aboutsummaryrefslogtreecommitdiffstatshomepage
path: root/OpenSim/Region/PhysicsModules/Ode/ODEDynamics.cs
diff options
context:
space:
mode:
Diffstat (limited to 'OpenSim/Region/PhysicsModules/Ode/ODEDynamics.cs')
-rw-r--r--OpenSim/Region/PhysicsModules/Ode/ODEDynamics.cs974
1 files changed, 974 insertions, 0 deletions
diff --git a/OpenSim/Region/PhysicsModules/Ode/ODEDynamics.cs b/OpenSim/Region/PhysicsModules/Ode/ODEDynamics.cs
new file mode 100644
index 0000000..8f8e2bd
--- /dev/null
+++ b/OpenSim/Region/PhysicsModules/Ode/ODEDynamics.cs
@@ -0,0 +1,974 @@
1/*
2 * Copyright (c) Contributors, http://opensimulator.org/
3 * See CONTRIBUTORS.TXT for a full list of copyright holders.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are met:
7 * * Redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer.
9 * * Redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution.
12 * * Neither the name of the OpenSimulator Project nor the
13 * names of its contributors may be used to endorse or promote products
14 * derived from this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE DEVELOPERS ``AS IS'' AND ANY
17 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
18 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
19 * DISCLAIMED. IN NO EVENT SHALL THE CONTRIBUTORS BE LIABLE FOR ANY
20 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
21 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
22 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
23 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
25 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26 */
27
28/* Revised Aug, Sept 2009 by Kitto Flora. ODEDynamics.cs replaces
29 * ODEVehicleSettings.cs. It and ODEPrim.cs are re-organised:
30 * ODEPrim.cs contains methods dealing with Prim editing, Prim
31 * characteristics and Kinetic motion.
32 * ODEDynamics.cs contains methods dealing with Prim Physical motion
33 * (dynamics) and the associated settings. Old Linear and angular
34 * motors for dynamic motion have been replace with MoveLinear()
35 * and MoveAngular(); 'Physical' is used only to switch ODE dynamic
36 * simualtion on/off; VEHICAL_TYPE_NONE/VEHICAL_TYPE_<other> is to
37 * switch between 'VEHICLE' parameter use and general dynamics
38 * settings use.
39 */
40
41using System;
42using System.Collections.Generic;
43using System.Reflection;
44using System.Runtime.InteropServices;
45using log4net;
46using OpenMetaverse;
47using Ode.NET;
48using OpenSim.Framework;
49using OpenSim.Region.PhysicsModules.SharedBase;
50
51namespace OpenSim.Region.PhysicsModule.ODE
52{
53 public class ODEDynamics
54 {
55 public Vehicle Type
56 {
57 get { return m_type; }
58 }
59
60 public IntPtr Body
61 {
62 get { return m_body; }
63 }
64
65 private int frcount = 0; // Used to limit dynamics debug output to
66 // every 100th frame
67
68 // private OdeScene m_parentScene = null;
69 private IntPtr m_body = IntPtr.Zero;
70// private IntPtr m_jointGroup = IntPtr.Zero;
71// private IntPtr m_aMotor = IntPtr.Zero;
72
73
74 // Vehicle properties
75 private Vehicle m_type = Vehicle.TYPE_NONE; // If a 'VEHICLE', and what kind
76 // private Quaternion m_referenceFrame = Quaternion.Identity; // Axis modifier
77 private VehicleFlag m_flags = (VehicleFlag) 0; // Boolean settings:
78 // HOVER_TERRAIN_ONLY
79 // HOVER_GLOBAL_HEIGHT
80 // NO_DEFLECTION_UP
81 // HOVER_WATER_ONLY
82 // HOVER_UP_ONLY
83 // LIMIT_MOTOR_UP
84 // LIMIT_ROLL_ONLY
85 private VehicleFlag m_Hoverflags = (VehicleFlag)0;
86 private Vector3 m_BlockingEndPoint = Vector3.Zero;
87 private Quaternion m_RollreferenceFrame = Quaternion.Identity;
88 // Linear properties
89 private Vector3 m_linearMotorDirection = Vector3.Zero; // velocity requested by LSL, decayed by time
90 private Vector3 m_linearMotorDirectionLASTSET = Vector3.Zero; // velocity requested by LSL
91 private Vector3 m_dir = Vector3.Zero; // velocity applied to body
92 private Vector3 m_linearFrictionTimescale = Vector3.Zero;
93 private float m_linearMotorDecayTimescale = 0;
94 private float m_linearMotorTimescale = 0;
95 private Vector3 m_lastLinearVelocityVector = Vector3.Zero;
96 private d.Vector3 m_lastPositionVector = new d.Vector3();
97 // private bool m_LinearMotorSetLastFrame = false;
98 // private Vector3 m_linearMotorOffset = Vector3.Zero;
99
100 //Angular properties
101 private Vector3 m_angularMotorDirection = Vector3.Zero; // angular velocity requested by LSL motor
102 private int m_angularMotorApply = 0; // application frame counter
103 private Vector3 m_angularMotorVelocity = Vector3.Zero; // current angular motor velocity
104 private float m_angularMotorTimescale = 0; // motor angular velocity ramp up rate
105 private float m_angularMotorDecayTimescale = 0; // motor angular velocity decay rate
106 private Vector3 m_angularFrictionTimescale = Vector3.Zero; // body angular velocity decay rate
107 private Vector3 m_lastAngularVelocity = Vector3.Zero; // what was last applied to body
108 // private Vector3 m_lastVertAttractor = Vector3.Zero; // what VA was last applied to body
109
110 //Deflection properties
111 // private float m_angularDeflectionEfficiency = 0;
112 // private float m_angularDeflectionTimescale = 0;
113 // private float m_linearDeflectionEfficiency = 0;
114 // private float m_linearDeflectionTimescale = 0;
115
116 //Banking properties
117 // private float m_bankingEfficiency = 0;
118 // private float m_bankingMix = 0;
119 // private float m_bankingTimescale = 0;
120
121 //Hover and Buoyancy properties
122 private float m_VhoverHeight = 0f;
123// private float m_VhoverEfficiency = 0f;
124 private float m_VhoverTimescale = 0f;
125 private float m_VhoverTargetHeight = -1.0f; // if <0 then no hover, else its the current target height
126 private float m_VehicleBuoyancy = 0f; //KF: m_VehicleBuoyancy is set by VEHICLE_BUOYANCY for a vehicle.
127 // Modifies gravity. Slider between -1 (double-gravity) and 1 (full anti-gravity)
128 // KF: So far I have found no good method to combine a script-requested .Z velocity and gravity.
129 // Therefore only m_VehicleBuoyancy=1 (0g) will use the script-requested .Z velocity.
130
131 //Attractor properties
132 private float m_verticalAttractionEfficiency = 1.0f; // damped
133 private float m_verticalAttractionTimescale = 500f; // Timescale > 300 means no vert attractor.
134
135 internal void ProcessFloatVehicleParam(Vehicle pParam, float pValue)
136 {
137 switch (pParam)
138 {
139 case Vehicle.ANGULAR_DEFLECTION_EFFICIENCY:
140 if (pValue < 0.01f) pValue = 0.01f;
141 // m_angularDeflectionEfficiency = pValue;
142 break;
143 case Vehicle.ANGULAR_DEFLECTION_TIMESCALE:
144 if (pValue < 0.01f) pValue = 0.01f;
145 // m_angularDeflectionTimescale = pValue;
146 break;
147 case Vehicle.ANGULAR_MOTOR_DECAY_TIMESCALE:
148 if (pValue < 0.01f) pValue = 0.01f;
149 m_angularMotorDecayTimescale = pValue;
150 break;
151 case Vehicle.ANGULAR_MOTOR_TIMESCALE:
152 if (pValue < 0.01f) pValue = 0.01f;
153 m_angularMotorTimescale = pValue;
154 break;
155 case Vehicle.BANKING_EFFICIENCY:
156 if (pValue < 0.01f) pValue = 0.01f;
157 // m_bankingEfficiency = pValue;
158 break;
159 case Vehicle.BANKING_MIX:
160 if (pValue < 0.01f) pValue = 0.01f;
161 // m_bankingMix = pValue;
162 break;
163 case Vehicle.BANKING_TIMESCALE:
164 if (pValue < 0.01f) pValue = 0.01f;
165 // m_bankingTimescale = pValue;
166 break;
167 case Vehicle.BUOYANCY:
168 if (pValue < -1f) pValue = -1f;
169 if (pValue > 1f) pValue = 1f;
170 m_VehicleBuoyancy = pValue;
171 break;
172// case Vehicle.HOVER_EFFICIENCY:
173// if (pValue < 0f) pValue = 0f;
174// if (pValue > 1f) pValue = 1f;
175// m_VhoverEfficiency = pValue;
176// break;
177 case Vehicle.HOVER_HEIGHT:
178 m_VhoverHeight = pValue;
179 break;
180 case Vehicle.HOVER_TIMESCALE:
181 if (pValue < 0.01f) pValue = 0.01f;
182 m_VhoverTimescale = pValue;
183 break;
184 case Vehicle.LINEAR_DEFLECTION_EFFICIENCY:
185 if (pValue < 0.01f) pValue = 0.01f;
186 // m_linearDeflectionEfficiency = pValue;
187 break;
188 case Vehicle.LINEAR_DEFLECTION_TIMESCALE:
189 if (pValue < 0.01f) pValue = 0.01f;
190 // m_linearDeflectionTimescale = pValue;
191 break;
192 case Vehicle.LINEAR_MOTOR_DECAY_TIMESCALE:
193 if (pValue < 0.01f) pValue = 0.01f;
194 m_linearMotorDecayTimescale = pValue;
195 break;
196 case Vehicle.LINEAR_MOTOR_TIMESCALE:
197 if (pValue < 0.01f) pValue = 0.01f;
198 m_linearMotorTimescale = pValue;
199 break;
200 case Vehicle.VERTICAL_ATTRACTION_EFFICIENCY:
201 if (pValue < 0.1f) pValue = 0.1f; // Less goes unstable
202 if (pValue > 1.0f) pValue = 1.0f;
203 m_verticalAttractionEfficiency = pValue;
204 break;
205 case Vehicle.VERTICAL_ATTRACTION_TIMESCALE:
206 if (pValue < 0.01f) pValue = 0.01f;
207 m_verticalAttractionTimescale = pValue;
208 break;
209
210 // These are vector properties but the engine lets you use a single float value to
211 // set all of the components to the same value
212 case Vehicle.ANGULAR_FRICTION_TIMESCALE:
213 m_angularFrictionTimescale = new Vector3(pValue, pValue, pValue);
214 break;
215 case Vehicle.ANGULAR_MOTOR_DIRECTION:
216 m_angularMotorDirection = new Vector3(pValue, pValue, pValue);
217 m_angularMotorApply = 10;
218 break;
219 case Vehicle.LINEAR_FRICTION_TIMESCALE:
220 m_linearFrictionTimescale = new Vector3(pValue, pValue, pValue);
221 break;
222 case Vehicle.LINEAR_MOTOR_DIRECTION:
223 m_linearMotorDirection = new Vector3(pValue, pValue, pValue);
224 m_linearMotorDirectionLASTSET = new Vector3(pValue, pValue, pValue);
225 break;
226 case Vehicle.LINEAR_MOTOR_OFFSET:
227 // m_linearMotorOffset = new Vector3(pValue, pValue, pValue);
228 break;
229
230 }
231 }//end ProcessFloatVehicleParam
232
233 internal void ProcessVectorVehicleParam(Vehicle pParam, Vector3 pValue)
234 {
235 switch (pParam)
236 {
237 case Vehicle.ANGULAR_FRICTION_TIMESCALE:
238 m_angularFrictionTimescale = new Vector3(pValue.X, pValue.Y, pValue.Z);
239 break;
240 case Vehicle.ANGULAR_MOTOR_DIRECTION:
241 m_angularMotorDirection = new Vector3(pValue.X, pValue.Y, pValue.Z);
242 // Limit requested angular speed to 2 rps= 4 pi rads/sec
243 if (m_angularMotorDirection.X > 12.56f) m_angularMotorDirection.X = 12.56f;
244 if (m_angularMotorDirection.X < - 12.56f) m_angularMotorDirection.X = - 12.56f;
245 if (m_angularMotorDirection.Y > 12.56f) m_angularMotorDirection.Y = 12.56f;
246 if (m_angularMotorDirection.Y < - 12.56f) m_angularMotorDirection.Y = - 12.56f;
247 if (m_angularMotorDirection.Z > 12.56f) m_angularMotorDirection.Z = 12.56f;
248 if (m_angularMotorDirection.Z < - 12.56f) m_angularMotorDirection.Z = - 12.56f;
249 m_angularMotorApply = 10;
250 break;
251 case Vehicle.LINEAR_FRICTION_TIMESCALE:
252 m_linearFrictionTimescale = new Vector3(pValue.X, pValue.Y, pValue.Z);
253 break;
254 case Vehicle.LINEAR_MOTOR_DIRECTION:
255 m_linearMotorDirection = new Vector3(pValue.X, pValue.Y, pValue.Z);
256 m_linearMotorDirectionLASTSET = new Vector3(pValue.X, pValue.Y, pValue.Z);
257 break;
258 case Vehicle.LINEAR_MOTOR_OFFSET:
259 // m_linearMotorOffset = new Vector3(pValue.X, pValue.Y, pValue.Z);
260 break;
261 case Vehicle.BLOCK_EXIT:
262 m_BlockingEndPoint = new Vector3(pValue.X, pValue.Y, pValue.Z);
263 break;
264 }
265 }//end ProcessVectorVehicleParam
266
267 internal void ProcessRotationVehicleParam(Vehicle pParam, Quaternion pValue)
268 {
269 switch (pParam)
270 {
271 case Vehicle.REFERENCE_FRAME:
272 // m_referenceFrame = pValue;
273 break;
274 case Vehicle.ROLL_FRAME:
275 m_RollreferenceFrame = pValue;
276 break;
277 }
278 }//end ProcessRotationVehicleParam
279
280 internal void ProcessVehicleFlags(int pParam, bool remove)
281 {
282 if (remove)
283 {
284 if (pParam == -1)
285 {
286 m_flags = (VehicleFlag)0;
287 m_Hoverflags = (VehicleFlag)0;
288 return;
289 }
290 if ((pParam & (int)VehicleFlag.HOVER_GLOBAL_HEIGHT) == (int)VehicleFlag.HOVER_GLOBAL_HEIGHT)
291 {
292 if ((m_Hoverflags & VehicleFlag.HOVER_GLOBAL_HEIGHT) != (VehicleFlag)0)
293 m_Hoverflags &= ~(VehicleFlag.HOVER_GLOBAL_HEIGHT);
294 }
295 if ((pParam & (int)VehicleFlag.HOVER_TERRAIN_ONLY) == (int)VehicleFlag.HOVER_TERRAIN_ONLY)
296 {
297 if ((m_Hoverflags & VehicleFlag.HOVER_TERRAIN_ONLY) != (VehicleFlag)0)
298 m_Hoverflags &= ~(VehicleFlag.HOVER_TERRAIN_ONLY);
299 }
300 if ((pParam & (int)VehicleFlag.HOVER_UP_ONLY) == (int)VehicleFlag.HOVER_UP_ONLY)
301 {
302 if ((m_Hoverflags & VehicleFlag.HOVER_UP_ONLY) != (VehicleFlag)0)
303 m_Hoverflags &= ~(VehicleFlag.HOVER_UP_ONLY);
304 }
305 if ((pParam & (int)VehicleFlag.HOVER_WATER_ONLY) == (int)VehicleFlag.HOVER_WATER_ONLY)
306 {
307 if ((m_Hoverflags & VehicleFlag.HOVER_WATER_ONLY) != (VehicleFlag)0)
308 m_Hoverflags &= ~(VehicleFlag.HOVER_WATER_ONLY);
309 }
310 if ((pParam & (int)VehicleFlag.LIMIT_MOTOR_UP) == (int)VehicleFlag.LIMIT_MOTOR_UP)
311 {
312 if ((m_flags & VehicleFlag.LIMIT_MOTOR_UP) != (VehicleFlag)0)
313 m_flags &= ~(VehicleFlag.LIMIT_MOTOR_UP);
314 }
315 if ((pParam & (int)VehicleFlag.LIMIT_ROLL_ONLY) == (int)VehicleFlag.LIMIT_ROLL_ONLY)
316 {
317 if ((m_flags & VehicleFlag.LIMIT_ROLL_ONLY) != (VehicleFlag)0)
318 m_flags &= ~(VehicleFlag.LIMIT_ROLL_ONLY);
319 }
320 if ((pParam & (int)VehicleFlag.MOUSELOOK_BANK) == (int)VehicleFlag.MOUSELOOK_BANK)
321 {
322 if ((m_flags & VehicleFlag.MOUSELOOK_BANK) != (VehicleFlag)0)
323 m_flags &= ~(VehicleFlag.MOUSELOOK_BANK);
324 }
325 if ((pParam & (int)VehicleFlag.MOUSELOOK_STEER) == (int)VehicleFlag.MOUSELOOK_STEER)
326 {
327 if ((m_flags & VehicleFlag.MOUSELOOK_STEER) != (VehicleFlag)0)
328 m_flags &= ~(VehicleFlag.MOUSELOOK_STEER);
329 }
330 if ((pParam & (int)VehicleFlag.NO_DEFLECTION_UP) == (int)VehicleFlag.NO_DEFLECTION_UP)
331 {
332 if ((m_flags & VehicleFlag.NO_DEFLECTION_UP) != (VehicleFlag)0)
333 m_flags &= ~(VehicleFlag.NO_DEFLECTION_UP);
334 }
335 if ((pParam & (int)VehicleFlag.CAMERA_DECOUPLED) == (int)VehicleFlag.CAMERA_DECOUPLED)
336 {
337 if ((m_flags & VehicleFlag.CAMERA_DECOUPLED) != (VehicleFlag)0)
338 m_flags &= ~(VehicleFlag.CAMERA_DECOUPLED);
339 }
340 if ((pParam & (int)VehicleFlag.NO_X) == (int)VehicleFlag.NO_X)
341 {
342 if ((m_flags & VehicleFlag.NO_X) != (VehicleFlag)0)
343 m_flags &= ~(VehicleFlag.NO_X);
344 }
345 if ((pParam & (int)VehicleFlag.NO_Y) == (int)VehicleFlag.NO_Y)
346 {
347 if ((m_flags & VehicleFlag.NO_Y) != (VehicleFlag)0)
348 m_flags &= ~(VehicleFlag.NO_Y);
349 }
350 if ((pParam & (int)VehicleFlag.NO_Z) == (int)VehicleFlag.NO_Z)
351 {
352 if ((m_flags & VehicleFlag.NO_Z) != (VehicleFlag)0)
353 m_flags &= ~(VehicleFlag.NO_Z);
354 }
355 if ((pParam & (int)VehicleFlag.LOCK_HOVER_HEIGHT) == (int)VehicleFlag.LOCK_HOVER_HEIGHT)
356 {
357 if ((m_Hoverflags & VehicleFlag.LOCK_HOVER_HEIGHT) != (VehicleFlag)0)
358 m_Hoverflags &= ~(VehicleFlag.LOCK_HOVER_HEIGHT);
359 }
360 if ((pParam & (int)VehicleFlag.NO_DEFLECTION) == (int)VehicleFlag.NO_DEFLECTION)
361 {
362 if ((m_flags & VehicleFlag.NO_DEFLECTION) != (VehicleFlag)0)
363 m_flags &= ~(VehicleFlag.NO_DEFLECTION);
364 }
365 if ((pParam & (int)VehicleFlag.LOCK_ROTATION) == (int)VehicleFlag.LOCK_ROTATION)
366 {
367 if ((m_flags & VehicleFlag.LOCK_ROTATION) != (VehicleFlag)0)
368 m_flags &= ~(VehicleFlag.LOCK_ROTATION);
369 }
370 }
371 else
372 {
373 if ((pParam & (int)VehicleFlag.HOVER_GLOBAL_HEIGHT) == (int)VehicleFlag.HOVER_GLOBAL_HEIGHT)
374 {
375 m_Hoverflags |= (VehicleFlag.HOVER_GLOBAL_HEIGHT | m_flags);
376 }
377 if ((pParam & (int)VehicleFlag.HOVER_TERRAIN_ONLY) == (int)VehicleFlag.HOVER_TERRAIN_ONLY)
378 {
379 m_Hoverflags |= (VehicleFlag.HOVER_TERRAIN_ONLY | m_flags);
380 }
381 if ((pParam & (int)VehicleFlag.HOVER_UP_ONLY) == (int)VehicleFlag.HOVER_UP_ONLY)
382 {
383 m_Hoverflags |= (VehicleFlag.HOVER_UP_ONLY | m_flags);
384 }
385 if ((pParam & (int)VehicleFlag.HOVER_WATER_ONLY) == (int)VehicleFlag.HOVER_WATER_ONLY)
386 {
387 m_Hoverflags |= (VehicleFlag.HOVER_WATER_ONLY | m_flags);
388 }
389 if ((pParam & (int)VehicleFlag.LIMIT_MOTOR_UP) == (int)VehicleFlag.LIMIT_MOTOR_UP)
390 {
391 m_flags |= (VehicleFlag.LIMIT_MOTOR_UP | m_flags);
392 }
393 if ((pParam & (int)VehicleFlag.MOUSELOOK_BANK) == (int)VehicleFlag.MOUSELOOK_BANK)
394 {
395 m_flags |= (VehicleFlag.MOUSELOOK_BANK | m_flags);
396 }
397 if ((pParam & (int)VehicleFlag.MOUSELOOK_STEER) == (int)VehicleFlag.MOUSELOOK_STEER)
398 {
399 m_flags |= (VehicleFlag.MOUSELOOK_STEER | m_flags);
400 }
401 if ((pParam & (int)VehicleFlag.NO_DEFLECTION_UP) == (int)VehicleFlag.NO_DEFLECTION_UP)
402 {
403 m_flags |= (VehicleFlag.NO_DEFLECTION_UP | m_flags);
404 }
405 if ((pParam & (int)VehicleFlag.CAMERA_DECOUPLED) == (int)VehicleFlag.CAMERA_DECOUPLED)
406 {
407 m_flags |= (VehicleFlag.CAMERA_DECOUPLED | m_flags);
408 }
409 if ((pParam & (int)VehicleFlag.NO_X) == (int)VehicleFlag.NO_X)
410 {
411 m_flags |= (VehicleFlag.NO_X);
412 }
413 if ((pParam & (int)VehicleFlag.NO_Y) == (int)VehicleFlag.NO_Y)
414 {
415 m_flags |= (VehicleFlag.NO_Y);
416 }
417 if ((pParam & (int)VehicleFlag.NO_Z) == (int)VehicleFlag.NO_Z)
418 {
419 m_flags |= (VehicleFlag.NO_Z);
420 }
421 if ((pParam & (int)VehicleFlag.LOCK_HOVER_HEIGHT) == (int)VehicleFlag.LOCK_HOVER_HEIGHT)
422 {
423 m_Hoverflags |= (VehicleFlag.LOCK_HOVER_HEIGHT);
424 }
425 if ((pParam & (int)VehicleFlag.NO_DEFLECTION) == (int)VehicleFlag.NO_DEFLECTION)
426 {
427 m_flags |= (VehicleFlag.NO_DEFLECTION);
428 }
429 if ((pParam & (int)VehicleFlag.LOCK_ROTATION) == (int)VehicleFlag.LOCK_ROTATION)
430 {
431 m_flags |= (VehicleFlag.LOCK_ROTATION);
432 }
433 }
434 }//end ProcessVehicleFlags
435
436 internal void ProcessTypeChange(Vehicle pType)
437 {
438 // Set Defaults For Type
439 m_type = pType;
440 switch (pType)
441 {
442 case Vehicle.TYPE_NONE:
443 m_linearFrictionTimescale = new Vector3(0, 0, 0);
444 m_angularFrictionTimescale = new Vector3(0, 0, 0);
445 m_linearMotorDirection = Vector3.Zero;
446 m_linearMotorTimescale = 0;
447 m_linearMotorDecayTimescale = 0;
448 m_angularMotorDirection = Vector3.Zero;
449 m_angularMotorTimescale = 0;
450 m_angularMotorDecayTimescale = 0;
451 m_VhoverHeight = 0;
452 m_VhoverTimescale = 0;
453 m_VehicleBuoyancy = 0;
454 m_flags = (VehicleFlag)0;
455 break;
456
457 case Vehicle.TYPE_SLED:
458 m_linearFrictionTimescale = new Vector3(30, 1, 1000);
459 m_angularFrictionTimescale = new Vector3(1000, 1000, 1000);
460 m_linearMotorDirection = Vector3.Zero;
461 m_linearMotorTimescale = 1000;
462 m_linearMotorDecayTimescale = 120;
463 m_angularMotorDirection = Vector3.Zero;
464 m_angularMotorTimescale = 1000;
465 m_angularMotorDecayTimescale = 120;
466 m_VhoverHeight = 0;
467// m_VhoverEfficiency = 1;
468 m_VhoverTimescale = 10;
469 m_VehicleBuoyancy = 0;
470 // m_linearDeflectionEfficiency = 1;
471 // m_linearDeflectionTimescale = 1;
472 // m_angularDeflectionEfficiency = 1;
473 // m_angularDeflectionTimescale = 1000;
474 // m_bankingEfficiency = 0;
475 // m_bankingMix = 1;
476 // m_bankingTimescale = 10;
477 // m_referenceFrame = Quaternion.Identity;
478 m_Hoverflags &=
479 ~(VehicleFlag.HOVER_WATER_ONLY | VehicleFlag.HOVER_TERRAIN_ONLY |
480 VehicleFlag.HOVER_GLOBAL_HEIGHT | VehicleFlag.HOVER_UP_ONLY);
481 m_flags |= (VehicleFlag.NO_DEFLECTION_UP | VehicleFlag.LIMIT_ROLL_ONLY | VehicleFlag.LIMIT_MOTOR_UP);
482 break;
483 case Vehicle.TYPE_CAR:
484 m_linearFrictionTimescale = new Vector3(100, 2, 1000);
485 m_angularFrictionTimescale = new Vector3(1000, 1000, 1000);
486 m_linearMotorDirection = Vector3.Zero;
487 m_linearMotorTimescale = 1;
488 m_linearMotorDecayTimescale = 60;
489 m_angularMotorDirection = Vector3.Zero;
490 m_angularMotorTimescale = 1;
491 m_angularMotorDecayTimescale = 0.8f;
492 m_VhoverHeight = 0;
493// m_VhoverEfficiency = 0;
494 m_VhoverTimescale = 1000;
495 m_VehicleBuoyancy = 0;
496 // // m_linearDeflectionEfficiency = 1;
497 // // m_linearDeflectionTimescale = 2;
498 // // m_angularDeflectionEfficiency = 0;
499 // m_angularDeflectionTimescale = 10;
500 m_verticalAttractionEfficiency = 1f;
501 m_verticalAttractionTimescale = 10f;
502 // m_bankingEfficiency = -0.2f;
503 // m_bankingMix = 1;
504 // m_bankingTimescale = 1;
505 // m_referenceFrame = Quaternion.Identity;
506 m_Hoverflags &= ~(VehicleFlag.HOVER_WATER_ONLY | VehicleFlag.HOVER_TERRAIN_ONLY | VehicleFlag.HOVER_GLOBAL_HEIGHT);
507 m_flags |= (VehicleFlag.NO_DEFLECTION_UP | VehicleFlag.LIMIT_ROLL_ONLY |
508 VehicleFlag.LIMIT_MOTOR_UP);
509 m_Hoverflags |= (VehicleFlag.HOVER_UP_ONLY);
510 break;
511 case Vehicle.TYPE_BOAT:
512 m_linearFrictionTimescale = new Vector3(10, 3, 2);
513 m_angularFrictionTimescale = new Vector3(10,10,10);
514 m_linearMotorDirection = Vector3.Zero;
515 m_linearMotorTimescale = 5;
516 m_linearMotorDecayTimescale = 60;
517 m_angularMotorDirection = Vector3.Zero;
518 m_angularMotorTimescale = 4;
519 m_angularMotorDecayTimescale = 4;
520 m_VhoverHeight = 0;
521// m_VhoverEfficiency = 0.5f;
522 m_VhoverTimescale = 2;
523 m_VehicleBuoyancy = 1;
524 // m_linearDeflectionEfficiency = 0.5f;
525 // m_linearDeflectionTimescale = 3;
526 // m_angularDeflectionEfficiency = 0.5f;
527 // m_angularDeflectionTimescale = 5;
528 m_verticalAttractionEfficiency = 0.5f;
529 m_verticalAttractionTimescale = 5f;
530 // m_bankingEfficiency = -0.3f;
531 // m_bankingMix = 0.8f;
532 // m_bankingTimescale = 1;
533 // m_referenceFrame = Quaternion.Identity;
534 m_Hoverflags &= ~(VehicleFlag.HOVER_TERRAIN_ONLY |
535 VehicleFlag.HOVER_GLOBAL_HEIGHT | VehicleFlag.HOVER_UP_ONLY);
536 m_flags &= ~(VehicleFlag.LIMIT_ROLL_ONLY);
537 m_flags |= (VehicleFlag.NO_DEFLECTION_UP |
538 VehicleFlag.LIMIT_MOTOR_UP);
539 m_Hoverflags |= (VehicleFlag.HOVER_WATER_ONLY);
540 break;
541 case Vehicle.TYPE_AIRPLANE:
542 m_linearFrictionTimescale = new Vector3(200, 10, 5);
543 m_angularFrictionTimescale = new Vector3(20, 20, 20);
544 m_linearMotorDirection = Vector3.Zero;
545 m_linearMotorTimescale = 2;
546 m_linearMotorDecayTimescale = 60;
547 m_angularMotorDirection = Vector3.Zero;
548 m_angularMotorTimescale = 4;
549 m_angularMotorDecayTimescale = 4;
550 m_VhoverHeight = 0;
551// m_VhoverEfficiency = 0.5f;
552 m_VhoverTimescale = 1000;
553 m_VehicleBuoyancy = 0;
554 // m_linearDeflectionEfficiency = 0.5f;
555 // m_linearDeflectionTimescale = 3;
556 // m_angularDeflectionEfficiency = 1;
557 // m_angularDeflectionTimescale = 2;
558 m_verticalAttractionEfficiency = 0.9f;
559 m_verticalAttractionTimescale = 2f;
560 // m_bankingEfficiency = 1;
561 // m_bankingMix = 0.7f;
562 // m_bankingTimescale = 2;
563 // m_referenceFrame = Quaternion.Identity;
564 m_Hoverflags &= ~(VehicleFlag.HOVER_WATER_ONLY | VehicleFlag.HOVER_TERRAIN_ONLY |
565 VehicleFlag.HOVER_GLOBAL_HEIGHT | VehicleFlag.HOVER_UP_ONLY);
566 m_flags &= ~(VehicleFlag.NO_DEFLECTION_UP | VehicleFlag.LIMIT_MOTOR_UP);
567 m_flags |= (VehicleFlag.LIMIT_ROLL_ONLY);
568 break;
569 case Vehicle.TYPE_BALLOON:
570 m_linearFrictionTimescale = new Vector3(5, 5, 5);
571 m_angularFrictionTimescale = new Vector3(10, 10, 10);
572 m_linearMotorDirection = Vector3.Zero;
573 m_linearMotorTimescale = 5;
574 m_linearMotorDecayTimescale = 60;
575 m_angularMotorDirection = Vector3.Zero;
576 m_angularMotorTimescale = 6;
577 m_angularMotorDecayTimescale = 10;
578 m_VhoverHeight = 5;
579// m_VhoverEfficiency = 0.8f;
580 m_VhoverTimescale = 10;
581 m_VehicleBuoyancy = 1;
582 // m_linearDeflectionEfficiency = 0;
583 // m_linearDeflectionTimescale = 5;
584 // m_angularDeflectionEfficiency = 0;
585 // m_angularDeflectionTimescale = 5;
586 m_verticalAttractionEfficiency = 1f;
587 m_verticalAttractionTimescale = 100f;
588 // m_bankingEfficiency = 0;
589 // m_bankingMix = 0.7f;
590 // m_bankingTimescale = 5;
591 // m_referenceFrame = Quaternion.Identity;
592 m_Hoverflags &= ~(VehicleFlag.HOVER_WATER_ONLY | VehicleFlag.HOVER_TERRAIN_ONLY |
593 VehicleFlag.HOVER_UP_ONLY);
594 m_flags &= ~(VehicleFlag.NO_DEFLECTION_UP | VehicleFlag.LIMIT_MOTOR_UP);
595 m_flags |= (VehicleFlag.LIMIT_ROLL_ONLY);
596 m_Hoverflags |= (VehicleFlag.HOVER_GLOBAL_HEIGHT);
597 break;
598
599 }
600 }//end SetDefaultsForType
601
602 internal void Enable(IntPtr pBody, OdeScene pParentScene)
603 {
604 if (m_type == Vehicle.TYPE_NONE)
605 return;
606
607 m_body = pBody;
608 }
609
610 internal void Step(float pTimestep, OdeScene pParentScene)
611 {
612 if (m_body == IntPtr.Zero || m_type == Vehicle.TYPE_NONE)
613 return;
614 frcount++; // used to limit debug comment output
615 if (frcount > 100)
616 frcount = 0;
617
618 MoveLinear(pTimestep, pParentScene);
619 MoveAngular(pTimestep);
620 LimitRotation(pTimestep);
621 }// end Step
622
623 private void MoveLinear(float pTimestep, OdeScene _pParentScene)
624 {
625 if (!m_linearMotorDirection.ApproxEquals(Vector3.Zero, 0.01f)) // requested m_linearMotorDirection is significant
626 {
627 if (!d.BodyIsEnabled(Body))
628 d.BodyEnable(Body);
629
630 // add drive to body
631 Vector3 addAmount = m_linearMotorDirection/(m_linearMotorTimescale/pTimestep);
632 m_lastLinearVelocityVector += (addAmount*10); // lastLinearVelocityVector is the current body velocity vector?
633
634 // This will work temporarily, but we really need to compare speed on an axis
635 // KF: Limit body velocity to applied velocity?
636 if (Math.Abs(m_lastLinearVelocityVector.X) > Math.Abs(m_linearMotorDirectionLASTSET.X))
637 m_lastLinearVelocityVector.X = m_linearMotorDirectionLASTSET.X;
638 if (Math.Abs(m_lastLinearVelocityVector.Y) > Math.Abs(m_linearMotorDirectionLASTSET.Y))
639 m_lastLinearVelocityVector.Y = m_linearMotorDirectionLASTSET.Y;
640 if (Math.Abs(m_lastLinearVelocityVector.Z) > Math.Abs(m_linearMotorDirectionLASTSET.Z))
641 m_lastLinearVelocityVector.Z = m_linearMotorDirectionLASTSET.Z;
642
643 // decay applied velocity
644 Vector3 decayfraction = ((Vector3.One/(m_linearMotorDecayTimescale/pTimestep)));
645 //Console.WriteLine("decay: " + decayfraction);
646 m_linearMotorDirection -= m_linearMotorDirection * decayfraction * 0.5f;
647 //Console.WriteLine("actual: " + m_linearMotorDirection);
648 }
649 else
650 { // requested is not significant
651 // if what remains of applied is small, zero it.
652 if (m_lastLinearVelocityVector.ApproxEquals(Vector3.Zero, 0.01f))
653 m_lastLinearVelocityVector = Vector3.Zero;
654 }
655
656 // convert requested object velocity to world-referenced vector
657 m_dir = m_lastLinearVelocityVector;
658 d.Quaternion rot = d.BodyGetQuaternion(Body);
659 Quaternion rotq = new Quaternion(rot.X, rot.Y, rot.Z, rot.W); // rotq = rotation of object
660 m_dir *= rotq; // apply obj rotation to velocity vector
661
662 // add Gravity andBuoyancy
663 // KF: So far I have found no good method to combine a script-requested
664 // .Z velocity and gravity. Therefore only 0g will used script-requested
665 // .Z velocity. >0g (m_VehicleBuoyancy < 1) will used modified gravity only.
666 Vector3 grav = Vector3.Zero;
667 // There is some gravity, make a gravity force vector
668 // that is applied after object velocity.
669 d.Mass objMass;
670 d.BodyGetMass(Body, out objMass);
671 // m_VehicleBuoyancy: -1=2g; 0=1g; 1=0g;
672 grav.Z = _pParentScene.gravityz * objMass.mass * (1f - m_VehicleBuoyancy);
673 // Preserve the current Z velocity
674 d.Vector3 vel_now = d.BodyGetLinearVel(Body);
675 m_dir.Z = vel_now.Z; // Preserve the accumulated falling velocity
676
677 d.Vector3 pos = d.BodyGetPosition(Body);
678// Vector3 accel = new Vector3(-(m_dir.X - m_lastLinearVelocityVector.X / 0.1f), -(m_dir.Y - m_lastLinearVelocityVector.Y / 0.1f), m_dir.Z - m_lastLinearVelocityVector.Z / 0.1f);
679 Vector3 posChange = new Vector3();
680 posChange.X = pos.X - m_lastPositionVector.X;
681 posChange.Y = pos.Y - m_lastPositionVector.Y;
682 posChange.Z = pos.Z - m_lastPositionVector.Z;
683 double Zchange = Math.Abs(posChange.Z);
684 if (m_BlockingEndPoint != Vector3.Zero)
685 {
686 if (pos.X >= (m_BlockingEndPoint.X - (float)1))
687 {
688 pos.X -= posChange.X + 1;
689 d.BodySetPosition(Body, pos.X, pos.Y, pos.Z);
690 }
691 if (pos.Y >= (m_BlockingEndPoint.Y - (float)1))
692 {
693 pos.Y -= posChange.Y + 1;
694 d.BodySetPosition(Body, pos.X, pos.Y, pos.Z);
695 }
696 if (pos.Z >= (m_BlockingEndPoint.Z - (float)1))
697 {
698 pos.Z -= posChange.Z + 1;
699 d.BodySetPosition(Body, pos.X, pos.Y, pos.Z);
700 }
701 if (pos.X <= 0)
702 {
703 pos.X += posChange.X + 1;
704 d.BodySetPosition(Body, pos.X, pos.Y, pos.Z);
705 }
706 if (pos.Y <= 0)
707 {
708 pos.Y += posChange.Y + 1;
709 d.BodySetPosition(Body, pos.X, pos.Y, pos.Z);
710 }
711 }
712 if (pos.Z < _pParentScene.GetTerrainHeightAtXY(pos.X, pos.Y))
713 {
714 pos.Z = _pParentScene.GetTerrainHeightAtXY(pos.X, pos.Y) + 2;
715 d.BodySetPosition(Body, pos.X, pos.Y, pos.Z);
716 }
717
718 // Check if hovering
719 if ((m_Hoverflags & (VehicleFlag.HOVER_WATER_ONLY | VehicleFlag.HOVER_TERRAIN_ONLY | VehicleFlag.HOVER_GLOBAL_HEIGHT)) != 0)
720 {
721 // We should hover, get the target height
722 if ((m_Hoverflags & VehicleFlag.HOVER_WATER_ONLY) != 0)
723 {
724 m_VhoverTargetHeight = _pParentScene.GetWaterLevel() + m_VhoverHeight;
725 }
726 if ((m_Hoverflags & VehicleFlag.HOVER_TERRAIN_ONLY) != 0)
727 {
728 m_VhoverTargetHeight = _pParentScene.GetTerrainHeightAtXY(pos.X, pos.Y) + m_VhoverHeight;
729 }
730 if ((m_Hoverflags & VehicleFlag.HOVER_GLOBAL_HEIGHT) != 0)
731 {
732 m_VhoverTargetHeight = m_VhoverHeight;
733 }
734
735 if ((m_Hoverflags & VehicleFlag.HOVER_UP_ONLY) != 0)
736 {
737 // If body is aready heigher, use its height as target height
738 if (pos.Z > m_VhoverTargetHeight) m_VhoverTargetHeight = pos.Z;
739 }
740 if ((m_Hoverflags & VehicleFlag.LOCK_HOVER_HEIGHT) != 0)
741 {
742 if ((pos.Z - m_VhoverTargetHeight) > .2 || (pos.Z - m_VhoverTargetHeight) < -.2)
743 {
744 d.BodySetPosition(Body, pos.X, pos.Y, m_VhoverTargetHeight);
745 }
746 }
747 else
748 {
749 float herr0 = pos.Z - m_VhoverTargetHeight;
750 // Replace Vertical speed with correction figure if significant
751 if (Math.Abs(herr0) > 0.01f)
752 {
753 m_dir.Z = -((herr0 * pTimestep * 50.0f) / m_VhoverTimescale);
754 //KF: m_VhoverEfficiency is not yet implemented
755 }
756 else
757 {
758 m_dir.Z = 0f;
759 }
760 }
761
762// m_VhoverEfficiency = 0f; // 0=boucy, 1=Crit.damped
763// m_VhoverTimescale = 0f; // time to acheive height
764// pTimestep is time since last frame,in secs
765 }
766
767 if ((m_flags & (VehicleFlag.LIMIT_MOTOR_UP)) != 0)
768 {
769 //Start Experimental Values
770 if (Zchange > .3)
771 {
772 grav.Z = (float)(grav.Z * 3);
773 }
774 if (Zchange > .15)
775 {
776 grav.Z = (float)(grav.Z * 2);
777 }
778 if (Zchange > .75)
779 {
780 grav.Z = (float)(grav.Z * 1.5);
781 }
782 if (Zchange > .05)
783 {
784 grav.Z = (float)(grav.Z * 1.25);
785 }
786 if (Zchange > .025)
787 {
788 grav.Z = (float)(grav.Z * 1.125);
789 }
790 float terraintemp = _pParentScene.GetTerrainHeightAtXY(pos.X, pos.Y);
791 float postemp = (pos.Z - terraintemp);
792 if (postemp > 2.5f)
793 {
794 grav.Z = (float)(grav.Z * 1.037125);
795 }
796 //End Experimental Values
797 }
798 if ((m_flags & (VehicleFlag.NO_X)) != 0)
799 {
800 m_dir.X = 0;
801 }
802 if ((m_flags & (VehicleFlag.NO_Y)) != 0)
803 {
804 m_dir.Y = 0;
805 }
806 if ((m_flags & (VehicleFlag.NO_Z)) != 0)
807 {
808 m_dir.Z = 0;
809 }
810
811 m_lastPositionVector = d.BodyGetPosition(Body);
812
813 // Apply velocity
814 d.BodySetLinearVel(Body, m_dir.X, m_dir.Y, m_dir.Z);
815 // apply gravity force
816 d.BodyAddForce(Body, grav.X, grav.Y, grav.Z);
817
818
819 // apply friction
820 Vector3 decayamount = Vector3.One / (m_linearFrictionTimescale / pTimestep);
821 m_lastLinearVelocityVector -= m_lastLinearVelocityVector * decayamount;
822 } // end MoveLinear()
823
824 private void MoveAngular(float pTimestep)
825 {
826 /*
827 private Vector3 m_angularMotorDirection = Vector3.Zero; // angular velocity requested by LSL motor
828 private int m_angularMotorApply = 0; // application frame counter
829 private float m_angularMotorVelocity = 0; // current angular motor velocity (ramps up and down)
830 private float m_angularMotorTimescale = 0; // motor angular velocity ramp up rate
831 private float m_angularMotorDecayTimescale = 0; // motor angular velocity decay rate
832 private Vector3 m_angularFrictionTimescale = Vector3.Zero; // body angular velocity decay rate
833 private Vector3 m_lastAngularVelocity = Vector3.Zero; // what was last applied to body
834 */
835
836 // Get what the body is doing, this includes 'external' influences
837 d.Vector3 angularVelocity = d.BodyGetAngularVel(Body);
838 // Vector3 angularVelocity = Vector3.Zero;
839
840 if (m_angularMotorApply > 0)
841 {
842 // ramp up to new value
843 // current velocity += error / (time to get there / step interval)
844 // requested speed - last motor speed
845 m_angularMotorVelocity.X += (m_angularMotorDirection.X - m_angularMotorVelocity.X) / (m_angularMotorTimescale / pTimestep);
846 m_angularMotorVelocity.Y += (m_angularMotorDirection.Y - m_angularMotorVelocity.Y) / (m_angularMotorTimescale / pTimestep);
847 m_angularMotorVelocity.Z += (m_angularMotorDirection.Z - m_angularMotorVelocity.Z) / (m_angularMotorTimescale / pTimestep);
848
849 m_angularMotorApply--; // This is done so that if script request rate is less than phys frame rate the expected
850 // velocity may still be acheived.
851 }
852 else
853 {
854 // no motor recently applied, keep the body velocity
855 /* m_angularMotorVelocity.X = angularVelocity.X;
856 m_angularMotorVelocity.Y = angularVelocity.Y;
857 m_angularMotorVelocity.Z = angularVelocity.Z; */
858
859 // and decay the velocity
860 m_angularMotorVelocity -= m_angularMotorVelocity / (m_angularMotorDecayTimescale / pTimestep);
861 } // end motor section
862
863 // Vertical attractor section
864 Vector3 vertattr = Vector3.Zero;
865
866 if (m_verticalAttractionTimescale < 300)
867 {
868 float VAservo = 0.2f / (m_verticalAttractionTimescale * pTimestep);
869 // get present body rotation
870 d.Quaternion rot = d.BodyGetQuaternion(Body);
871 Quaternion rotq = new Quaternion(rot.X, rot.Y, rot.Z, rot.W);
872 // make a vector pointing up
873 Vector3 verterr = Vector3.Zero;
874 verterr.Z = 1.0f;
875 // rotate it to Body Angle
876 verterr = verterr * rotq;
877 // verterr.X and .Y are the World error ammounts. They are 0 when there is no error (Vehicle Body is 'vertical'), and .Z will be 1.
878 // As the body leans to its side |.X| will increase to 1 and .Z fall to 0. As body inverts |.X| will fall and .Z will go
879 // negative. Similar for tilt and |.Y|. .X and .Y must be modulated to prevent a stable inverted body.
880 if (verterr.Z < 0.0f)
881 {
882 verterr.X = 2.0f - verterr.X;
883 verterr.Y = 2.0f - verterr.Y;
884 }
885 // Error is 0 (no error) to +/- 2 (max error)
886 // scale it by VAservo
887 verterr = verterr * VAservo;
888//if (frcount == 0) Console.WriteLine("VAerr=" + verterr);
889
890 // As the body rotates around the X axis, then verterr.Y increases; Rotated around Y then .X increases, so
891 // Change Body angular velocity X based on Y, and Y based on X. Z is not changed.
892 vertattr.X = verterr.Y;
893 vertattr.Y = - verterr.X;
894 vertattr.Z = 0f;
895
896 // scaling appears better usingsquare-law
897 float bounce = 1.0f - (m_verticalAttractionEfficiency * m_verticalAttractionEfficiency);
898 vertattr.X += bounce * angularVelocity.X;
899 vertattr.Y += bounce * angularVelocity.Y;
900
901 } // else vertical attractor is off
902
903 // m_lastVertAttractor = vertattr;
904
905 // Bank section tba
906 // Deflection section tba
907
908 // Sum velocities
909 m_lastAngularVelocity = m_angularMotorVelocity + vertattr; // + bank + deflection
910
911 if ((m_flags & (VehicleFlag.NO_DEFLECTION_UP)) != 0)
912 {
913 m_lastAngularVelocity.X = 0;
914 m_lastAngularVelocity.Y = 0;
915 }
916
917 if (!m_lastAngularVelocity.ApproxEquals(Vector3.Zero, 0.01f))
918 {
919 if (!d.BodyIsEnabled (Body)) d.BodyEnable (Body);
920 }
921 else
922 {
923 m_lastAngularVelocity = Vector3.Zero; // Reduce small value to zero.
924 }
925
926 // apply friction
927 Vector3 decayamount = Vector3.One / (m_angularFrictionTimescale / pTimestep);
928 m_lastAngularVelocity -= m_lastAngularVelocity * decayamount;
929
930 // Apply to the body
931 d.BodySetAngularVel (Body, m_lastAngularVelocity.X, m_lastAngularVelocity.Y, m_lastAngularVelocity.Z);
932
933 } //end MoveAngular
934 internal void LimitRotation(float timestep)
935 {
936 d.Quaternion rot = d.BodyGetQuaternion(Body);
937 Quaternion rotq = new Quaternion(rot.X, rot.Y, rot.Z, rot.W); // rotq = rotation of object
938 d.Quaternion m_rot = new d.Quaternion();
939 bool changed = false;
940 m_rot.X = rotq.X;
941 m_rot.Y = rotq.Y;
942 m_rot.Z = rotq.Z;
943 m_rot.W = rotq.W;
944 if (m_RollreferenceFrame != Quaternion.Identity)
945 {
946 if (rotq.X >= m_RollreferenceFrame.X)
947 {
948 m_rot.X = rotq.X - (m_RollreferenceFrame.X / 2);
949 }
950 if (rotq.Y >= m_RollreferenceFrame.Y)
951 {
952 m_rot.Y = rotq.Y - (m_RollreferenceFrame.Y / 2);
953 }
954 if (rotq.X <= -m_RollreferenceFrame.X)
955 {
956 m_rot.X = rotq.X + (m_RollreferenceFrame.X / 2);
957 }
958 if (rotq.Y <= -m_RollreferenceFrame.Y)
959 {
960 m_rot.Y = rotq.Y + (m_RollreferenceFrame.Y / 2);
961 }
962 changed = true;
963 }
964 if ((m_flags & VehicleFlag.LOCK_ROTATION) != 0)
965 {
966 m_rot.X = 0;
967 m_rot.Y = 0;
968 changed = true;
969 }
970 if (changed)
971 d.BodySetQuaternion(Body, ref m_rot);
972 }
973 }
974}