aboutsummaryrefslogtreecommitdiffstatshomepage
path: root/libraries/ode-0.9\/OPCODE/Ice/IceUtils.h
diff options
context:
space:
mode:
Diffstat (limited to '')
-rwxr-xr-xlibraries/ode-0.9\/OPCODE/Ice/IceUtils.h256
1 files changed, 0 insertions, 256 deletions
diff --git a/libraries/ode-0.9\/OPCODE/Ice/IceUtils.h b/libraries/ode-0.9\/OPCODE/Ice/IceUtils.h
deleted file mode 100755
index f4552ec..0000000
--- a/libraries/ode-0.9\/OPCODE/Ice/IceUtils.h
+++ /dev/null
@@ -1,256 +0,0 @@
1///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
2/**
3 * Contains misc. useful macros & defines.
4 * \file IceUtils.h
5 * \author Pierre Terdiman (collected from various sources)
6 * \date April, 4, 2000
7 */
8///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
9
10///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
11// Include Guard
12#ifndef __ICEUTILS_H__
13#define __ICEUTILS_H__
14
15 #define START_RUNONCE { static bool __RunOnce__ = false; if(!__RunOnce__){
16 #define END_RUNONCE __RunOnce__ = true;}}
17
18 //! Reverse all the bits in a 32 bit word (from Steve Baker's Cute Code Collection)
19 //! (each line can be done in any order.
20 inline_ void ReverseBits(udword& n)
21 {
22 n = ((n >> 1) & 0x55555555) | ((n << 1) & 0xaaaaaaaa);
23 n = ((n >> 2) & 0x33333333) | ((n << 2) & 0xcccccccc);
24 n = ((n >> 4) & 0x0f0f0f0f) | ((n << 4) & 0xf0f0f0f0);
25 n = ((n >> 8) & 0x00ff00ff) | ((n << 8) & 0xff00ff00);
26 n = ((n >> 16) & 0x0000ffff) | ((n << 16) & 0xffff0000);
27 // Etc for larger intergers (64 bits in Java)
28 // NOTE: the >> operation must be unsigned! (>>> in java)
29 }
30
31 //! Count the number of '1' bits in a 32 bit word (from Steve Baker's Cute Code Collection)
32 inline_ udword CountBits(udword n)
33 {
34 // This relies of the fact that the count of n bits can NOT overflow
35 // an n bit interger. EG: 1 bit count takes a 1 bit interger, 2 bit counts
36 // 2 bit interger, 3 bit count requires only a 2 bit interger.
37 // So we add all bit pairs, then each nible, then each byte etc...
38 n = (n & 0x55555555) + ((n & 0xaaaaaaaa) >> 1);
39 n = (n & 0x33333333) + ((n & 0xcccccccc) >> 2);
40 n = (n & 0x0f0f0f0f) + ((n & 0xf0f0f0f0) >> 4);
41 n = (n & 0x00ff00ff) + ((n & 0xff00ff00) >> 8);
42 n = (n & 0x0000ffff) + ((n & 0xffff0000) >> 16);
43 // Etc for larger intergers (64 bits in Java)
44 // NOTE: the >> operation must be unsigned! (>>> in java)
45 return n;
46 }
47
48 //! Even faster?
49 inline_ udword CountBits2(udword bits)
50 {
51 bits = bits - ((bits >> 1) & 0x55555555);
52 bits = ((bits >> 2) & 0x33333333) + (bits & 0x33333333);
53 bits = ((bits >> 4) + bits) & 0x0F0F0F0F;
54 return (bits * 0x01010101) >> 24;
55 }
56
57 //! Spread out bits. EG 00001111 -> 0101010101
58 //! 00001010 -> 0100010000
59 //! This is used to interleve to intergers to produce a `Morten Key'
60 //! used in Space Filling Curves (See DrDobbs Journal, July 1999)
61 //! Order is important.
62 inline_ void SpreadBits(udword& n)
63 {
64 n = ( n & 0x0000ffff) | (( n & 0xffff0000) << 16);
65 n = ( n & 0x000000ff) | (( n & 0x0000ff00) << 8);
66 n = ( n & 0x000f000f) | (( n & 0x00f000f0) << 4);
67 n = ( n & 0x03030303) | (( n & 0x0c0c0c0c) << 2);
68 n = ( n & 0x11111111) | (( n & 0x22222222) << 1);
69 }
70
71 // Next Largest Power of 2
72 // Given a binary integer value x, the next largest power of 2 can be computed by a SWAR algorithm
73 // that recursively "folds" the upper bits into the lower bits. This process yields a bit vector with
74 // the same most significant 1 as x, but all 1's below it. Adding 1 to that value yields the next
75 // largest power of 2. For a 32-bit value:
76 inline_ udword nlpo2(udword x)
77 {
78 x |= (x >> 1);
79 x |= (x >> 2);
80 x |= (x >> 4);
81 x |= (x >> 8);
82 x |= (x >> 16);
83 return x+1;
84 }
85
86 //! Test to see if a number is an exact power of two (from Steve Baker's Cute Code Collection)
87 inline_ bool IsPowerOfTwo(udword n) { return ((n&(n-1))==0); }
88
89 //! Zero the least significant '1' bit in a word. (from Steve Baker's Cute Code Collection)
90 inline_ void ZeroLeastSetBit(udword& n) { n&=(n-1); }
91
92 //! Set the least significant N bits in a word. (from Steve Baker's Cute Code Collection)
93 inline_ void SetLeastNBits(udword& x, udword n) { x|=~(~0<<n); }
94
95 //! Classic XOR swap (from Steve Baker's Cute Code Collection)
96 //! x ^= y; /* x' = (x^y) */
97 //! y ^= x; /* y' = (y^(x^y)) = x */
98 //! x ^= y; /* x' = (x^y)^x = y */
99 inline_ void Swap(udword& x, udword& y) { x ^= y; y ^= x; x ^= y; }
100
101 //! Little/Big endian (from Steve Baker's Cute Code Collection)
102 //!
103 //! Extra comments by Kenny Hoff:
104 //! Determines the byte-ordering of the current machine (little or big endian)
105 //! by setting an integer value to 1 (so least significant bit is now 1); take
106 //! the address of the int and cast to a byte pointer (treat integer as an
107 //! array of four bytes); check the value of the first byte (must be 0 or 1).
108 //! If the value is 1, then the first byte least significant byte and this
109 //! implies LITTLE endian. If the value is 0, the first byte is the most
110 //! significant byte, BIG endian. Examples:
111 //! integer 1 on BIG endian: 00000000 00000000 00000000 00000001
112 //! integer 1 on LITTLE endian: 00000001 00000000 00000000 00000000
113 //!---------------------------------------------------------------------------
114 //! int IsLittleEndian() { int x=1; return ( ((char*)(&x))[0] ); }
115 inline_ char LittleEndian() { int i = 1; return *((char*)&i); }
116
117 //!< Alternative abs function
118 inline_ udword abs_(sdword x) { sdword y= x >> 31; return (x^y)-y; }
119
120 //!< Alternative min function
121 inline_ sdword min_(sdword a, sdword b) { sdword delta = b-a; return a + (delta&(delta>>31)); }
122
123 // Determine if one of the bytes in a 4 byte word is zero
124 inline_ BOOL HasNullByte(udword x) { return ((x + 0xfefefeff) & (~x) & 0x80808080); }
125
126 // To find the smallest 1 bit in a word EG: ~~~~~~10---0 => 0----010---0
127 inline_ udword LowestOneBit(udword w) { return ((w) & (~(w)+1)); }
128// inline_ udword LowestOneBit_(udword w) { return ((w) & (-(w))); }
129
130 // Most Significant 1 Bit
131 // Given a binary integer value x, the most significant 1 bit (highest numbered element of a bit set)
132 // can be computed using a SWAR algorithm that recursively "folds" the upper bits into the lower bits.
133 // This process yields a bit vector with the same most significant 1 as x, but all 1's below it.
134 // Bitwise AND of the original value with the complement of the "folded" value shifted down by one
135 // yields the most significant bit. For a 32-bit value:
136 inline_ udword msb32(udword x)
137 {
138 x |= (x >> 1);
139 x |= (x >> 2);
140 x |= (x >> 4);
141 x |= (x >> 8);
142 x |= (x >> 16);
143 return (x & ~(x >> 1));
144 }
145
146 /*
147 "Just call it repeatedly with various input values and always with the same variable as "memory".
148 The sharpness determines the degree of filtering, where 0 completely filters out the input, and 1
149 does no filtering at all.
150
151 I seem to recall from college that this is called an IIR (Infinite Impulse Response) filter. As opposed
152 to the more typical FIR (Finite Impulse Response).
153
154 Also, I'd say that you can make more intelligent and interesting filters than this, for example filters
155 that remove wrong responses from the mouse because it's being moved too fast. You'd want such a filter
156 to be applied before this one, of course."
157
158 (JCAB on Flipcode)
159 */
160 inline_ float FeedbackFilter(float val, float& memory, float sharpness)
161 {
162 ASSERT(sharpness>=0.0f && sharpness<=1.0f && "Invalid sharpness value in feedback filter");
163 if(sharpness<0.0f) sharpness = 0.0f;
164 else if(sharpness>1.0f) sharpness = 1.0f;
165 return memory = val * sharpness + memory * (1.0f - sharpness);
166 }
167
168 //! If you can guarantee that your input domain (i.e. value of x) is slightly
169 //! limited (abs(x) must be < ((1<<31u)-32767)), then you can use the
170 //! following code to clamp the resulting value into [-32768,+32767] range:
171 inline_ int ClampToInt16(int x)
172 {
173// ASSERT(abs(x) < (int)((1<<31u)-32767));
174
175 int delta = 32767 - x;
176 x += (delta>>31) & delta;
177 delta = x + 32768;
178 x -= (delta>>31) & delta;
179 return x;
180 }
181
182 // Generic functions
183 template<class Type> inline_ void TSwap(Type& a, Type& b) { const Type c = a; a = b; b = c; }
184 template<class Type> inline_ Type TClamp(const Type& x, const Type& lo, const Type& hi) { return ((x<lo) ? lo : (x>hi) ? hi : x); }
185
186 template<class Type> inline_ void TSort(Type& a, Type& b)
187 {
188 if(a>b) TSwap(a, b);
189 }
190
191 template<class Type> inline_ void TSort(Type& a, Type& b, Type& c)
192 {
193 if(a>b) TSwap(a, b);
194 if(b>c) TSwap(b, c);
195 if(a>b) TSwap(a, b);
196 if(b>c) TSwap(b, c);
197 }
198
199 // Prevent nasty user-manipulations (strategy borrowed from Charles Bloom)
200// #define PREVENT_COPY(curclass) void operator = (const curclass& object) { ASSERT(!"Bad use of operator ="); }
201 // ... actually this is better !
202 #define PREVENT_COPY(cur_class) private: cur_class(const cur_class& object); cur_class& operator=(const cur_class& object);
203
204 //! TO BE DOCUMENTED
205 #define OFFSET_OF(Class, Member) (size_t)&(((Class*)0)->Member)
206 //! TO BE DOCUMENTED
207 #define ARRAYSIZE(p) (sizeof(p)/sizeof(p[0]))
208
209 ///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
210 /**
211 * Returns the alignment of the input address.
212 * \fn Alignment()
213 * \param address [in] address to check
214 * \return the best alignment (e.g. 1 for odd addresses, etc)
215 */
216 ///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
217 FUNCTION ICECORE_API udword Alignment(udword address);
218
219 #define IS_ALIGNED_2(x) ((x&1)==0)
220 #define IS_ALIGNED_4(x) ((x&3)==0)
221 #define IS_ALIGNED_8(x) ((x&7)==0)
222
223 inline_ void _prefetch(void const* ptr) { (void)*(char const volatile *)ptr; }
224
225 // Compute implicit coords from an index:
226 // The idea is to get back 2D coords from a 1D index.
227 // For example:
228 //
229 // 0 1 2 ... nbu-1
230 // nbu nbu+1 i ...
231 //
232 // We have i, we're looking for the equivalent (u=2, v=1) location.
233 // i = u + v*nbu
234 // <=> i/nbu = u/nbu + v
235 // Since 0 <= u < nbu, u/nbu = 0 (integer)
236 // Hence: v = i/nbu
237 // Then we simply put it back in the original equation to compute u = i - v*nbu
238 inline_ void Compute2DCoords(udword& u, udword& v, udword i, udword nbu)
239 {
240 v = i / nbu;
241 u = i - (v * nbu);
242 }
243
244 // In 3D: i = u + v*nbu + w*nbu*nbv
245 // <=> i/(nbu*nbv) = u/(nbu*nbv) + v/nbv + w
246 // u/(nbu*nbv) is null since u/nbu was null already.
247 // v/nbv is null as well for the same reason.
248 // Hence w = i/(nbu*nbv)
249 // Then we're left with a 2D problem: i' = i - w*nbu*nbv = u + v*nbu
250 inline_ void Compute3DCoords(udword& u, udword& v, udword& w, udword i, udword nbu, udword nbu_nbv)
251 {
252 w = i / (nbu_nbv);
253 Compute2DCoords(u, v, i - (w * nbu_nbv), nbu);
254 }
255
256#endif // __ICEUTILS_H__