aboutsummaryrefslogtreecommitdiffstatshomepage
path: root/libraries/ode-0.9\/ode/src/fastldlt.c
diff options
context:
space:
mode:
Diffstat (limited to '')
-rwxr-xr-xlibraries/ode-0.9\/ode/src/fastldlt.c381
1 files changed, 381 insertions, 0 deletions
diff --git a/libraries/ode-0.9\/ode/src/fastldlt.c b/libraries/ode-0.9\/ode/src/fastldlt.c
new file mode 100755
index 0000000..df2ea6e
--- /dev/null
+++ b/libraries/ode-0.9\/ode/src/fastldlt.c
@@ -0,0 +1,381 @@
1/* generated code, do not edit. */
2
3#include "ode/matrix.h"
4
5/* solve L*X=B, with B containing 1 right hand sides.
6 * L is an n*n lower triangular matrix with ones on the diagonal.
7 * L is stored by rows and its leading dimension is lskip.
8 * B is an n*1 matrix that contains the right hand sides.
9 * B is stored by columns and its leading dimension is also lskip.
10 * B is overwritten with X.
11 * this processes blocks of 2*2.
12 * if this is in the factorizer source file, n must be a multiple of 2.
13 */
14
15static void dSolveL1_1 (const dReal *L, dReal *B, int n, int lskip1)
16{
17 /* declare variables - Z matrix, p and q vectors, etc */
18 dReal Z11,m11,Z21,m21,p1,q1,p2,*ex;
19 const dReal *ell;
20 int i,j;
21 /* compute all 2 x 1 blocks of X */
22 for (i=0; i < n; i+=2) {
23 /* compute all 2 x 1 block of X, from rows i..i+2-1 */
24 /* set the Z matrix to 0 */
25 Z11=0;
26 Z21=0;
27 ell = L + i*lskip1;
28 ex = B;
29 /* the inner loop that computes outer products and adds them to Z */
30 for (j=i-2; j >= 0; j -= 2) {
31 /* compute outer product and add it to the Z matrix */
32 p1=ell[0];
33 q1=ex[0];
34 m11 = p1 * q1;
35 p2=ell[lskip1];
36 m21 = p2 * q1;
37 Z11 += m11;
38 Z21 += m21;
39 /* compute outer product and add it to the Z matrix */
40 p1=ell[1];
41 q1=ex[1];
42 m11 = p1 * q1;
43 p2=ell[1+lskip1];
44 m21 = p2 * q1;
45 /* advance pointers */
46 ell += 2;
47 ex += 2;
48 Z11 += m11;
49 Z21 += m21;
50 /* end of inner loop */
51 }
52 /* compute left-over iterations */
53 j += 2;
54 for (; j > 0; j--) {
55 /* compute outer product and add it to the Z matrix */
56 p1=ell[0];
57 q1=ex[0];
58 m11 = p1 * q1;
59 p2=ell[lskip1];
60 m21 = p2 * q1;
61 /* advance pointers */
62 ell += 1;
63 ex += 1;
64 Z11 += m11;
65 Z21 += m21;
66 }
67 /* finish computing the X(i) block */
68 Z11 = ex[0] - Z11;
69 ex[0] = Z11;
70 p1 = ell[lskip1];
71 Z21 = ex[1] - Z21 - p1*Z11;
72 ex[1] = Z21;
73 /* end of outer loop */
74 }
75}
76
77/* solve L*X=B, with B containing 2 right hand sides.
78 * L is an n*n lower triangular matrix with ones on the diagonal.
79 * L is stored by rows and its leading dimension is lskip.
80 * B is an n*2 matrix that contains the right hand sides.
81 * B is stored by columns and its leading dimension is also lskip.
82 * B is overwritten with X.
83 * this processes blocks of 2*2.
84 * if this is in the factorizer source file, n must be a multiple of 2.
85 */
86
87static void dSolveL1_2 (const dReal *L, dReal *B, int n, int lskip1)
88{
89 /* declare variables - Z matrix, p and q vectors, etc */
90 dReal Z11,m11,Z12,m12,Z21,m21,Z22,m22,p1,q1,p2,q2,*ex;
91 const dReal *ell;
92 int i,j;
93 /* compute all 2 x 2 blocks of X */
94 for (i=0; i < n; i+=2) {
95 /* compute all 2 x 2 block of X, from rows i..i+2-1 */
96 /* set the Z matrix to 0 */
97 Z11=0;
98 Z12=0;
99 Z21=0;
100 Z22=0;
101 ell = L + i*lskip1;
102 ex = B;
103 /* the inner loop that computes outer products and adds them to Z */
104 for (j=i-2; j >= 0; j -= 2) {
105 /* compute outer product and add it to the Z matrix */
106 p1=ell[0];
107 q1=ex[0];
108 m11 = p1 * q1;
109 q2=ex[lskip1];
110 m12 = p1 * q2;
111 p2=ell[lskip1];
112 m21 = p2 * q1;
113 m22 = p2 * q2;
114 Z11 += m11;
115 Z12 += m12;
116 Z21 += m21;
117 Z22 += m22;
118 /* compute outer product and add it to the Z matrix */
119 p1=ell[1];
120 q1=ex[1];
121 m11 = p1 * q1;
122 q2=ex[1+lskip1];
123 m12 = p1 * q2;
124 p2=ell[1+lskip1];
125 m21 = p2 * q1;
126 m22 = p2 * q2;
127 /* advance pointers */
128 ell += 2;
129 ex += 2;
130 Z11 += m11;
131 Z12 += m12;
132 Z21 += m21;
133 Z22 += m22;
134 /* end of inner loop */
135 }
136 /* compute left-over iterations */
137 j += 2;
138 for (; j > 0; j--) {
139 /* compute outer product and add it to the Z matrix */
140 p1=ell[0];
141 q1=ex[0];
142 m11 = p1 * q1;
143 q2=ex[lskip1];
144 m12 = p1 * q2;
145 p2=ell[lskip1];
146 m21 = p2 * q1;
147 m22 = p2 * q2;
148 /* advance pointers */
149 ell += 1;
150 ex += 1;
151 Z11 += m11;
152 Z12 += m12;
153 Z21 += m21;
154 Z22 += m22;
155 }
156 /* finish computing the X(i) block */
157 Z11 = ex[0] - Z11;
158 ex[0] = Z11;
159 Z12 = ex[lskip1] - Z12;
160 ex[lskip1] = Z12;
161 p1 = ell[lskip1];
162 Z21 = ex[1] - Z21 - p1*Z11;
163 ex[1] = Z21;
164 Z22 = ex[1+lskip1] - Z22 - p1*Z12;
165 ex[1+lskip1] = Z22;
166 /* end of outer loop */
167 }
168}
169
170
171void dFactorLDLT (dReal *A, dReal *d, int n, int nskip1)
172{
173 int i,j;
174 dReal sum,*ell,*dee,dd,p1,p2,q1,q2,Z11,m11,Z21,m21,Z22,m22;
175 if (n < 1) return;
176
177 for (i=0; i<=n-2; i += 2) {
178 /* solve L*(D*l)=a, l is scaled elements in 2 x i block at A(i,0) */
179 dSolveL1_2 (A,A+i*nskip1,i,nskip1);
180 /* scale the elements in a 2 x i block at A(i,0), and also */
181 /* compute Z = the outer product matrix that we'll need. */
182 Z11 = 0;
183 Z21 = 0;
184 Z22 = 0;
185 ell = A+i*nskip1;
186 dee = d;
187 for (j=i-6; j >= 0; j -= 6) {
188 p1 = ell[0];
189 p2 = ell[nskip1];
190 dd = dee[0];
191 q1 = p1*dd;
192 q2 = p2*dd;
193 ell[0] = q1;
194 ell[nskip1] = q2;
195 m11 = p1*q1;
196 m21 = p2*q1;
197 m22 = p2*q2;
198 Z11 += m11;
199 Z21 += m21;
200 Z22 += m22;
201 p1 = ell[1];
202 p2 = ell[1+nskip1];
203 dd = dee[1];
204 q1 = p1*dd;
205 q2 = p2*dd;
206 ell[1] = q1;
207 ell[1+nskip1] = q2;
208 m11 = p1*q1;
209 m21 = p2*q1;
210 m22 = p2*q2;
211 Z11 += m11;
212 Z21 += m21;
213 Z22 += m22;
214 p1 = ell[2];
215 p2 = ell[2+nskip1];
216 dd = dee[2];
217 q1 = p1*dd;
218 q2 = p2*dd;
219 ell[2] = q1;
220 ell[2+nskip1] = q2;
221 m11 = p1*q1;
222 m21 = p2*q1;
223 m22 = p2*q2;
224 Z11 += m11;
225 Z21 += m21;
226 Z22 += m22;
227 p1 = ell[3];
228 p2 = ell[3+nskip1];
229 dd = dee[3];
230 q1 = p1*dd;
231 q2 = p2*dd;
232 ell[3] = q1;
233 ell[3+nskip1] = q2;
234 m11 = p1*q1;
235 m21 = p2*q1;
236 m22 = p2*q2;
237 Z11 += m11;
238 Z21 += m21;
239 Z22 += m22;
240 p1 = ell[4];
241 p2 = ell[4+nskip1];
242 dd = dee[4];
243 q1 = p1*dd;
244 q2 = p2*dd;
245 ell[4] = q1;
246 ell[4+nskip1] = q2;
247 m11 = p1*q1;
248 m21 = p2*q1;
249 m22 = p2*q2;
250 Z11 += m11;
251 Z21 += m21;
252 Z22 += m22;
253 p1 = ell[5];
254 p2 = ell[5+nskip1];
255 dd = dee[5];
256 q1 = p1*dd;
257 q2 = p2*dd;
258 ell[5] = q1;
259 ell[5+nskip1] = q2;
260 m11 = p1*q1;
261 m21 = p2*q1;
262 m22 = p2*q2;
263 Z11 += m11;
264 Z21 += m21;
265 Z22 += m22;
266 ell += 6;
267 dee += 6;
268 }
269 /* compute left-over iterations */
270 j += 6;
271 for (; j > 0; j--) {
272 p1 = ell[0];
273 p2 = ell[nskip1];
274 dd = dee[0];
275 q1 = p1*dd;
276 q2 = p2*dd;
277 ell[0] = q1;
278 ell[nskip1] = q2;
279 m11 = p1*q1;
280 m21 = p2*q1;
281 m22 = p2*q2;
282 Z11 += m11;
283 Z21 += m21;
284 Z22 += m22;
285 ell++;
286 dee++;
287 }
288 /* solve for diagonal 2 x 2 block at A(i,i) */
289 Z11 = ell[0] - Z11;
290 Z21 = ell[nskip1] - Z21;
291 Z22 = ell[1+nskip1] - Z22;
292 dee = d + i;
293 /* factorize 2 x 2 block Z,dee */
294 /* factorize row 1 */
295 dee[0] = dRecip(Z11);
296 /* factorize row 2 */
297 sum = 0;
298 q1 = Z21;
299 q2 = q1 * dee[0];
300 Z21 = q2;
301 sum += q1*q2;
302 dee[1] = dRecip(Z22 - sum);
303 /* done factorizing 2 x 2 block */
304 ell[nskip1] = Z21;
305 }
306 /* compute the (less than 2) rows at the bottom */
307 switch (n-i) {
308 case 0:
309 break;
310
311 case 1:
312 dSolveL1_1 (A,A+i*nskip1,i,nskip1);
313 /* scale the elements in a 1 x i block at A(i,0), and also */
314 /* compute Z = the outer product matrix that we'll need. */
315 Z11 = 0;
316 ell = A+i*nskip1;
317 dee = d;
318 for (j=i-6; j >= 0; j -= 6) {
319 p1 = ell[0];
320 dd = dee[0];
321 q1 = p1*dd;
322 ell[0] = q1;
323 m11 = p1*q1;
324 Z11 += m11;
325 p1 = ell[1];
326 dd = dee[1];
327 q1 = p1*dd;
328 ell[1] = q1;
329 m11 = p1*q1;
330 Z11 += m11;
331 p1 = ell[2];
332 dd = dee[2];
333 q1 = p1*dd;
334 ell[2] = q1;
335 m11 = p1*q1;
336 Z11 += m11;
337 p1 = ell[3];
338 dd = dee[3];
339 q1 = p1*dd;
340 ell[3] = q1;
341 m11 = p1*q1;
342 Z11 += m11;
343 p1 = ell[4];
344 dd = dee[4];
345 q1 = p1*dd;
346 ell[4] = q1;
347 m11 = p1*q1;
348 Z11 += m11;
349 p1 = ell[5];
350 dd = dee[5];
351 q1 = p1*dd;
352 ell[5] = q1;
353 m11 = p1*q1;
354 Z11 += m11;
355 ell += 6;
356 dee += 6;
357 }
358 /* compute left-over iterations */
359 j += 6;
360 for (; j > 0; j--) {
361 p1 = ell[0];
362 dd = dee[0];
363 q1 = p1*dd;
364 ell[0] = q1;
365 m11 = p1*q1;
366 Z11 += m11;
367 ell++;
368 dee++;
369 }
370 /* solve for diagonal 1 x 1 block at A(i,i) */
371 Z11 = ell[0] - Z11;
372 dee = d + i;
373 /* factorize 1 x 1 block Z,dee */
374 /* factorize row 1 */
375 dee[0] = dRecip(Z11);
376 /* done factorizing 1 x 1 block */
377 break;
378
379 default: *((char*)0)=0; /* this should never happen! */
380 }
381}