | _R(2,1) = q[2]; | ||
149 | _R(0,2) = n[0]; | ||
150 | _R(1,2) = n[1]; | ||
151 | _R(2,2) = n[2]; | ||
152 | _R(0,3) = REAL(0.0); | ||
153 | _R(1,3) = REAL(0.0); | ||
154 | _R(2,3) = REAL(0.0); | ||
155 | } | ||
156 | |||
157 | |||
158 | void dQSetIdentity (dQuaternion q) | ||
159 | { | ||
160 | dAASSERT (q); | ||
161 | q[0] = 1; | ||
162 | q[1] = 0; | ||
163 | q[2] = 0; | ||
164 | q[3] = 0; | ||
165 | } | ||
166 | |||
167 | |||
168 | void dQFromAxisAndAngle (dQuaternion q, dReal ax, dReal ay, dReal az, | ||
169 | dReal angle) | ||
170 | { | ||
171 | dAASSERT (q); | ||
172 | dReal l = ax*ax + ay*ay + az*az; | ||
173 | if (l > REAL(0.0)) { | ||
174 | angle *= REAL(0.5); | ||
175 | q[0] = dCos (angle); | ||
176 | l = dSin(angle) * dRecipSqrt(l); | ||
177 | q[1] = ax*l; | ||
178 | q[2] = ay*l; | ||
179 | q[3] = az*l; | ||
180 | } | ||
181 | else { | ||
182 | q[0] = 1; | ||
183 | q[1] = 0; | ||
184 | q[2] = 0; | ||
185 | q[3] = 0; | ||
186 | } | ||
187 | } | ||
188 | |||
189 | |||
190 | void dQMultiply0 (dQuaternion qa, const dQuaternion qb, const dQuaternion qc) | ||
191 | { | ||
192 | dAASSERT (qa && qb && qc); | ||
193 | qa[0] = qb[0]*qc[0] - qb[1]*qc[1] - qb[2]*qc[2] - qb[3]*qc[3]; | ||
194 | qa[1] = qb[0]*qc[1] + qb[1]*qc[0] + qb[2]*qc[3] - qb[3]*qc[2]; | ||
195 | qa[2] = qb[0]*qc[2] + qb[2]*qc[0] + qb[3]*qc[1] - qb[1]*qc[3]; | ||
196 | qa[3] = qb[0]*qc[3] + qb[3]*qc[0] + qb[1]*qc[2] - qb[2]*qc[1]; | ||
197 | } | ||
198 | |||
199 | |||
200 | void dQMultiply1 (dQuaternion qa, const dQuaternion qb, const dQuaternion qc) | ||
201 | { | ||
202 | dAASSERT (qa && qb && qc); | ||
203 | qa[0] = qb[0]*qc[0] + qb[1]*qc[1] + qb[2]*qc[2] + qb[3]*qc[3]; | ||
204 | qa[1] = qb[0]*qc[1] - qb[1]*qc[0] - qb[2]*qc[3] + qb[3]*qc[2]; | ||
205 | qa[2] = qb[0]*qc[2] - qb[2]*qc[0] - qb[3]*qc[1] + qb[1]*qc[3]; | ||
206 | qa[3] = qb[0]*qc[3] - qb[3]*qc[0] - qb[1]*qc[2] + qb[2]*qc[1]; | ||
207 | } | ||
208 | |||
209 | |||
210 | void dQMultiply2 (dQuaternion qa, const dQuaternion qb, const dQuaternion qc) | ||
211 | { | ||
212 | dAASSERT (qa && qb && qc); | ||
213 | qa[0] = qb[0]*qc[0] + qb[1]*qc[1] + qb[2]*qc[2] + qb[3]*qc[3]; | ||
214 | qa[1] = -qb[0]*qc[1] + qb[1]*qc[0] - qb[2]*qc[3] + qb[3]*qc[2]; | ||
215 | qa[2] = -qb[0]*qc[2] + qb[2]*qc[0] - qb[3]*qc[1] + qb[1]*qc[3]; | ||
216 | qa[3] = -qb[0]*qc[3] + qb[3]*qc[0] - qb[1]*qc[2] + qb[2]*qc[1]; | ||
217 | } | ||
218 | |||
219 | |||
220 | void dQMultiply3 (dQuaternion qa, const dQuaternion qb, const dQuaternion qc) | ||
221 | { | ||
222 | dAASSERT (qa && qb && qc); | ||
223 | qa[0] = qb[0]*qc[0] - qb[1]*qc[1] - qb[2]*qc[2] - qb[3]*qc[3]; | ||
224 | qa[1] = -qb[0]*qc[1] - qb[1]*qc[0] + qb[2]*qc[3] - qb[3]*qc[2]; | ||
225 | qa[2] = -qb[0]*qc[2] - qb[2]*qc[0] + qb[3]*qc[1] - qb[1]*qc[3]; | ||
226 | qa[3] = -qb[0]*qc[3] - qb[3]*qc[0] + qb[1]*qc[2] - qb[2]*qc[1]; | ||
227 | } | ||
228 | |||
229 | |||
230 | // dRfromQ(), dQfromR() and dDQfromW() are derived from equations in "An Introduction | ||
231 | // to Physically Based Modeling: Rigid Body Simulation - 1: Unconstrained | ||
232 | // Rigid Body Dynamics" by David Baraff, Robotics Institute, Carnegie Mellon | ||
233 | // University, 1997. | ||
234 | |||
235 | void dRfromQ (dMatrix3 R, const dQuaternion q) | ||
236 | { | ||
237 | dAASSERT (q && R); | ||
238 | // q = (s,vx,vy,vz) | ||
239 | dReal qq1 = 2*q[1]*q[1]; | ||
240 | dReal qq2 = 2*q[2]*q[2]; | ||
241 | dReal qq3 = 2*q[3]*q[3]; | ||
242 | _R(0,0) = 1 - qq2 - qq3; | ||
243 | _R(0,1) = 2*(q[1]*q[2] - q[0]*q[3]); | ||
244 | _R(0,2) = 2*(q[1]*q[3] + q[0]*q[2]); | ||
245 | _R(0,3) = REAL(0.0); | ||
246 | _R(1,0) = 2*(q[1]*q[2] + q[0]*q[3]); | ||
247 | _R(1,1) = 1 - qq1 - qq3; | ||
248 | _R(1,2) = 2*(q[2]*q[3] - q[0]*q[1]); | ||
249 | _R(1,3) = REAL(0.0); | ||
250 | _R(2,0) = 2*(q[1]*q[3] - q[0]*q[2]); | ||
251 | _R(2,1) = 2*(q[2]*q[3] + q[0]*q[1]); | ||
252 | _R(2,2) = 1 - qq1 - qq2; | ||
253 | _R(2,3) = REAL(0.0); | ||
254 | } | ||
255 | |||
256 | |||
257 | void dQfromR (dQuaternion q, const dMatrix3 R) | ||
258 | { | ||
259 | dAASSERT (q && R); | ||
260 | dReal tr,s; | ||
261 | tr = _R(0,0) + _R(1,1) + _R(2,2); | ||
262 | if (tr >= 0) { | ||
263 | s = dSqrt (tr + 1); | ||
264 | q[0] = REAL(0.5) * s; | ||
265 | s = REAL(0.5) * dRecip(s); | ||
266 | q[1] = (_R(2,1) - _R(1,2)) * s; | ||
267 | q[2] = (_R(0,2) - _R(2,0)) * s; | ||
268 | q[3] = (_R(1,0) - _R(0,1)) * s; | ||
269 | } | ||
270 | else { | ||
271 | // find the largest diagonal element and jump to the appropriate case | ||
272 | if (_R(1,1) > _R(0,0)) { | ||
273 | if (_R(2,2) > _R(1,1)) goto case_2; | ||
274 | goto case_1; | ||
275 | } | ||
276 | if (_R(2,2) > _R(0,0)) goto case_2; | ||
277 | goto case_0; | ||
278 | |||
279 | case_0: | ||
280 | s = dSqrt((_R(0,0) - (_R(1,1) + _R(2,2))) + 1); | ||
281 | q[1] = REAL(0.5) * s; | ||
282 | s = REAL(0.5) * dRecip(s); | ||
283 | q[2] = (_R(0,1) + _R(1,0)) * s; | ||
284 | q[3] = (_R(2,0) + _R(0,2)) * s; | ||
285 | q[0] = (_R(2,1) - _R(1,2)) * s; | ||
286 | return; | ||
287 | |||
288 | case_1: | ||
289 | s = dSqrt((_R(1,1) - (_R(2,2) + _R(0,0))) + 1); | ||
290 | q[2] = REAL(0.5) * s; | ||
291 | s = REAL(0.5) * dRecip(s); | ||
292 | q[3] = (_R(1,2) + _R(2,1)) * s; | ||
293 | q[1] = (_R(0,1) + _R(1,0)) * s; | ||
294 | q[0] = (_R(0,2) - _R(2,0)) * s; | ||
295 | return; | ||
296 | |||
297 | case_2: | ||
298 | s = dSqrt((_R(2,2) - (_R(0,0) + _R(1,1))) + 1); | ||
299 | q[3] = REAL(0.5) * s; | ||
300 | s = REAL(0.5) * dRecip(s); | ||
301 | q[1] = (_R(2,0) + _R(0,2)) * s; | ||
302 | q[2] = (_R(1,2) + _R(2,1)) * s; | ||
303 | q[0] = (_R(1,0) - _R(0,1)) * s; | ||
304 | return; | ||
305 | } | ||
306 | } | ||
307 | |||
308 | |||
309 | void dDQfromW (dReal dq[4], const dVector3 w, const dQuaternion q) | ||
310 | { | ||
311 | dAASSERT (w && q && dq); | ||
312 | dq[0] = REAL(0.5)*(- w[0]*q[1] - w[1]*q[2] - w[2]*q[3]); | ||
313 | dq[1] = REAL(0.5)*( w[0]*q[0] + w[1]*q[3] - w[2]*q[2]); | ||
314 | dq[2] = REAL(0.5)*(- w[0]*q[3] + w[1]*q[0] + w[2]*q[1]); | ||
315 | dq[3] = REAL(0.5)*( w[0]*q[2] - w[1]*q[1] + w[2]*q[0]); | ||
316 | } | ||