diff options
Diffstat (limited to '')
-rw-r--r-- | OpenSim/Region/Physics/ChOdePlugin/ODEDynamics.cs | 792 |
1 files changed, 792 insertions, 0 deletions
diff --git a/OpenSim/Region/Physics/ChOdePlugin/ODEDynamics.cs b/OpenSim/Region/Physics/ChOdePlugin/ODEDynamics.cs new file mode 100644 index 0000000..55d6945 --- /dev/null +++ b/OpenSim/Region/Physics/ChOdePlugin/ODEDynamics.cs | |||
@@ -0,0 +1,792 @@ | |||
1 | /* | ||
2 | * Copyright (c) Contributors, http://opensimulator.org/ | ||
3 | * See CONTRIBUTORS.TXT for a full list of copyright holders. | ||
4 | * | ||
5 | * Redistribution and use in source and binary forms, with or without | ||
6 | * modification, are permitted provided that the following conditions are met: | ||
7 | * * Redistributions of source code must retain the above copyright | ||
8 | * notice, this list of conditions and the following disclaimer. | ||
9 | * * Redistributions in binary form must reproduce the above copyright | ||
10 | * notice, this list of conditions and the following disclaimer in the | ||
11 | * documentation and/or other materials provided with the distribution. | ||
12 | * * Neither the name of the OpenSimulator Project nor the | ||
13 | * names of its contributors may be used to endorse or promote products | ||
14 | * derived from this software without specific prior written permission. | ||
15 | * | ||
16 | * THIS SOFTWARE IS PROVIDED BY THE DEVELOPERS ``AS IS'' AND ANY | ||
17 | * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED | ||
18 | * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE | ||
19 | * DISCLAIMED. IN NO EVENT SHALL THE CONTRIBUTORS BE LIABLE FOR ANY | ||
20 | * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES | ||
21 | * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | ||
22 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND | ||
23 | * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | ||
24 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS | ||
25 | * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | ||
26 | * | ||
27 | * Revised Aug, Sept 2009 by Kitto Flora. ODEDynamics.cs replaces | ||
28 | * ODEVehicleSettings.cs. It and ODEPrim.cs are re-organised: | ||
29 | * ODEPrim.cs contains methods dealing with Prim editing, Prim | ||
30 | * characteristics and Kinetic motion. | ||
31 | * ODEDynamics.cs contains methods dealing with Prim Physical motion | ||
32 | * (dynamics) and the associated settings. Old Linear and angular | ||
33 | * motors for dynamic motion have been replace with MoveLinear() | ||
34 | * and MoveAngular(); 'Physical' is used only to switch ODE dynamic | ||
35 | * simualtion on/off; VEHICAL_TYPE_NONE/VEHICAL_TYPE_<other> is to | ||
36 | * switch between 'VEHICLE' parameter use and general dynamics | ||
37 | * settings use. | ||
38 | * | ||
39 | */ | ||
40 | |||
41 | /* Revised Aug, Sept 2009 by Kitto Flora. ODEDynamics.cs replaces | ||
42 | * ODEVehicleSettings.cs. It and ODEPrim.cs are re-organised: | ||
43 | * ODEPrim.cs contains methods dealing with Prim editing, Prim | ||
44 | * characteristics and Kinetic motion. | ||
45 | * ODEDynamics.cs contains methods dealing with Prim Physical motion | ||
46 | * (dynamics) and the associated settings. Old Linear and angular | ||
47 | * motors for dynamic motion have been replace with MoveLinear() | ||
48 | * and MoveAngular(); 'Physical' is used only to switch ODE dynamic | ||
49 | * simualtion on/off; VEHICAL_TYPE_NONE/VEHICAL_TYPE_<other> is to | ||
50 | * switch between 'VEHICLE' parameter use and general dynamics | ||
51 | * settings use. | ||
52 | */ | ||
53 | |||
54 | using System; | ||
55 | using System.Collections.Generic; | ||
56 | using System.Reflection; | ||
57 | using System.Runtime.InteropServices; | ||
58 | using log4net; | ||
59 | using OpenMetaverse; | ||
60 | using Ode.NET; | ||
61 | using OpenSim.Framework; | ||
62 | using OpenSim.Region.Physics.Manager; | ||
63 | |||
64 | namespace OpenSim.Region.Physics.OdePlugin | ||
65 | { | ||
66 | public class ODEDynamics | ||
67 | { | ||
68 | public Vehicle Type | ||
69 | { | ||
70 | get { return m_type; } | ||
71 | } | ||
72 | |||
73 | public IntPtr Body | ||
74 | { | ||
75 | get { return m_body; } | ||
76 | } | ||
77 | |||
78 | private int frcount = 0; // Used to limit dynamics debug output to | ||
79 | // every 100th frame | ||
80 | |||
81 | // private OdeScene m_parentScene = null; | ||
82 | private IntPtr m_body = IntPtr.Zero; | ||
83 | // private IntPtr m_jointGroup = IntPtr.Zero; | ||
84 | // private IntPtr m_aMotor = IntPtr.Zero; | ||
85 | |||
86 | // Vehicle properties | ||
87 | private Vehicle m_type = Vehicle.TYPE_NONE; // If a 'VEHICLE', and what kind | ||
88 | // private Quaternion m_referenceFrame = Quaternion.Identity; // Axis modifier | ||
89 | private VehicleFlag m_flags = (VehicleFlag) 0; // Boolean settings: | ||
90 | // HOVER_TERRAIN_ONLY | ||
91 | // HOVER_GLOBAL_HEIGHT | ||
92 | // NO_DEFLECTION_UP | ||
93 | // HOVER_WATER_ONLY | ||
94 | // HOVER_UP_ONLY | ||
95 | // LIMIT_MOTOR_UP | ||
96 | // LIMIT_ROLL_ONLY | ||
97 | |||
98 | // Linear properties | ||
99 | private Vector3 m_linearMotorDirection = Vector3.Zero; // (was m_linearMotorDirectionLASTSET) the (local) Velocity | ||
100 | //requested by LSL | ||
101 | private float m_linearMotorTimescale = 0; // Motor Attack rate set by LSL | ||
102 | private float m_linearMotorDecayTimescale = 0; // Motor Decay rate set by LSL | ||
103 | private Vector3 m_linearFrictionTimescale = Vector3.Zero; // General Friction set by LSL | ||
104 | |||
105 | private Vector3 m_lLinMotorDVel = Vector3.Zero; // decayed motor | ||
106 | private Vector3 m_lLinObjectVel = Vector3.Zero; // local frame object velocity | ||
107 | private Vector3 m_wLinObjectVel = Vector3.Zero; // world frame object velocity | ||
108 | |||
109 | //Angular properties | ||
110 | private Vector3 m_angularMotorDirection = Vector3.Zero; // angular velocity requested by LSL motor | ||
111 | |||
112 | private float m_angularMotorTimescale = 0; // motor angular Attack rate set by LSL | ||
113 | private float m_angularMotorDecayTimescale = 0; // motor angular Decay rate set by LSL | ||
114 | private Vector3 m_angularFrictionTimescale = Vector3.Zero; // body angular Friction set by LSL | ||
115 | |||
116 | private Vector3 m_angularMotorDVel = Vector3.Zero; // decayed angular motor | ||
117 | // private Vector3 m_angObjectVel = Vector3.Zero; // current body angular velocity | ||
118 | private Vector3 m_lastAngularVelocity = Vector3.Zero; // what was last applied to body | ||
119 | |||
120 | //Deflection properties | ||
121 | // private float m_angularDeflectionEfficiency = 0; | ||
122 | // private float m_angularDeflectionTimescale = 0; | ||
123 | // private float m_linearDeflectionEfficiency = 0; | ||
124 | // private float m_linearDeflectionTimescale = 0; | ||
125 | |||
126 | //Banking properties | ||
127 | // private float m_bankingEfficiency = 0; | ||
128 | // private float m_bankingMix = 0; | ||
129 | // private float m_bankingTimescale = 0; | ||
130 | |||
131 | //Hover and Buoyancy properties | ||
132 | private float m_VhoverHeight = 0f; | ||
133 | // private float m_VhoverEfficiency = 0f; | ||
134 | private float m_VhoverTimescale = 0f; | ||
135 | private float m_VhoverTargetHeight = -1.0f; // if <0 then no hover, else its the current target height | ||
136 | private float m_VehicleBuoyancy = 0f; // Set by VEHICLE_BUOYANCY, for a vehicle. | ||
137 | // Modifies gravity. Slider between -1 (double-gravity) and 1 (full anti-gravity) | ||
138 | // KF: So far I have found no good method to combine a script-requested .Z velocity and gravity. | ||
139 | // Therefore only m_VehicleBuoyancy=1 (0g) will use the script-requested .Z velocity. | ||
140 | |||
141 | //Attractor properties | ||
142 | private float m_verticalAttractionEfficiency = 1.0f; // damped | ||
143 | private float m_verticalAttractionTimescale = 500f; // Timescale > 300 means no vert attractor. | ||
144 | |||
145 | |||
146 | |||
147 | |||
148 | |||
149 | internal void ProcessFloatVehicleParam(Vehicle pParam, float pValue) | ||
150 | { | ||
151 | switch (pParam) | ||
152 | { | ||
153 | case Vehicle.ANGULAR_DEFLECTION_EFFICIENCY: | ||
154 | if (pValue < 0.01f) pValue = 0.01f; | ||
155 | // m_angularDeflectionEfficiency = pValue; | ||
156 | break; | ||
157 | case Vehicle.ANGULAR_DEFLECTION_TIMESCALE: | ||
158 | if (pValue < 0.01f) pValue = 0.01f; | ||
159 | // m_angularDeflectionTimescale = pValue; | ||
160 | break; | ||
161 | case Vehicle.ANGULAR_MOTOR_DECAY_TIMESCALE: | ||
162 | if (pValue < 0.01f) pValue = 0.01f; | ||
163 | m_angularMotorDecayTimescale = pValue; | ||
164 | break; | ||
165 | case Vehicle.ANGULAR_MOTOR_TIMESCALE: | ||
166 | if (pValue < 0.01f) pValue = 0.01f; | ||
167 | m_angularMotorTimescale = pValue; | ||
168 | break; | ||
169 | case Vehicle.BANKING_EFFICIENCY: | ||
170 | if (pValue < 0.01f) pValue = 0.01f; | ||
171 | // m_bankingEfficiency = pValue; | ||
172 | break; | ||
173 | case Vehicle.BANKING_MIX: | ||
174 | if (pValue < 0.01f) pValue = 0.01f; | ||
175 | // m_bankingMix = pValue; | ||
176 | break; | ||
177 | case Vehicle.BANKING_TIMESCALE: | ||
178 | if (pValue < 0.01f) pValue = 0.01f; | ||
179 | // m_bankingTimescale = pValue; | ||
180 | break; | ||
181 | case Vehicle.BUOYANCY: | ||
182 | if (pValue < -1f) pValue = -1f; | ||
183 | if (pValue > 1f) pValue = 1f; | ||
184 | m_VehicleBuoyancy = pValue; | ||
185 | break; | ||
186 | // case Vehicle.HOVER_EFFICIENCY: | ||
187 | // if (pValue < 0f) pValue = 0f; | ||
188 | // if (pValue > 1f) pValue = 1f; | ||
189 | // m_VhoverEfficiency = pValue; | ||
190 | // break; | ||
191 | case Vehicle.HOVER_HEIGHT: | ||
192 | m_VhoverHeight = pValue; | ||
193 | break; | ||
194 | case Vehicle.HOVER_TIMESCALE: | ||
195 | if (pValue < 0.01f) pValue = 0.01f; | ||
196 | m_VhoverTimescale = pValue; | ||
197 | break; | ||
198 | case Vehicle.LINEAR_DEFLECTION_EFFICIENCY: | ||
199 | if (pValue < 0.01f) pValue = 0.01f; | ||
200 | // m_linearDeflectionEfficiency = pValue; | ||
201 | break; | ||
202 | case Vehicle.LINEAR_DEFLECTION_TIMESCALE: | ||
203 | if (pValue < 0.01f) pValue = 0.01f; | ||
204 | // m_linearDeflectionTimescale = pValue; | ||
205 | break; | ||
206 | case Vehicle.LINEAR_MOTOR_DECAY_TIMESCALE: | ||
207 | if (pValue < 0.01f) pValue = 0.01f; | ||
208 | m_linearMotorDecayTimescale = pValue; | ||
209 | break; | ||
210 | case Vehicle.LINEAR_MOTOR_TIMESCALE: | ||
211 | if (pValue < 0.01f) pValue = 0.01f; | ||
212 | m_linearMotorTimescale = pValue; | ||
213 | break; | ||
214 | case Vehicle.VERTICAL_ATTRACTION_EFFICIENCY: | ||
215 | if (pValue < 0.1f) pValue = 0.1f; // Less goes unstable | ||
216 | if (pValue > 1.0f) pValue = 1.0f; | ||
217 | m_verticalAttractionEfficiency = pValue; | ||
218 | break; | ||
219 | case Vehicle.VERTICAL_ATTRACTION_TIMESCALE: | ||
220 | if (pValue < 0.01f) pValue = 0.01f; | ||
221 | m_verticalAttractionTimescale = pValue; | ||
222 | break; | ||
223 | |||
224 | // These are vector properties but the engine lets you use a single float value to | ||
225 | // set all of the components to the same value | ||
226 | case Vehicle.ANGULAR_FRICTION_TIMESCALE: | ||
227 | if (pValue > 30f) pValue = 30f; | ||
228 | if (pValue < 0.1f) pValue = 0.1f; | ||
229 | m_angularFrictionTimescale = new Vector3(pValue, pValue, pValue); | ||
230 | break; | ||
231 | case Vehicle.ANGULAR_MOTOR_DIRECTION: | ||
232 | m_angularMotorDirection = new Vector3(pValue, pValue, pValue); | ||
233 | UpdateAngDecay(); | ||
234 | break; | ||
235 | case Vehicle.LINEAR_FRICTION_TIMESCALE: | ||
236 | m_linearFrictionTimescale = new Vector3(pValue, pValue, pValue); | ||
237 | break; | ||
238 | case Vehicle.LINEAR_MOTOR_DIRECTION: | ||
239 | m_linearMotorDirection = new Vector3(pValue, pValue, pValue); | ||
240 | UpdateLinDecay(); | ||
241 | break; | ||
242 | case Vehicle.LINEAR_MOTOR_OFFSET: | ||
243 | // m_linearMotorOffset = new Vector3(pValue, pValue, pValue); | ||
244 | break; | ||
245 | |||
246 | } | ||
247 | |||
248 | }//end ProcessFloatVehicleParam | ||
249 | |||
250 | internal void ProcessVectorVehicleParam(Vehicle pParam, Vector3 pValue) | ||
251 | { | ||
252 | switch (pParam) | ||
253 | { | ||
254 | case Vehicle.ANGULAR_FRICTION_TIMESCALE: | ||
255 | if (pValue.X > 30f) pValue.X = 30f; | ||
256 | if (pValue.X < 0.1f) pValue.X = 0.1f; | ||
257 | if (pValue.Y > 30f) pValue.Y = 30f; | ||
258 | if (pValue.Y < 0.1f) pValue.Y = 0.1f; | ||
259 | if (pValue.Z > 30f) pValue.Z = 30f; | ||
260 | if (pValue.Z < 0.1f) pValue.Z = 0.1f; | ||
261 | m_angularFrictionTimescale = new Vector3(pValue.X, pValue.Y, pValue.Z); | ||
262 | break; | ||
263 | case Vehicle.ANGULAR_MOTOR_DIRECTION: | ||
264 | m_angularMotorDirection = new Vector3(pValue.X, pValue.Y, pValue.Z); | ||
265 | // Limit requested angular speed to 2 rps= 4 pi rads/sec | ||
266 | if(m_angularMotorDirection.X > 12.56f) m_angularMotorDirection.X = 12.56f; | ||
267 | if(m_angularMotorDirection.X < - 12.56f) m_angularMotorDirection.X = - 12.56f; | ||
268 | if(m_angularMotorDirection.Y > 12.56f) m_angularMotorDirection.Y = 12.56f; | ||
269 | if(m_angularMotorDirection.Y < - 12.56f) m_angularMotorDirection.Y = - 12.56f; | ||
270 | if(m_angularMotorDirection.Z > 12.56f) m_angularMotorDirection.Z = 12.56f; | ||
271 | if(m_angularMotorDirection.Z < - 12.56f) m_angularMotorDirection.Z = - 12.56f; | ||
272 | UpdateAngDecay(); | ||
273 | break; | ||
274 | case Vehicle.LINEAR_FRICTION_TIMESCALE: | ||
275 | m_linearFrictionTimescale = new Vector3(pValue.X, pValue.Y, pValue.Z); | ||
276 | break; | ||
277 | case Vehicle.LINEAR_MOTOR_DIRECTION: | ||
278 | m_linearMotorDirection = new Vector3(pValue.X, pValue.Y, pValue.Z); // velocity requested by LSL, for max limiting | ||
279 | UpdateLinDecay(); | ||
280 | break; | ||
281 | case Vehicle.LINEAR_MOTOR_OFFSET: | ||
282 | // m_linearMotorOffset = new Vector3(pValue.X, pValue.Y, pValue.Z); | ||
283 | break; | ||
284 | } | ||
285 | |||
286 | }//end ProcessVectorVehicleParam | ||
287 | |||
288 | internal void ProcessRotationVehicleParam(Vehicle pParam, Quaternion pValue) | ||
289 | { | ||
290 | switch (pParam) | ||
291 | { | ||
292 | case Vehicle.REFERENCE_FRAME: | ||
293 | // m_referenceFrame = pValue; | ||
294 | break; | ||
295 | } | ||
296 | |||
297 | }//end ProcessRotationVehicleParam | ||
298 | |||
299 | internal void ProcessFlagsVehicleSet(int flags) | ||
300 | { | ||
301 | m_flags |= (VehicleFlag)flags; | ||
302 | } | ||
303 | |||
304 | internal void ProcessFlagsVehicleRemove(int flags) | ||
305 | { | ||
306 | m_flags &= ~((VehicleFlag)flags); | ||
307 | } | ||
308 | |||
309 | internal void ProcessTypeChange(Vehicle pType) | ||
310 | { | ||
311 | // Set Defaults For Type | ||
312 | m_type = pType; | ||
313 | switch (pType) | ||
314 | { | ||
315 | case Vehicle.TYPE_SLED: | ||
316 | m_linearFrictionTimescale = new Vector3(30, 1, 1000); | ||
317 | m_angularFrictionTimescale = new Vector3(30, 30, 30); | ||
318 | // m_lLinMotorVel = Vector3.Zero; | ||
319 | m_linearMotorTimescale = 1000; | ||
320 | m_linearMotorDecayTimescale = 120; | ||
321 | m_angularMotorDirection = Vector3.Zero; | ||
322 | m_angularMotorDVel = Vector3.Zero; | ||
323 | m_angularMotorTimescale = 1000; | ||
324 | m_angularMotorDecayTimescale = 120; | ||
325 | m_VhoverHeight = 0; | ||
326 | // m_VhoverEfficiency = 1; | ||
327 | m_VhoverTimescale = 10; | ||
328 | m_VehicleBuoyancy = 0; | ||
329 | // m_linearDeflectionEfficiency = 1; | ||
330 | // m_linearDeflectionTimescale = 1; | ||
331 | // m_angularDeflectionEfficiency = 1; | ||
332 | // m_angularDeflectionTimescale = 1000; | ||
333 | // m_bankingEfficiency = 0; | ||
334 | // m_bankingMix = 1; | ||
335 | // m_bankingTimescale = 10; | ||
336 | // m_referenceFrame = Quaternion.Identity; | ||
337 | m_flags &= | ||
338 | ~(VehicleFlag.HOVER_WATER_ONLY | VehicleFlag.HOVER_TERRAIN_ONLY | | ||
339 | VehicleFlag.HOVER_GLOBAL_HEIGHT | VehicleFlag.HOVER_UP_ONLY); | ||
340 | m_flags |= (VehicleFlag.NO_DEFLECTION_UP | VehicleFlag.LIMIT_ROLL_ONLY | VehicleFlag.LIMIT_MOTOR_UP); | ||
341 | break; | ||
342 | case Vehicle.TYPE_CAR: | ||
343 | m_linearFrictionTimescale = new Vector3(100, 2, 1000); | ||
344 | m_angularFrictionTimescale = new Vector3(30, 30, 30); // was 1000, but sl max frict time is 30. | ||
345 | // m_lLinMotorVel = Vector3.Zero; | ||
346 | m_linearMotorTimescale = 1; | ||
347 | m_linearMotorDecayTimescale = 60; | ||
348 | m_angularMotorDirection = Vector3.Zero; | ||
349 | m_angularMotorDVel = Vector3.Zero; | ||
350 | m_angularMotorTimescale = 1; | ||
351 | m_angularMotorDecayTimescale = 0.8f; | ||
352 | m_VhoverHeight = 0; | ||
353 | // m_VhoverEfficiency = 0; | ||
354 | m_VhoverTimescale = 1000; | ||
355 | m_VehicleBuoyancy = 0; | ||
356 | // // m_linearDeflectionEfficiency = 1; | ||
357 | // // m_linearDeflectionTimescale = 2; | ||
358 | // // m_angularDeflectionEfficiency = 0; | ||
359 | // m_angularDeflectionTimescale = 10; | ||
360 | m_verticalAttractionEfficiency = 1f; | ||
361 | m_verticalAttractionTimescale = 10f; | ||
362 | // m_bankingEfficiency = -0.2f; | ||
363 | // m_bankingMix = 1; | ||
364 | // m_bankingTimescale = 1; | ||
365 | // m_referenceFrame = Quaternion.Identity; | ||
366 | m_flags &= ~(VehicleFlag.HOVER_WATER_ONLY | VehicleFlag.HOVER_TERRAIN_ONLY | VehicleFlag.HOVER_GLOBAL_HEIGHT); | ||
367 | m_flags |= (VehicleFlag.NO_DEFLECTION_UP | VehicleFlag.LIMIT_ROLL_ONLY | VehicleFlag.HOVER_UP_ONLY | | ||
368 | VehicleFlag.LIMIT_MOTOR_UP); | ||
369 | break; | ||
370 | case Vehicle.TYPE_BOAT: | ||
371 | m_linearFrictionTimescale = new Vector3(10, 3, 2); | ||
372 | m_angularFrictionTimescale = new Vector3(10,10,10); | ||
373 | // m_lLinMotorVel = Vector3.Zero; | ||
374 | m_linearMotorTimescale = 5; | ||
375 | m_linearMotorDecayTimescale = 60; | ||
376 | m_angularMotorDirection = Vector3.Zero; | ||
377 | m_angularMotorDVel = Vector3.Zero; | ||
378 | m_angularMotorTimescale = 4; | ||
379 | m_angularMotorDecayTimescale = 4; | ||
380 | m_VhoverHeight = 0; | ||
381 | // m_VhoverEfficiency = 0.5f; | ||
382 | m_VhoverTimescale = 2; | ||
383 | m_VehicleBuoyancy = 1; | ||
384 | // m_linearDeflectionEfficiency = 0.5f; | ||
385 | // m_linearDeflectionTimescale = 3; | ||
386 | // m_angularDeflectionEfficiency = 0.5f; | ||
387 | // m_angularDeflectionTimescale = 5; | ||
388 | m_verticalAttractionEfficiency = 0.5f; | ||
389 | m_verticalAttractionTimescale = 5f; | ||
390 | // m_bankingEfficiency = -0.3f; | ||
391 | // m_bankingMix = 0.8f; | ||
392 | // m_bankingTimescale = 1; | ||
393 | // m_referenceFrame = Quaternion.Identity; | ||
394 | m_flags &= ~(VehicleFlag.HOVER_TERRAIN_ONLY | VehicleFlag.LIMIT_ROLL_ONLY | | ||
395 | VehicleFlag.HOVER_GLOBAL_HEIGHT | VehicleFlag.HOVER_UP_ONLY); | ||
396 | m_flags |= (VehicleFlag.NO_DEFLECTION_UP | VehicleFlag.HOVER_WATER_ONLY | | ||
397 | VehicleFlag.LIMIT_MOTOR_UP); | ||
398 | break; | ||
399 | case Vehicle.TYPE_AIRPLANE: | ||
400 | m_linearFrictionTimescale = new Vector3(200, 10, 5); | ||
401 | m_angularFrictionTimescale = new Vector3(20, 20, 20); | ||
402 | // m_lLinMotorVel = Vector3.Zero; | ||
403 | m_linearMotorTimescale = 2; | ||
404 | m_linearMotorDecayTimescale = 60; | ||
405 | m_angularMotorDirection = Vector3.Zero; | ||
406 | m_angularMotorDVel = Vector3.Zero; | ||
407 | m_angularMotorTimescale = 4; | ||
408 | m_angularMotorDecayTimescale = 4; | ||
409 | m_VhoverHeight = 0; | ||
410 | // m_VhoverEfficiency = 0.5f; | ||
411 | m_VhoverTimescale = 1000; | ||
412 | m_VehicleBuoyancy = 0; | ||
413 | // m_linearDeflectionEfficiency = 0.5f; | ||
414 | // m_linearDeflectionTimescale = 3; | ||
415 | // m_angularDeflectionEfficiency = 1; | ||
416 | // m_angularDeflectionTimescale = 2; | ||
417 | m_verticalAttractionEfficiency = 0.9f; | ||
418 | m_verticalAttractionTimescale = 2f; | ||
419 | // m_bankingEfficiency = 1; | ||
420 | // m_bankingMix = 0.7f; | ||
421 | // m_bankingTimescale = 2; | ||
422 | // m_referenceFrame = Quaternion.Identity; | ||
423 | m_flags &= ~(VehicleFlag.NO_DEFLECTION_UP | VehicleFlag.HOVER_WATER_ONLY | VehicleFlag.HOVER_TERRAIN_ONLY | | ||
424 | VehicleFlag.HOVER_GLOBAL_HEIGHT | VehicleFlag.HOVER_UP_ONLY | VehicleFlag.LIMIT_MOTOR_UP); | ||
425 | m_flags |= (VehicleFlag.LIMIT_ROLL_ONLY); | ||
426 | break; | ||
427 | case Vehicle.TYPE_BALLOON: | ||
428 | m_linearFrictionTimescale = new Vector3(5, 5, 5); | ||
429 | m_angularFrictionTimescale = new Vector3(10, 10, 10); | ||
430 | m_linearMotorTimescale = 5; | ||
431 | m_linearMotorDecayTimescale = 60; | ||
432 | m_angularMotorDirection = Vector3.Zero; | ||
433 | m_angularMotorDVel = Vector3.Zero; | ||
434 | m_angularMotorTimescale = 6; | ||
435 | m_angularMotorDecayTimescale = 10; | ||
436 | m_VhoverHeight = 5; | ||
437 | // m_VhoverEfficiency = 0.8f; | ||
438 | m_VhoverTimescale = 10; | ||
439 | m_VehicleBuoyancy = 1; | ||
440 | // m_linearDeflectionEfficiency = 0; | ||
441 | // m_linearDeflectionTimescale = 5; | ||
442 | // m_angularDeflectionEfficiency = 0; | ||
443 | // m_angularDeflectionTimescale = 5; | ||
444 | m_verticalAttractionEfficiency = 1f; | ||
445 | m_verticalAttractionTimescale = 100f; | ||
446 | // m_bankingEfficiency = 0; | ||
447 | // m_bankingMix = 0.7f; | ||
448 | // m_bankingTimescale = 5; | ||
449 | // m_referenceFrame = Quaternion.Identity; | ||
450 | m_flags &= ~(VehicleFlag.NO_DEFLECTION_UP | VehicleFlag.HOVER_WATER_ONLY | VehicleFlag.HOVER_TERRAIN_ONLY | | ||
451 | VehicleFlag.HOVER_UP_ONLY | VehicleFlag.LIMIT_MOTOR_UP); | ||
452 | m_flags |= (VehicleFlag.LIMIT_ROLL_ONLY | VehicleFlag.HOVER_GLOBAL_HEIGHT); | ||
453 | break; | ||
454 | |||
455 | } | ||
456 | }//end SetDefaultsForType | ||
457 | |||
458 | internal void Enable(IntPtr pBody, OdeScene pParentScene) | ||
459 | { | ||
460 | if (m_type == Vehicle.TYPE_NONE) | ||
461 | return; | ||
462 | |||
463 | m_body = pBody; | ||
464 | } | ||
465 | |||
466 | internal void Step(float pTimestep, OdeScene pParentScene) | ||
467 | { | ||
468 | if (m_body == IntPtr.Zero || m_type == Vehicle.TYPE_NONE) | ||
469 | return; | ||
470 | frcount++; // used to limit debug comment output | ||
471 | if (frcount > 24) | ||
472 | frcount = 0; | ||
473 | |||
474 | MoveLinear(pTimestep, pParentScene); | ||
475 | MoveAngular(pTimestep); | ||
476 | }// end Step | ||
477 | |||
478 | internal void Halt() | ||
479 | { // Kill all motions, when non-physical | ||
480 | m_linearMotorDirection = Vector3.Zero; | ||
481 | m_lLinMotorDVel = Vector3.Zero; | ||
482 | m_lLinObjectVel = Vector3.Zero; | ||
483 | m_wLinObjectVel = Vector3.Zero; | ||
484 | m_angularMotorDirection = Vector3.Zero; | ||
485 | m_lastAngularVelocity = Vector3.Zero; | ||
486 | m_angularMotorDVel = Vector3.Zero; | ||
487 | } | ||
488 | |||
489 | private void UpdateLinDecay() | ||
490 | { | ||
491 | if (Math.Abs(m_linearMotorDirection.X) > Math.Abs(m_lLinMotorDVel.X)) m_lLinMotorDVel.X = m_linearMotorDirection.X; | ||
492 | if (Math.Abs(m_linearMotorDirection.Y) > Math.Abs(m_lLinMotorDVel.Y)) m_lLinMotorDVel.Y = m_linearMotorDirection.Y; | ||
493 | if (Math.Abs(m_linearMotorDirection.Z) > Math.Abs(m_lLinMotorDVel.Z)) m_lLinMotorDVel.Z = m_linearMotorDirection.Z; | ||
494 | } // else let the motor decay on its own | ||
495 | |||
496 | private void MoveLinear(float pTimestep, OdeScene _pParentScene) | ||
497 | { | ||
498 | Vector3 acceleration = new Vector3(0f, 0f, 0f); | ||
499 | |||
500 | d.Quaternion rot = d.BodyGetQuaternion(Body); | ||
501 | Quaternion rotq = new Quaternion(rot.X, rot.Y, rot.Z, rot.W); // rotq = rotation of object | ||
502 | Quaternion irotq = Quaternion.Inverse(rotq); | ||
503 | d.Vector3 velnow = d.BodyGetLinearVel(Body); // this is in world frame | ||
504 | Vector3 vel_now = new Vector3(velnow.X, velnow.Y, velnow.Z); | ||
505 | acceleration = vel_now - m_wLinObjectVel; | ||
506 | m_lLinObjectVel = vel_now * irotq; | ||
507 | |||
508 | if (m_linearMotorDecayTimescale < 300.0f) //setting of 300 or more disables decay rate | ||
509 | { | ||
510 | if ( Vector3.Mag(m_lLinMotorDVel) < 1.0f) | ||
511 | { | ||
512 | float decayfactor = m_linearMotorDecayTimescale/pTimestep; | ||
513 | Vector3 decayAmount = (m_lLinMotorDVel/decayfactor); | ||
514 | m_lLinMotorDVel -= decayAmount; | ||
515 | } | ||
516 | else | ||
517 | { | ||
518 | float decayfactor = 3.0f - (0.57f * (float)Math.Log((double)(m_linearMotorDecayTimescale))); | ||
519 | Vector3 decel = Vector3.Normalize(m_lLinMotorDVel) * decayfactor * pTimestep; | ||
520 | m_lLinMotorDVel -= decel; | ||
521 | } | ||
522 | if (m_lLinMotorDVel.ApproxEquals(Vector3.Zero, 0.01f)) | ||
523 | { | ||
524 | m_lLinMotorDVel = Vector3.Zero; | ||
525 | } | ||
526 | else | ||
527 | { | ||
528 | if (Math.Abs(m_lLinMotorDVel.X) < Math.Abs(m_lLinObjectVel.X)) m_lLinObjectVel.X = m_lLinMotorDVel.X; | ||
529 | if (Math.Abs(m_lLinMotorDVel.Y) < Math.Abs(m_lLinObjectVel.Y)) m_lLinObjectVel.Y = m_lLinMotorDVel.Y; | ||
530 | if (Math.Abs(m_lLinMotorDVel.Z) < Math.Abs(m_lLinObjectVel.Z)) m_lLinObjectVel.Z = m_lLinMotorDVel.Z; | ||
531 | } | ||
532 | } | ||
533 | |||
534 | if ( (! m_lLinMotorDVel.ApproxEquals(Vector3.Zero, 0.01f)) || (! m_lLinObjectVel.ApproxEquals(Vector3.Zero, 0.01f)) ) | ||
535 | { | ||
536 | if(!d.BodyIsEnabled (Body)) d.BodyEnable (Body); | ||
537 | if (m_linearMotorTimescale < 300.0f) | ||
538 | { | ||
539 | Vector3 attack_error = m_lLinMotorDVel - m_lLinObjectVel; | ||
540 | float linfactor = m_linearMotorTimescale/pTimestep; | ||
541 | Vector3 attackAmount = (attack_error/linfactor) * 1.3f; | ||
542 | m_lLinObjectVel += attackAmount; | ||
543 | } | ||
544 | if (m_linearFrictionTimescale.X < 300.0f) | ||
545 | { | ||
546 | float fricfactor = m_linearFrictionTimescale.X / pTimestep; | ||
547 | float fricX = m_lLinObjectVel.X / fricfactor; | ||
548 | m_lLinObjectVel.X -= fricX; | ||
549 | } | ||
550 | if (m_linearFrictionTimescale.Y < 300.0f) | ||
551 | { | ||
552 | float fricfactor = m_linearFrictionTimescale.Y / pTimestep; | ||
553 | float fricY = m_lLinObjectVel.Y / fricfactor; | ||
554 | m_lLinObjectVel.Y -= fricY; | ||
555 | } | ||
556 | if (m_linearFrictionTimescale.Z < 300.0f) | ||
557 | { | ||
558 | float fricfactor = m_linearFrictionTimescale.Z / pTimestep; | ||
559 | //if(frcount == 0) Console.WriteLine("Zfric={0}", fricfactor); | ||
560 | float fricZ = m_lLinObjectVel.Z / fricfactor; | ||
561 | m_lLinObjectVel.Z -= fricZ; | ||
562 | } | ||
563 | } | ||
564 | m_wLinObjectVel = m_lLinObjectVel * rotq; | ||
565 | // Add Gravity and Buoyancy | ||
566 | Vector3 grav = Vector3.Zero; | ||
567 | if(m_VehicleBuoyancy < 1.0f) | ||
568 | { | ||
569 | // There is some gravity, make a gravity force vector | ||
570 | // that is applied after object velocity. | ||
571 | d.Mass objMass; | ||
572 | d.BodyGetMass(Body, out objMass); | ||
573 | // m_VehicleBuoyancy: -1=2g; 0=1g; 1=0g; | ||
574 | grav.Z = _pParentScene.gravityz * objMass.mass * (1f - m_VehicleBuoyancy); // Applied later as a force | ||
575 | } // else its 1.0, no gravity. | ||
576 | |||
577 | // Check if hovering | ||
578 | if( (m_flags & (VehicleFlag.HOVER_WATER_ONLY | VehicleFlag.HOVER_TERRAIN_ONLY | VehicleFlag.HOVER_GLOBAL_HEIGHT)) != 0) | ||
579 | { | ||
580 | // We should hover, get the target height | ||
581 | d.Vector3 pos = d.BodyGetPosition(Body); | ||
582 | if((m_flags & VehicleFlag.HOVER_WATER_ONLY) == VehicleFlag.HOVER_WATER_ONLY) | ||
583 | { | ||
584 | m_VhoverTargetHeight = _pParentScene.GetWaterLevel() + m_VhoverHeight; | ||
585 | } | ||
586 | else if((m_flags & VehicleFlag.HOVER_TERRAIN_ONLY) == VehicleFlag.HOVER_TERRAIN_ONLY) | ||
587 | { | ||
588 | m_VhoverTargetHeight = _pParentScene.GetTerrainHeightAtXY(pos.X, pos.Y) + m_VhoverHeight; | ||
589 | } | ||
590 | else if((m_flags & VehicleFlag.HOVER_GLOBAL_HEIGHT) == VehicleFlag.HOVER_GLOBAL_HEIGHT) | ||
591 | { | ||
592 | m_VhoverTargetHeight = m_VhoverHeight; | ||
593 | } | ||
594 | |||
595 | if((m_flags & VehicleFlag.HOVER_UP_ONLY) == VehicleFlag.HOVER_UP_ONLY) | ||
596 | { | ||
597 | // If body is aready heigher, use its height as target height | ||
598 | if(pos.Z > m_VhoverTargetHeight) m_VhoverTargetHeight = pos.Z; | ||
599 | } | ||
600 | |||
601 | // m_VhoverEfficiency = 0f; // 0=boucy, 1=Crit.damped | ||
602 | // m_VhoverTimescale = 0f; // time to acheive height | ||
603 | // pTimestep is time since last frame,in secs | ||
604 | float herr0 = pos.Z - m_VhoverTargetHeight; | ||
605 | // Replace Vertical speed with correction figure if significant | ||
606 | if(Math.Abs(herr0) > 0.01f ) | ||
607 | { | ||
608 | d.Mass objMass; | ||
609 | d.BodyGetMass(Body, out objMass); | ||
610 | m_wLinObjectVel.Z = - ( (herr0 * pTimestep * 50.0f) / m_VhoverTimescale); | ||
611 | //KF: m_VhoverEfficiency is not yet implemented | ||
612 | } | ||
613 | else | ||
614 | { | ||
615 | m_wLinObjectVel.Z = 0f; | ||
616 | } | ||
617 | } | ||
618 | else | ||
619 | { // not hovering, Gravity rules | ||
620 | m_wLinObjectVel.Z = vel_now.Z; | ||
621 | //if(frcount == 0) Console.WriteLine(" Z {0} a.Z {1}", m_wLinObjectVel.Z, acceleration.Z); | ||
622 | } | ||
623 | // Apply velocity | ||
624 | d.BodySetLinearVel(Body, m_wLinObjectVel.X, m_wLinObjectVel.Y, m_wLinObjectVel.Z); | ||
625 | // apply gravity force | ||
626 | d.BodyAddForce(Body, grav.X, grav.Y, grav.Z); | ||
627 | //if(frcount == 0) Console.WriteLine("Grav {0}", grav); | ||
628 | } // end MoveLinear() | ||
629 | |||
630 | private void UpdateAngDecay() | ||
631 | { | ||
632 | if (Math.Abs(m_angularMotorDirection.X) > Math.Abs(m_angularMotorDVel.X)) m_angularMotorDVel.X = m_angularMotorDirection.X; | ||
633 | if (Math.Abs(m_angularMotorDirection.Y) > Math.Abs(m_angularMotorDVel.Y)) m_angularMotorDVel.Y = m_angularMotorDirection.Y; | ||
634 | if (Math.Abs(m_angularMotorDirection.Z) > Math.Abs(m_angularMotorDVel.Z)) m_angularMotorDVel.Z = m_angularMotorDirection.Z; | ||
635 | } // else let the motor decay on its own | ||
636 | |||
637 | private void MoveAngular(float pTimestep) | ||
638 | { | ||
639 | /* | ||
640 | private Vector3 m_angularMotorDirection = Vector3.Zero; // angular velocity requested by LSL motor | ||
641 | |||
642 | private float m_angularMotorTimescale = 0; // motor angular Attack rate set by LSL | ||
643 | private float m_angularMotorDecayTimescale = 0; // motor angular Decay rate set by LSL | ||
644 | private Vector3 m_angularFrictionTimescale = Vector3.Zero; // body angular Friction set by LSL | ||
645 | |||
646 | private Vector3 m_angularMotorDVel = Vector3.Zero; // decayed angular motor | ||
647 | private Vector3 m_angObjectVel = Vector3.Zero; // what was last applied to body | ||
648 | */ | ||
649 | //if(frcount == 0) Console.WriteLine("MoveAngular "); | ||
650 | |||
651 | // Get what the body is doing, this includes 'external' influences | ||
652 | d.Vector3 angularObjectVel = d.BodyGetAngularVel(Body); | ||
653 | Vector3 angObjectVel = new Vector3(angularObjectVel.X, angularObjectVel.Y, angularObjectVel.Z); | ||
654 | //if(frcount == 0) Console.WriteLine("V0 = {0}", angObjectVel); | ||
655 | // Vector3 FrAaccel = m_lastAngularVelocity - angObjectVel; | ||
656 | // Vector3 initavel = angObjectVel; | ||
657 | // Decay Angular Motor 1. In SL this also depends on attack rate! decay ~= 23/Attack. | ||
658 | float atk_decayfactor = 23.0f / (m_angularMotorTimescale * pTimestep); | ||
659 | m_angularMotorDVel -= m_angularMotorDVel / atk_decayfactor; | ||
660 | // Decay Angular Motor 2. | ||
661 | if (m_angularMotorDecayTimescale < 300.0f) | ||
662 | { | ||
663 | //#### | ||
664 | if ( Vector3.Mag(m_angularMotorDVel) < 1.0f) | ||
665 | { | ||
666 | float decayfactor = (m_angularMotorDecayTimescale)/pTimestep; | ||
667 | Vector3 decayAmount = (m_angularMotorDVel/decayfactor); | ||
668 | m_angularMotorDVel -= decayAmount; | ||
669 | } | ||
670 | else | ||
671 | { | ||
672 | Vector3 decel = Vector3.Normalize(m_angularMotorDVel) * pTimestep / m_angularMotorDecayTimescale; | ||
673 | m_angularMotorDVel -= decel; | ||
674 | } | ||
675 | |||
676 | if (m_angularMotorDVel.ApproxEquals(Vector3.Zero, 0.01f)) | ||
677 | { | ||
678 | m_angularMotorDVel = Vector3.Zero; | ||
679 | } | ||
680 | else | ||
681 | { | ||
682 | if (Math.Abs(m_angularMotorDVel.X) < Math.Abs(angObjectVel.X)) angObjectVel.X = m_angularMotorDVel.X; | ||
683 | if (Math.Abs(m_angularMotorDVel.Y) < Math.Abs(angObjectVel.Y)) angObjectVel.Y = m_angularMotorDVel.Y; | ||
684 | if (Math.Abs(m_angularMotorDVel.Z) < Math.Abs(angObjectVel.Z)) angObjectVel.Z = m_angularMotorDVel.Z; | ||
685 | } | ||
686 | } // end decay angular motor | ||
687 | //if(frcount == 0) Console.WriteLine("MotorDvel {0} Obj {1}", m_angularMotorDVel, angObjectVel); | ||
688 | |||
689 | //if(frcount == 0) Console.WriteLine("VA = {0}", angObjectVel); | ||
690 | // Vertical attractor section | ||
691 | Vector3 vertattr = Vector3.Zero; | ||
692 | |||
693 | if(m_verticalAttractionTimescale < 300) | ||
694 | { | ||
695 | float VAservo = 1.0f / (m_verticalAttractionTimescale * pTimestep); | ||
696 | // get present body rotation | ||
697 | d.Quaternion rot = d.BodyGetQuaternion(Body); | ||
698 | Quaternion rotq = new Quaternion(rot.X, rot.Y, rot.Z, rot.W); | ||
699 | // make a vector pointing up | ||
700 | Vector3 verterr = Vector3.Zero; | ||
701 | verterr.Z = 1.0f; | ||
702 | // rotate it to Body Angle | ||
703 | verterr = verterr * rotq; | ||
704 | // verterr.X and .Y are the World error ammounts. They are 0 when there is no error (Vehicle Body is 'vertical'), and .Z will be 1. | ||
705 | // As the body leans to its side |.X| will increase to 1 and .Z fall to 0. As body inverts |.X| will fall and .Z will go | ||
706 | // negative. Similar for tilt and |.Y|. .X and .Y must be modulated to prevent a stable inverted body. | ||
707 | |||
708 | if (verterr.Z < 0.0f) | ||
709 | { // Defelction from vertical exceeds 90-degrees. This method will ensure stable return to | ||
710 | // vertical, BUT for some reason a z-rotation is imparted to the object. TBI. | ||
711 | //Console.WriteLine("InvertFlip"); | ||
712 | verterr.X = 2.0f - verterr.X; | ||
713 | verterr.Y = 2.0f - verterr.Y; | ||
714 | } | ||
715 | verterr *= 0.5f; | ||
716 | // verterror is 0 (no error) to +/- 1 (max error at 180-deg tilt) | ||
717 | |||
718 | if ((!angObjectVel.ApproxEquals(Vector3.Zero, 0.001f)) || (verterr.Z < 0.49f)) | ||
719 | { | ||
720 | //if(frcount == 0) | ||
721 | // As the body rotates around the X axis, then verterr.Y increases; Rotated around Y then .X increases, so | ||
722 | // Change Body angular velocity X based on Y, and Y based on X. Z is not changed. | ||
723 | vertattr.X = verterr.Y; | ||
724 | vertattr.Y = - verterr.X; | ||
725 | vertattr.Z = 0f; | ||
726 | //if(frcount == 0) Console.WriteLine("VAerr=" + verterr); | ||
727 | |||
728 | // scaling appears better usingsquare-law | ||
729 | float damped = m_verticalAttractionEfficiency * m_verticalAttractionEfficiency; | ||
730 | float bounce = 1.0f - damped; | ||
731 | // 0 = crit damp, 1 = bouncy | ||
732 | float oavz = angObjectVel.Z; // retain z velocity | ||
733 | angObjectVel = (angObjectVel + (vertattr * VAservo * 0.0333f)) * bounce; // The time-scaled correction, which sums, therefore is bouncy | ||
734 | angObjectVel = angObjectVel + (vertattr * VAservo * 0.0667f * damped); // damped, good @ < 90. | ||
735 | angObjectVel.Z = oavz; | ||
736 | //if(frcount == 0) Console.WriteLine("VA+"); | ||
737 | //Console.WriteLine("VAttr {0} OAvel {1}", vertattr, angObjectVel); | ||
738 | } | ||
739 | else | ||
740 | { | ||
741 | // else error is very small | ||
742 | angObjectVel.X = 0f; | ||
743 | angObjectVel.Y = 0f; | ||
744 | //if(frcount == 0) Console.WriteLine("VA0"); | ||
745 | } | ||
746 | } // else vertical attractor is off | ||
747 | //if(frcount == 0) Console.WriteLine("V1 = {0}", angObjectVel); | ||
748 | |||
749 | if ( (! m_angularMotorDVel.ApproxEquals(Vector3.Zero, 0.01f)) || (! angObjectVel.ApproxEquals(Vector3.Zero, 0.01f)) ) | ||
750 | { // if motor or object have motion | ||
751 | if(!d.BodyIsEnabled (Body)) d.BodyEnable (Body); | ||
752 | |||
753 | if (m_angularMotorTimescale < 300.0f) | ||
754 | { | ||
755 | Vector3 attack_error = m_angularMotorDVel - angObjectVel; | ||
756 | float angfactor = m_angularMotorTimescale/pTimestep; | ||
757 | Vector3 attackAmount = (attack_error/angfactor); | ||
758 | angObjectVel += attackAmount; | ||
759 | //if(frcount == 0) Console.WriteLine("Accel {0} Attk {1}",FrAaccel, attackAmount); | ||
760 | //if(frcount == 0) Console.WriteLine("V2+= {0}", angObjectVel); | ||
761 | } | ||
762 | |||
763 | angObjectVel.X -= angObjectVel.X / (m_angularFrictionTimescale.X * 0.7f / pTimestep); | ||
764 | angObjectVel.Y -= angObjectVel.Y / (m_angularFrictionTimescale.Y * 0.7f / pTimestep); | ||
765 | angObjectVel.Z -= angObjectVel.Z / (m_angularFrictionTimescale.Z * 0.7f / pTimestep); | ||
766 | } // else no signif. motion | ||
767 | |||
768 | //if(frcount == 0) Console.WriteLine("Dmotor {0} Obj {1}", m_angularMotorDVel, angObjectVel); | ||
769 | // Bank section tba | ||
770 | // Deflection section tba | ||
771 | //if(frcount == 0) Console.WriteLine("V3 = {0}", angObjectVel); | ||
772 | |||
773 | m_lastAngularVelocity = angObjectVel; | ||
774 | /* | ||
775 | if (!m_lastAngularVelocity.ApproxEquals(Vector3.Zero, 0.0001f)) | ||
776 | { | ||
777 | if(!d.BodyIsEnabled (Body)) d.BodyEnable (Body); | ||
778 | } | ||
779 | else | ||
780 | { | ||
781 | m_lastAngularVelocity = Vector3.Zero; // Reduce small value to zero. | ||
782 | } | ||
783 | */ | ||
784 | // Apply to the body | ||
785 | // Vector3 aInc = m_lastAngularVelocity - initavel; | ||
786 | //if(frcount == 0) Console.WriteLine("Inc {0}", aInc); | ||
787 | d.BodySetAngularVel (Body, m_lastAngularVelocity.X, m_lastAngularVelocity.Y, m_lastAngularVelocity.Z); | ||
788 | //if(frcount == 0) Console.WriteLine("V4 = {0}", m_lastAngularVelocity); | ||
789 | |||
790 | } //end MoveAngular | ||
791 | } | ||
792 | } | ||