aboutsummaryrefslogtreecommitdiffstatshomepage
path: root/OpenSim/Region/Physics/BulletSPlugin/BSDynamics.cs
diff options
context:
space:
mode:
Diffstat (limited to 'OpenSim/Region/Physics/BulletSPlugin/BSDynamics.cs')
-rw-r--r--OpenSim/Region/Physics/BulletSPlugin/BSDynamics.cs1173
1 files changed, 795 insertions, 378 deletions
diff --git a/OpenSim/Region/Physics/BulletSPlugin/BSDynamics.cs b/OpenSim/Region/Physics/BulletSPlugin/BSDynamics.cs
index dbc9039..dbe44de 100644
--- a/OpenSim/Region/Physics/BulletSPlugin/BSDynamics.cs
+++ b/OpenSim/Region/Physics/BulletSPlugin/BSDynamics.cs
@@ -24,28 +24,16 @@
24 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 24 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
25 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 25 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26 * 26 *
27 27 * The quotations from http://wiki.secondlife.com/wiki/Linden_Vehicle_Tutorial
28/* RA: June 14, 2011. Copied from ODEDynamics.cs and converted to 28 * are Copyright (c) 2009 Linden Research, Inc and are used under their license
29 * call the BulletSim system. 29 * of Creative Commons Attribution-Share Alike 3.0
30 */ 30 * (http://creativecommons.org/licenses/by-sa/3.0/).
31/* Revised Aug, Sept 2009 by Kitto Flora. ODEDynamics.cs replaces
32 * ODEVehicleSettings.cs. It and ODEPrim.cs are re-organised:
33 * ODEPrim.cs contains methods dealing with Prim editing, Prim
34 * characteristics and Kinetic motion.
35 * ODEDynamics.cs contains methods dealing with Prim Physical motion
36 * (dynamics) and the associated settings. Old Linear and angular
37 * motors for dynamic motion have been replace with MoveLinear()
38 * and MoveAngular(); 'Physical' is used only to switch ODE dynamic
39 * simualtion on/off; VEHICAL_TYPE_NONE/VEHICAL_TYPE_<other> is to
40 * switch between 'VEHICLE' parameter use and general dynamics
41 * settings use.
42 */ 31 */
43 32
44using System; 33using System;
45using System.Collections.Generic; 34using System.Collections.Generic;
46using System.Reflection; 35using System.Reflection;
47using System.Runtime.InteropServices; 36using System.Runtime.InteropServices;
48using log4net;
49using OpenMetaverse; 37using OpenMetaverse;
50using OpenSim.Framework; 38using OpenSim.Framework;
51using OpenSim.Region.Physics.Manager; 39using OpenSim.Region.Physics.Manager;
@@ -80,10 +68,10 @@ namespace OpenSim.Region.Physics.BulletSPlugin
80 private Quaternion m_referenceFrame = Quaternion.Identity; 68 private Quaternion m_referenceFrame = Quaternion.Identity;
81 69
82 // Linear properties 70 // Linear properties
71 private BSVMotor m_linearMotor = new BSVMotor("LinearMotor");
83 private Vector3 m_linearMotorDirection = Vector3.Zero; // velocity requested by LSL, decayed by time 72 private Vector3 m_linearMotorDirection = Vector3.Zero; // velocity requested by LSL, decayed by time
84 private Vector3 m_linearMotorOffset = Vector3.Zero; // the point of force can be offset from the center 73 private Vector3 m_linearMotorOffset = Vector3.Zero; // the point of force can be offset from the center
85 private Vector3 m_linearMotorDirectionLASTSET = Vector3.Zero; // velocity requested by LSL 74 private Vector3 m_linearMotorDirectionLASTSET = Vector3.Zero; // velocity requested by LSL
86 private Vector3 m_newVelocity = Vector3.Zero; // velocity computed to be applied to body
87 private Vector3 m_linearFrictionTimescale = Vector3.Zero; 75 private Vector3 m_linearFrictionTimescale = Vector3.Zero;
88 private float m_linearMotorDecayTimescale = 0; 76 private float m_linearMotorDecayTimescale = 0;
89 private float m_linearMotorTimescale = 0; 77 private float m_linearMotorTimescale = 0;
@@ -93,16 +81,18 @@ namespace OpenSim.Region.Physics.BulletSPlugin
93 // private Vector3 m_linearMotorOffset = Vector3.Zero; 81 // private Vector3 m_linearMotorOffset = Vector3.Zero;
94 82
95 //Angular properties 83 //Angular properties
84 private BSVMotor m_angularMotor = new BSVMotor("AngularMotor");
96 private Vector3 m_angularMotorDirection = Vector3.Zero; // angular velocity requested by LSL motor 85 private Vector3 m_angularMotorDirection = Vector3.Zero; // angular velocity requested by LSL motor
97 // private int m_angularMotorApply = 0; // application frame counter 86 // private int m_angularMotorApply = 0; // application frame counter
98 private Vector3 m_angularMotorVelocity = Vector3.Zero; // current angular motor velocity 87 private Vector3 m_angularMotorVelocity = Vector3.Zero; // current angular motor velocity
99 private float m_angularMotorTimescale = 0; // motor angular velocity ramp up rate 88 private float m_angularMotorTimescale = 0; // motor angular velocity ramp up rate
100 private float m_angularMotorDecayTimescale = 0; // motor angular velocity decay rate 89 private float m_angularMotorDecayTimescale = 0; // motor angular velocity decay rate
101 private Vector3 m_angularFrictionTimescale = Vector3.Zero; // body angular velocity decay rate 90 private Vector3 m_angularFrictionTimescale = Vector3.Zero; // body angular velocity decay rate
102 private Vector3 m_lastAngularVelocity = Vector3.Zero; // what was last applied to body 91 private Vector3 m_lastAngularVelocity = Vector3.Zero;
103 private Vector3 m_lastVertAttractor = Vector3.Zero; // what VA was last applied to body 92 private Vector3 m_lastVertAttractor = Vector3.Zero; // what VA was last applied to body
104 93
105 //Deflection properties 94 //Deflection properties
95 private BSVMotor m_angularDeflectionMotor = new BSVMotor("AngularDeflection");
106 private float m_angularDeflectionEfficiency = 0; 96 private float m_angularDeflectionEfficiency = 0;
107 private float m_angularDeflectionTimescale = 0; 97 private float m_angularDeflectionTimescale = 0;
108 private float m_linearDeflectionEfficiency = 0; 98 private float m_linearDeflectionEfficiency = 0;
@@ -114,32 +104,61 @@ namespace OpenSim.Region.Physics.BulletSPlugin
114 private float m_bankingTimescale = 0; 104 private float m_bankingTimescale = 0;
115 105
116 //Hover and Buoyancy properties 106 //Hover and Buoyancy properties
107 private BSVMotor m_hoverMotor = new BSVMotor("Hover");
117 private float m_VhoverHeight = 0f; 108 private float m_VhoverHeight = 0f;
118 private float m_VhoverEfficiency = 0f; 109 private float m_VhoverEfficiency = 0f;
119 private float m_VhoverTimescale = 0f; 110 private float m_VhoverTimescale = 0f;
120 private float m_VhoverTargetHeight = -1.0f; // if <0 then no hover, else its the current target height 111 private float m_VhoverTargetHeight = -1.0f; // if <0 then no hover, else its the current target height
121 private float m_VehicleBuoyancy = 0f; //KF: m_VehicleBuoyancy is set by VEHICLE_BUOYANCY for a vehicle. 112 // Modifies gravity. Slider between -1 (double-gravity) and 1 (full anti-gravity)
122 // Modifies gravity. Slider between -1 (double-gravity) and 1 (full anti-gravity) 113 private float m_VehicleBuoyancy = 0f;
123 // KF: So far I have found no good method to combine a script-requested .Z velocity and gravity. 114 private Vector3 m_VehicleGravity = Vector3.Zero; // Gravity computed when buoyancy set
124 // Therefore only m_VehicleBuoyancy=1 (0g) will use the script-requested .Z velocity.
125 115
126 //Attractor properties 116 //Attractor properties
127 private float m_verticalAttractionEfficiency = 1.0f; // damped 117 private BSVMotor m_verticalAttractionMotor = new BSVMotor("VerticalAttraction");
128 private float m_verticalAttractionTimescale = 500f; // Timescale > 300 means no vert attractor. 118 private float m_verticalAttractionEfficiency = 1.0f; // damped
119 private float m_verticalAttractionCutoff = 500f; // per the documentation
120 // Timescale > cutoff means no vert attractor.
121 private float m_verticalAttractionTimescale = 510f;
122
123 // Just some recomputed constants:
124 static readonly float PIOverFour = ((float)Math.PI) / 4f;
125 static readonly float PIOverTwo = ((float)Math.PI) / 2f;
126
127 // For debugging, flags to turn on and off individual corrections.
128 private bool enableAngularVerticalAttraction;
129 private bool enableAngularDeflection;
130 private bool enableAngularBanking;
129 131
130 public BSDynamics(BSScene myScene, BSPrim myPrim) 132 public BSDynamics(BSScene myScene, BSPrim myPrim)
131 { 133 {
132 PhysicsScene = myScene; 134 PhysicsScene = myScene;
133 Prim = myPrim; 135 Prim = myPrim;
134 Type = Vehicle.TYPE_NONE; 136 Type = Vehicle.TYPE_NONE;
137 SetupVehicleDebugging();
138 }
139
140 // Stopgap debugging enablement. Allows source level debugging but still checking
141 // in changes by making enablement of debugging flags from INI file.
142 public void SetupVehicleDebugging()
143 {
144 enableAngularVerticalAttraction = true;
145 enableAngularDeflection = false;
146 enableAngularBanking = false;
147 if (BSParam.VehicleDebuggingEnabled != ConfigurationParameters.numericFalse)
148 {
149 enableAngularVerticalAttraction = false;
150 enableAngularDeflection = false;
151 enableAngularBanking = false;
152 }
135 } 153 }
136 154
137 // Return 'true' if this vehicle is doing vehicle things 155 // Return 'true' if this vehicle is doing vehicle things
138 public bool IsActive 156 public bool IsActive
139 { 157 {
140 get { return Type != Vehicle.TYPE_NONE; } 158 get { return (Type != Vehicle.TYPE_NONE && Prim.IsPhysicallyActive); }
141 } 159 }
142 160
161 #region Vehicle parameter setting
143 internal void ProcessFloatVehicleParam(Vehicle pParam, float pValue) 162 internal void ProcessFloatVehicleParam(Vehicle pParam, float pValue)
144 { 163 {
145 VDetailLog("{0},ProcessFloatVehicleParam,param={1},val={2}", Prim.LocalID, pParam, pValue); 164 VDetailLog("{0},ProcessFloatVehicleParam,param={1},val={2}", Prim.LocalID, pParam, pValue);
@@ -152,13 +171,15 @@ namespace OpenSim.Region.Physics.BulletSPlugin
152 m_angularDeflectionTimescale = Math.Max(pValue, 0.01f); 171 m_angularDeflectionTimescale = Math.Max(pValue, 0.01f);
153 break; 172 break;
154 case Vehicle.ANGULAR_MOTOR_DECAY_TIMESCALE: 173 case Vehicle.ANGULAR_MOTOR_DECAY_TIMESCALE:
155 m_angularMotorDecayTimescale = Math.Max(pValue, 0.01f); 174 m_angularMotorDecayTimescale = ClampInRange(0.01f, pValue, 120);
175 m_angularMotor.TargetValueDecayTimeScale = m_angularMotorDecayTimescale;
156 break; 176 break;
157 case Vehicle.ANGULAR_MOTOR_TIMESCALE: 177 case Vehicle.ANGULAR_MOTOR_TIMESCALE:
158 m_angularMotorTimescale = Math.Max(pValue, 0.01f); 178 m_angularMotorTimescale = Math.Max(pValue, 0.01f);
179 m_angularMotor.TimeScale = m_angularMotorTimescale;
159 break; 180 break;
160 case Vehicle.BANKING_EFFICIENCY: 181 case Vehicle.BANKING_EFFICIENCY:
161 m_bankingEfficiency = Math.Max(-1f, Math.Min(pValue, 1f)); 182 m_bankingEfficiency = ClampInRange(-1f, pValue, 1f);
162 break; 183 break;
163 case Vehicle.BANKING_MIX: 184 case Vehicle.BANKING_MIX:
164 m_bankingMix = Math.Max(pValue, 0.01f); 185 m_bankingMix = Math.Max(pValue, 0.01f);
@@ -167,10 +188,11 @@ namespace OpenSim.Region.Physics.BulletSPlugin
167 m_bankingTimescale = Math.Max(pValue, 0.01f); 188 m_bankingTimescale = Math.Max(pValue, 0.01f);
168 break; 189 break;
169 case Vehicle.BUOYANCY: 190 case Vehicle.BUOYANCY:
170 m_VehicleBuoyancy = Math.Max(-1f, Math.Min(pValue, 1f)); 191 m_VehicleBuoyancy = ClampInRange(-1f, pValue, 1f);
192 m_VehicleGravity = Prim.ComputeGravity(m_VehicleBuoyancy);
171 break; 193 break;
172 case Vehicle.HOVER_EFFICIENCY: 194 case Vehicle.HOVER_EFFICIENCY:
173 m_VhoverEfficiency = Math.Max(0f, Math.Min(pValue, 1f)); 195 m_VhoverEfficiency = ClampInRange(0f, pValue, 1f);
174 break; 196 break;
175 case Vehicle.HOVER_HEIGHT: 197 case Vehicle.HOVER_HEIGHT:
176 m_VhoverHeight = pValue; 198 m_VhoverHeight = pValue;
@@ -185,33 +207,41 @@ namespace OpenSim.Region.Physics.BulletSPlugin
185 m_linearDeflectionTimescale = Math.Max(pValue, 0.01f); 207 m_linearDeflectionTimescale = Math.Max(pValue, 0.01f);
186 break; 208 break;
187 case Vehicle.LINEAR_MOTOR_DECAY_TIMESCALE: 209 case Vehicle.LINEAR_MOTOR_DECAY_TIMESCALE:
188 m_linearMotorDecayTimescale = Math.Max(pValue, 0.01f); 210 m_linearMotorDecayTimescale = ClampInRange(0.01f, pValue, 120);
211 m_linearMotor.TargetValueDecayTimeScale = m_linearMotorDecayTimescale;
189 break; 212 break;
190 case Vehicle.LINEAR_MOTOR_TIMESCALE: 213 case Vehicle.LINEAR_MOTOR_TIMESCALE:
191 m_linearMotorTimescale = Math.Max(pValue, 0.01f); 214 m_linearMotorTimescale = Math.Max(pValue, 0.01f);
215 m_linearMotor.TimeScale = m_linearMotorTimescale;
192 break; 216 break;
193 case Vehicle.VERTICAL_ATTRACTION_EFFICIENCY: 217 case Vehicle.VERTICAL_ATTRACTION_EFFICIENCY:
194 m_verticalAttractionEfficiency = Math.Max(0.1f, Math.Min(pValue, 1f)); 218 m_verticalAttractionEfficiency = ClampInRange(0.1f, pValue, 1f);
219 m_verticalAttractionMotor.Efficiency = m_verticalAttractionEfficiency;
195 break; 220 break;
196 case Vehicle.VERTICAL_ATTRACTION_TIMESCALE: 221 case Vehicle.VERTICAL_ATTRACTION_TIMESCALE:
197 m_verticalAttractionTimescale = Math.Max(pValue, 0.01f); 222 m_verticalAttractionTimescale = Math.Max(pValue, 0.01f);
223 m_verticalAttractionMotor.TimeScale = m_verticalAttractionTimescale;
198 break; 224 break;
199 225
200 // These are vector properties but the engine lets you use a single float value to 226 // These are vector properties but the engine lets you use a single float value to
201 // set all of the components to the same value 227 // set all of the components to the same value
202 case Vehicle.ANGULAR_FRICTION_TIMESCALE: 228 case Vehicle.ANGULAR_FRICTION_TIMESCALE:
203 m_angularFrictionTimescale = new Vector3(pValue, pValue, pValue); 229 m_angularFrictionTimescale = new Vector3(pValue, pValue, pValue);
230 m_angularMotor.FrictionTimescale = m_angularFrictionTimescale;
204 break; 231 break;
205 case Vehicle.ANGULAR_MOTOR_DIRECTION: 232 case Vehicle.ANGULAR_MOTOR_DIRECTION:
206 m_angularMotorDirection = new Vector3(pValue, pValue, pValue); 233 m_angularMotorDirection = new Vector3(pValue, pValue, pValue);
207 // m_angularMotorApply = 100; 234 m_angularMotor.Zero();
235 m_angularMotor.SetTarget(m_angularMotorDirection);
208 break; 236 break;
209 case Vehicle.LINEAR_FRICTION_TIMESCALE: 237 case Vehicle.LINEAR_FRICTION_TIMESCALE:
210 m_linearFrictionTimescale = new Vector3(pValue, pValue, pValue); 238 m_linearFrictionTimescale = new Vector3(pValue, pValue, pValue);
239 m_linearMotor.FrictionTimescale = m_linearFrictionTimescale;
211 break; 240 break;
212 case Vehicle.LINEAR_MOTOR_DIRECTION: 241 case Vehicle.LINEAR_MOTOR_DIRECTION:
213 m_linearMotorDirection = new Vector3(pValue, pValue, pValue); 242 m_linearMotorDirection = new Vector3(pValue, pValue, pValue);
214 m_linearMotorDirectionLASTSET = new Vector3(pValue, pValue, pValue); 243 m_linearMotorDirectionLASTSET = new Vector3(pValue, pValue, pValue);
244 m_linearMotor.SetTarget(m_linearMotorDirection);
215 break; 245 break;
216 case Vehicle.LINEAR_MOTOR_OFFSET: 246 case Vehicle.LINEAR_MOTOR_OFFSET:
217 m_linearMotorOffset = new Vector3(pValue, pValue, pValue); 247 m_linearMotorOffset = new Vector3(pValue, pValue, pValue);
@@ -227,21 +257,25 @@ namespace OpenSim.Region.Physics.BulletSPlugin
227 { 257 {
228 case Vehicle.ANGULAR_FRICTION_TIMESCALE: 258 case Vehicle.ANGULAR_FRICTION_TIMESCALE:
229 m_angularFrictionTimescale = new Vector3(pValue.X, pValue.Y, pValue.Z); 259 m_angularFrictionTimescale = new Vector3(pValue.X, pValue.Y, pValue.Z);
260 m_angularMotor.FrictionTimescale = m_angularFrictionTimescale;
230 break; 261 break;
231 case Vehicle.ANGULAR_MOTOR_DIRECTION: 262 case Vehicle.ANGULAR_MOTOR_DIRECTION:
232 // Limit requested angular speed to 2 rps= 4 pi rads/sec 263 // Limit requested angular speed to 2 rps= 4 pi rads/sec
233 pValue.X = Math.Max(-12.56f, Math.Min(pValue.X, 12.56f)); 264 pValue.X = ClampInRange(-12.56f, pValue.X, 12.56f);
234 pValue.Y = Math.Max(-12.56f, Math.Min(pValue.Y, 12.56f)); 265 pValue.Y = ClampInRange(-12.56f, pValue.Y, 12.56f);
235 pValue.Z = Math.Max(-12.56f, Math.Min(pValue.Z, 12.56f)); 266 pValue.Z = ClampInRange(-12.56f, pValue.Z, 12.56f);
236 m_angularMotorDirection = new Vector3(pValue.X, pValue.Y, pValue.Z); 267 m_angularMotorDirection = new Vector3(pValue.X, pValue.Y, pValue.Z);
237 // m_angularMotorApply = 100; 268 m_angularMotor.Zero();
269 m_angularMotor.SetTarget(m_angularMotorDirection);
238 break; 270 break;
239 case Vehicle.LINEAR_FRICTION_TIMESCALE: 271 case Vehicle.LINEAR_FRICTION_TIMESCALE:
240 m_linearFrictionTimescale = new Vector3(pValue.X, pValue.Y, pValue.Z); 272 m_linearFrictionTimescale = new Vector3(pValue.X, pValue.Y, pValue.Z);
273 m_linearMotor.FrictionTimescale = m_linearFrictionTimescale;
241 break; 274 break;
242 case Vehicle.LINEAR_MOTOR_DIRECTION: 275 case Vehicle.LINEAR_MOTOR_DIRECTION:
243 m_linearMotorDirection = new Vector3(pValue.X, pValue.Y, pValue.Z); 276 m_linearMotorDirection = new Vector3(pValue.X, pValue.Y, pValue.Z);
244 m_linearMotorDirectionLASTSET = new Vector3(pValue.X, pValue.Y, pValue.Z); 277 m_linearMotorDirectionLASTSET = new Vector3(pValue.X, pValue.Y, pValue.Z);
278 m_linearMotor.SetTarget(m_linearMotorDirection);
245 break; 279 break;
246 case Vehicle.LINEAR_MOTOR_OFFSET: 280 case Vehicle.LINEAR_MOTOR_OFFSET:
247 m_linearMotorOffset = new Vector3(pValue.X, pValue.Y, pValue.Z); 281 m_linearMotorOffset = new Vector3(pValue.X, pValue.Y, pValue.Z);
@@ -303,7 +337,7 @@ namespace OpenSim.Region.Physics.BulletSPlugin
303 m_VhoverEfficiency = 0; 337 m_VhoverEfficiency = 0;
304 m_VhoverTimescale = 0; 338 m_VhoverTimescale = 0;
305 m_VehicleBuoyancy = 0; 339 m_VehicleBuoyancy = 0;
306 340
307 m_linearDeflectionEfficiency = 1; 341 m_linearDeflectionEfficiency = 1;
308 m_linearDeflectionTimescale = 1; 342 m_linearDeflectionTimescale = 1;
309 343
@@ -319,6 +353,7 @@ namespace OpenSim.Region.Physics.BulletSPlugin
319 353
320 m_referenceFrame = Quaternion.Identity; 354 m_referenceFrame = Quaternion.Identity;
321 m_flags = (VehicleFlag)0; 355 m_flags = (VehicleFlag)0;
356
322 break; 357 break;
323 358
324 case Vehicle.TYPE_SLED: 359 case Vehicle.TYPE_SLED:
@@ -351,10 +386,14 @@ namespace OpenSim.Region.Physics.BulletSPlugin
351 m_bankingMix = 1; 386 m_bankingMix = 1;
352 387
353 m_referenceFrame = Quaternion.Identity; 388 m_referenceFrame = Quaternion.Identity;
354 m_flags |= (VehicleFlag.NO_DEFLECTION_UP | VehicleFlag.LIMIT_ROLL_ONLY | VehicleFlag.LIMIT_MOTOR_UP); 389 m_flags &= ~(VehicleFlag.HOVER_WATER_ONLY
355 m_flags &= 390 | VehicleFlag.HOVER_TERRAIN_ONLY
356 ~(VehicleFlag.HOVER_WATER_ONLY | VehicleFlag.HOVER_TERRAIN_ONLY | 391 | VehicleFlag.HOVER_GLOBAL_HEIGHT
357 VehicleFlag.HOVER_GLOBAL_HEIGHT | VehicleFlag.HOVER_UP_ONLY); 392 | VehicleFlag.HOVER_UP_ONLY);
393 m_flags |= (VehicleFlag.NO_DEFLECTION_UP
394 | VehicleFlag.LIMIT_ROLL_ONLY
395 | VehicleFlag.LIMIT_MOTOR_UP);
396
358 break; 397 break;
359 case Vehicle.TYPE_CAR: 398 case Vehicle.TYPE_CAR:
360 m_linearMotorDirection = Vector3.Zero; 399 m_linearMotorDirection = Vector3.Zero;
@@ -498,6 +537,7 @@ namespace OpenSim.Region.Physics.BulletSPlugin
498 m_bankingEfficiency = 0; 537 m_bankingEfficiency = 0;
499 m_bankingMix = 0.7f; 538 m_bankingMix = 0.7f;
500 m_bankingTimescale = 5; 539 m_bankingTimescale = 5;
540
501 m_referenceFrame = Quaternion.Identity; 541 m_referenceFrame = Quaternion.Identity;
502 542
503 m_referenceFrame = Quaternion.Identity; 543 m_referenceFrame = Quaternion.Identity;
@@ -510,7 +550,30 @@ namespace OpenSim.Region.Physics.BulletSPlugin
510 | VehicleFlag.HOVER_GLOBAL_HEIGHT); 550 | VehicleFlag.HOVER_GLOBAL_HEIGHT);
511 break; 551 break;
512 } 552 }
553
554 // Update any physical parameters based on this type.
555 Refresh();
556
557 m_linearMotor = new BSVMotor("LinearMotor", m_linearMotorTimescale,
558 m_linearMotorDecayTimescale, m_linearFrictionTimescale,
559 1f);
560 m_linearMotor.PhysicsScene = PhysicsScene; // DEBUG DEBUG DEBUG (enables detail logging)
561
562 m_angularMotor = new BSVMotor("AngularMotor", m_angularMotorTimescale,
563 m_angularMotorDecayTimescale, m_angularFrictionTimescale,
564 1f);
565 m_angularMotor.PhysicsScene = PhysicsScene; // DEBUG DEBUG DEBUG (enables detail logging)
566
567 /* Not implemented
568 m_verticalAttractionMotor = new BSVMotor("VerticalAttraction", m_verticalAttractionTimescale,
569 BSMotor.Infinite, BSMotor.InfiniteVector,
570 m_verticalAttractionEfficiency);
571 // Z goes away and we keep X and Y
572 m_verticalAttractionMotor.FrictionTimescale = new Vector3(BSMotor.Infinite, BSMotor.Infinite, 0.1f);
573 m_verticalAttractionMotor.PhysicsScene = PhysicsScene; // DEBUG DEBUG DEBUG (enables detail logging)
574 */
513 } 575 }
576 #endregion // Vehicle parameter setting
514 577
515 // Some of the properties of this prim may have changed. 578 // Some of the properties of this prim may have changed.
516 // Do any updating needed for a vehicle 579 // Do any updating needed for a vehicle
@@ -518,13 +581,38 @@ namespace OpenSim.Region.Physics.BulletSPlugin
518 { 581 {
519 if (IsActive) 582 if (IsActive)
520 { 583 {
521 // Friction effects are handled by this vehicle code 584 // Remember the mass so we don't have to fetch it every step
522 BulletSimAPI.SetFriction2(Prim.PhysBody.ptr, 0f); 585 m_vehicleMass = Prim.Linkset.LinksetMass;
523 BulletSimAPI.SetHitFraction2(Prim.PhysBody.ptr, 0f); 586
524 587 // Friction affects are handled by this vehicle code
525 // BulletSimAPI.SetAngularDamping2(Prim.PhysBody.ptr, 0.8f); 588 float friction = 0f;
526 589 PhysicsScene.PE.SetFriction(Prim.PhysBody, friction);
527 VDetailLog("{0},BSDynamics.Refresh,zeroingFriction and adding damping", Prim.LocalID); 590
591 // Moderate angular movement introduced by Bullet.
592 // TODO: possibly set AngularFactor and LinearFactor for the type of vehicle.
593 // Maybe compute linear and angular factor and damping from params.
594 float angularDamping = BSParam.VehicleAngularDamping;
595 PhysicsScene.PE.SetAngularDamping(Prim.PhysBody, angularDamping);
596
597 // Vehicles report collision events so we know when it's on the ground
598 PhysicsScene.PE.AddToCollisionFlags(Prim.PhysBody, CollisionFlags.BS_VEHICLE_COLLISIONS);
599
600 Prim.Inertia = PhysicsScene.PE.CalculateLocalInertia(Prim.PhysShape, m_vehicleMass);
601 PhysicsScene.PE.SetMassProps(Prim.PhysBody, m_vehicleMass, Prim.Inertia);
602 PhysicsScene.PE.UpdateInertiaTensor(Prim.PhysBody);
603
604 // Set the gravity for the vehicle depending on the buoyancy
605 // TODO: what should be done if prim and vehicle buoyancy differ?
606 m_VehicleGravity = Prim.ComputeGravity(m_VehicleBuoyancy);
607 // The actual vehicle gravity is set to zero in Bullet so we can do all the application of same.
608 PhysicsScene.PE.SetGravity(Prim.PhysBody, Vector3.Zero);
609
610 VDetailLog("{0},BSDynamics.Refresh,mass={1},frict={2},inert={3},aDamp={4},grav={5}",
611 Prim.LocalID, m_vehicleMass, friction, Prim.Inertia, angularDamping, m_VehicleGravity);
612 }
613 else
614 {
615 PhysicsScene.PE.RemoveFromCollisionFlags(Prim.PhysBody, CollisionFlags.BS_VEHICLE_COLLISIONS);
528 } 616 }
529 } 617 }
530 618
@@ -546,116 +634,371 @@ namespace OpenSim.Region.Physics.BulletSPlugin
546 Refresh(); 634 Refresh();
547 } 635 }
548 636
637 #region Known vehicle value functions
638 // Vehicle physical parameters that we buffer from constant getting and setting.
639 // The "m_known*" values are unknown until they are fetched and the m_knownHas flag is set.
640 // Changing is remembered and the parameter is stored back into the physics engine only if updated.
641 // This does two things: 1) saves continuious calls into unmanaged code, and
642 // 2) signals when a physics property update must happen back to the simulator
643 // to update values modified for the vehicle.
644 private int m_knownChanged;
645 private int m_knownHas;
646 private float m_knownTerrainHeight;
647 private float m_knownWaterLevel;
648 private Vector3 m_knownPosition;
649 private Vector3 m_knownVelocity;
650 private Vector3 m_knownForce;
651 private Vector3 m_knownForceImpulse;
652 private Quaternion m_knownOrientation;
653 private Vector3 m_knownRotationalVelocity;
654 private Vector3 m_knownRotationalForce;
655 private Vector3 m_knownRotationalImpulse;
656 private Vector3 m_knownForwardVelocity; // vehicle relative forward speed
657
658 private const int m_knownChangedPosition = 1 << 0;
659 private const int m_knownChangedVelocity = 1 << 1;
660 private const int m_knownChangedForce = 1 << 2;
661 private const int m_knownChangedForceImpulse = 1 << 3;
662 private const int m_knownChangedOrientation = 1 << 4;
663 private const int m_knownChangedRotationalVelocity = 1 << 5;
664 private const int m_knownChangedRotationalForce = 1 << 6;
665 private const int m_knownChangedRotationalImpulse = 1 << 7;
666 private const int m_knownChangedTerrainHeight = 1 << 8;
667 private const int m_knownChangedWaterLevel = 1 << 9;
668 private const int m_knownChangedForwardVelocity = 1 <<10;
669
670 private void ForgetKnownVehicleProperties()
671 {
672 m_knownHas = 0;
673 m_knownChanged = 0;
674 }
675 // Push all the changed values back into the physics engine
676 private void PushKnownChanged()
677 {
678 if (m_knownChanged != 0)
679 {
680 if ((m_knownChanged & m_knownChangedPosition) != 0)
681 Prim.ForcePosition = m_knownPosition;
682
683 if ((m_knownChanged & m_knownChangedOrientation) != 0)
684 Prim.ForceOrientation = m_knownOrientation;
685
686 if ((m_knownChanged & m_knownChangedVelocity) != 0)
687 {
688 Prim.ForceVelocity = m_knownVelocity;
689 // Fake out Bullet by making it think the velocity is the same as last time.
690 // Bullet does a bunch of smoothing for changing parameters.
691 // Since the vehicle is demanding this setting, we override Bullet's smoothing
692 // by telling Bullet the value was the same last time.
693 PhysicsScene.PE.SetInterpolationLinearVelocity(Prim.PhysBody, m_knownVelocity);
694 }
695
696 if ((m_knownChanged & m_knownChangedForce) != 0)
697 Prim.AddForce((Vector3)m_knownForce, false /*pushForce*/, true /*inTaintTime*/);
698
699 if ((m_knownChanged & m_knownChangedForceImpulse) != 0)
700 Prim.AddForceImpulse((Vector3)m_knownForceImpulse, false /*pushforce*/, true /*inTaintTime*/);
701
702 if ((m_knownChanged & m_knownChangedRotationalVelocity) != 0)
703 {
704 Prim.ForceRotationalVelocity = m_knownRotationalVelocity;
705 PhysicsScene.PE.SetInterpolationAngularVelocity(Prim.PhysBody, m_knownRotationalVelocity);
706 }
707
708 if ((m_knownChanged & m_knownChangedRotationalImpulse) != 0)
709 Prim.ApplyTorqueImpulse((Vector3)m_knownRotationalImpulse, true /*inTaintTime*/);
710
711 if ((m_knownChanged & m_knownChangedRotationalForce) != 0)
712 {
713 Prim.AddAngularForce((Vector3)m_knownRotationalForce, false /*pushForce*/, true /*inTaintTime*/);
714 }
715
716 // If we set one of the values (ie, the physics engine didn't do it) we must force
717 // an UpdateProperties event to send the changes up to the simulator.
718 PhysicsScene.PE.PushUpdate(Prim.PhysBody);
719 }
720 m_knownChanged = 0;
721 }
722
723 // Since the computation of terrain height can be a little involved, this routine
724 // is used to fetch the height only once for each vehicle simulation step.
725 Vector3 lastRememberedHeightPos;
726 private float GetTerrainHeight(Vector3 pos)
727 {
728 if ((m_knownHas & m_knownChangedTerrainHeight) == 0 || pos != lastRememberedHeightPos)
729 {
730 lastRememberedHeightPos = pos;
731 m_knownTerrainHeight = Prim.PhysicsScene.TerrainManager.GetTerrainHeightAtXYZ(pos);
732 m_knownHas |= m_knownChangedTerrainHeight;
733 }
734 return m_knownTerrainHeight;
735 }
736
737 // Since the computation of water level can be a little involved, this routine
738 // is used ot fetch the level only once for each vehicle simulation step.
739 private float GetWaterLevel(Vector3 pos)
740 {
741 if ((m_knownHas & m_knownChangedWaterLevel) == 0)
742 {
743 m_knownWaterLevel = Prim.PhysicsScene.TerrainManager.GetWaterLevelAtXYZ(pos);
744 m_knownHas |= m_knownChangedWaterLevel;
745 }
746 return (float)m_knownWaterLevel;
747 }
748
749 private Vector3 VehiclePosition
750 {
751 get
752 {
753 if ((m_knownHas & m_knownChangedPosition) == 0)
754 {
755 m_knownPosition = Prim.ForcePosition;
756 m_knownHas |= m_knownChangedPosition;
757 }
758 return m_knownPosition;
759 }
760 set
761 {
762 m_knownPosition = value;
763 m_knownChanged |= m_knownChangedPosition;
764 m_knownHas |= m_knownChangedPosition;
765 }
766 }
767
768 private Quaternion VehicleOrientation
769 {
770 get
771 {
772 if ((m_knownHas & m_knownChangedOrientation) == 0)
773 {
774 m_knownOrientation = Prim.ForceOrientation;
775 m_knownHas |= m_knownChangedOrientation;
776 }
777 return m_knownOrientation;
778 }
779 set
780 {
781 m_knownOrientation = value;
782 m_knownChanged |= m_knownChangedOrientation;
783 m_knownHas |= m_knownChangedOrientation;
784 }
785 }
786
787 private Vector3 VehicleVelocity
788 {
789 get
790 {
791 if ((m_knownHas & m_knownChangedVelocity) == 0)
792 {
793 m_knownVelocity = Prim.ForceVelocity;
794 m_knownHas |= m_knownChangedVelocity;
795 }
796 return (Vector3)m_knownVelocity;
797 }
798 set
799 {
800 m_knownVelocity = value;
801 m_knownChanged |= m_knownChangedVelocity;
802 m_knownHas |= m_knownChangedVelocity;
803 }
804 }
805
806 private void VehicleAddForce(Vector3 pForce)
807 {
808 if ((m_knownHas & m_knownChangedForce) == 0)
809 {
810 m_knownForce = Vector3.Zero;
811 m_knownHas |= m_knownChangedForce;
812 }
813 m_knownForce += pForce;
814 m_knownChanged |= m_knownChangedForce;
815 }
816
817 private void VehicleAddForceImpulse(Vector3 pImpulse)
818 {
819 if ((m_knownHas & m_knownChangedForceImpulse) == 0)
820 {
821 m_knownForceImpulse = Vector3.Zero;
822 m_knownHas |= m_knownChangedForceImpulse;
823 }
824 m_knownForceImpulse += pImpulse;
825 m_knownChanged |= m_knownChangedForceImpulse;
826 }
827
828 private Vector3 VehicleRotationalVelocity
829 {
830 get
831 {
832 if ((m_knownHas & m_knownChangedRotationalVelocity) == 0)
833 {
834 m_knownRotationalVelocity = Prim.ForceRotationalVelocity;
835 m_knownHas |= m_knownChangedRotationalVelocity;
836 }
837 return (Vector3)m_knownRotationalVelocity;
838 }
839 set
840 {
841 m_knownRotationalVelocity = value;
842 m_knownChanged |= m_knownChangedRotationalVelocity;
843 m_knownHas |= m_knownChangedRotationalVelocity;
844 }
845 }
846 private void VehicleAddAngularForce(Vector3 aForce)
847 {
848 if ((m_knownHas & m_knownChangedRotationalForce) == 0)
849 {
850 m_knownRotationalForce = Vector3.Zero;
851 }
852 m_knownRotationalForce += aForce;
853 m_knownChanged |= m_knownChangedRotationalForce;
854 m_knownHas |= m_knownChangedRotationalForce;
855 }
856 private void VehicleAddRotationalImpulse(Vector3 pImpulse)
857 {
858 if ((m_knownHas & m_knownChangedRotationalImpulse) == 0)
859 {
860 m_knownRotationalImpulse = Vector3.Zero;
861 m_knownHas |= m_knownChangedRotationalImpulse;
862 }
863 m_knownRotationalImpulse += pImpulse;
864 m_knownChanged |= m_knownChangedRotationalImpulse;
865 }
866
867 // Vehicle relative forward velocity
868 private Vector3 VehicleForwardVelocity
869 {
870 get
871 {
872 if ((m_knownHas & m_knownChangedForwardVelocity) == 0)
873 {
874 m_knownForwardVelocity = VehicleVelocity * Quaternion.Inverse(Quaternion.Normalize(VehicleOrientation));
875 m_knownHas |= m_knownChangedForwardVelocity;
876 }
877 return m_knownForwardVelocity;
878 }
879 }
880 private float VehicleForwardSpeed
881 {
882 get
883 {
884 return VehicleForwardVelocity.X;
885 }
886 }
887
888 #endregion // Known vehicle value functions
889
549 // One step of the vehicle properties for the next 'pTimestep' seconds. 890 // One step of the vehicle properties for the next 'pTimestep' seconds.
550 internal void Step(float pTimestep) 891 internal void Step(float pTimestep)
551 { 892 {
552 if (!IsActive) return; 893 if (!IsActive) return;
553 894
554 // DEBUG 895 if (PhysicsScene.VehiclePhysicalLoggingEnabled)
555 // Because Bullet does apply forces to the vehicle, our last computed 896 PhysicsScene.PE.DumpRigidBody(PhysicsScene.World, Prim.PhysBody);
556 // linear and angular velocities are not what is happening now.
557 // Vector3 externalAngularVelocity = Prim.ForceRotationalVelocity - m_lastAngularVelocity;
558 // m_lastAngularVelocity += (externalAngularVelocity * 0.5f) * pTimestep;
559 // m_lastAngularVelocity = Prim.ForceRotationalVelocity; // DEBUG: account for what Bullet did last time
560 // m_lastLinearVelocityVector = Prim.ForceVelocity * Quaternion.Inverse(Prim.ForceOrientation); // DEBUG:
561 // END DEBUG
562 897
563 m_vehicleMass = Prim.Linkset.LinksetMass; 898 ForgetKnownVehicleProperties();
564 899
565 MoveLinear(pTimestep); 900 MoveLinear(pTimestep);
566 // Commented out for debug
567 MoveAngular(pTimestep); 901 MoveAngular(pTimestep);
568 // Prim.ApplyTorqueImpulse(-Prim.RotationalVelocity * m_vehicleMass, false); // DEBUG DEBUG
569 // Prim.ForceRotationalVelocity = -Prim.RotationalVelocity; // DEBUG DEBUG
570 902
571 LimitRotation(pTimestep); 903 LimitRotation(pTimestep);
572 904
573 // remember the position so next step we can limit absolute movement effects 905 // remember the position so next step we can limit absolute movement effects
574 m_lastPositionVector = Prim.ForcePosition; 906 m_lastPositionVector = VehiclePosition;
575 907
576 VDetailLog("{0},BSDynamics.Step,frict={1},grav={2},inertia={3},mass={4}", // DEBUG DEBUG 908 // If we forced the changing of some vehicle parameters, update the values and
577 Prim.LocalID, 909 // for the physics engine to note the changes so an UpdateProperties event will happen.
578 BulletSimAPI.GetFriction2(Prim.PhysBody.ptr), 910 PushKnownChanged();
579 BulletSimAPI.GetGravity2(Prim.PhysBody.ptr), 911
580 Prim.Inertia, 912 if (PhysicsScene.VehiclePhysicalLoggingEnabled)
581 m_vehicleMass 913 PhysicsScene.PE.DumpRigidBody(PhysicsScene.World, Prim.PhysBody);
582 ); 914
583 VDetailLog("{0},BSDynamics.Step,done,pos={1},force={2},velocity={3},angvel={4}", 915 VDetailLog("{0},BSDynamics.Step,done,pos={1}, force={2},velocity={3},angvel={4}",
584 Prim.LocalID, Prim.ForcePosition, Prim.Force, Prim.ForceVelocity, Prim.RotationalVelocity); 916 Prim.LocalID, VehiclePosition, m_knownForce, VehicleVelocity, VehicleRotationalVelocity);
585 }// end Step 917 }
586 918
587 // Apply the effect of the linear motor. 919 // Apply the effect of the linear motor and other linear motions (like hover and float).
588 // Also does hover and float.
589 private void MoveLinear(float pTimestep) 920 private void MoveLinear(float pTimestep)
590 { 921 {
591 // m_linearMotorDirection is the target direction we are moving relative to the vehicle coordinates 922 ComputeLinearVelocity(pTimestep);
592 // m_lastLinearVelocityVector is the current speed we are moving in that direction
593 if (m_linearMotorDirection.LengthSquared() > 0.001f)
594 {
595 Vector3 origDir = m_linearMotorDirection; // DEBUG
596 Vector3 origVel = m_lastLinearVelocityVector; // DEBUG
597 // DEBUG: the vehicle velocity rotated to be relative to vehicle coordinates for comparison
598 Vector3 vehicleVelocity = Prim.ForceVelocity * Quaternion.Inverse(Prim.ForceOrientation); // DEBUG
599 923
600 // Add (desiredVelocity - lastAppliedVelocity) / howLongItShouldTakeToComplete 924 ComputeLinearTerrainHeightCorrection(pTimestep);
601 Vector3 addAmount = (m_linearMotorDirection - m_lastLinearVelocityVector)/(m_linearMotorTimescale) * pTimestep;
602 m_lastLinearVelocityVector += addAmount;
603 925
604 float decayFactor = (1.0f / m_linearMotorDecayTimescale) * pTimestep; 926 ComputeLinearHover(pTimestep);
605 m_linearMotorDirection *= (1f - decayFactor);
606 927
607 // Rotate new object velocity from vehicle relative to world coordinates 928 ComputeLinearBlockingEndPoint(pTimestep);
608 m_newVelocity = m_lastLinearVelocityVector * Prim.ForceOrientation;
609 929
610 // Apply friction for next time 930 ComputeLinearMotorUp(pTimestep);
611 Vector3 frictionFactor = (Vector3.One / m_linearFrictionTimescale) * pTimestep;
612 m_lastLinearVelocityVector *= (Vector3.One - frictionFactor);
613 931
614 VDetailLog("{0},MoveLinear,nonZero,origlmDir={1},origlvVel={2},vehVel={3},add={4},decay={5},frict={6},lmDir={7},lvVec={8},newVel={9}", 932 ApplyGravity(pTimestep);
615 Prim.LocalID, origDir, origVel, vehicleVelocity, addAmount, decayFactor, frictionFactor, 933
616 m_linearMotorDirection, m_lastLinearVelocityVector, m_newVelocity); 934 // If not changing some axis, reduce out velocity
617 } 935 if ((m_flags & (VehicleFlag.NO_X | VehicleFlag.NO_Y | VehicleFlag.NO_Z)) != 0)
618 else
619 { 936 {
620 // if what remains of direction is very small, zero it. 937 Vector3 vel = VehicleVelocity;
621 m_linearMotorDirection = Vector3.Zero; 938 if ((m_flags & (VehicleFlag.NO_X)) != 0)
622 m_lastLinearVelocityVector = Vector3.Zero; 939 vel.X = 0;
623 m_newVelocity = Vector3.Zero; 940 if ((m_flags & (VehicleFlag.NO_Y)) != 0)
941 vel.Y = 0;
942 if ((m_flags & (VehicleFlag.NO_Z)) != 0)
943 vel.Z = 0;
944 VehicleVelocity = vel;
945 }
624 946
625 VDetailLog("{0},MoveLinear,zeroed", Prim.LocalID); 947 // ==================================================================
948 // Clamp high or low velocities
949 float newVelocityLengthSq = VehicleVelocity.LengthSquared();
950 if (newVelocityLengthSq > BSParam.VehicleMaxLinearVelocity)
951 {
952 VehicleVelocity /= VehicleVelocity.Length();
953 VehicleVelocity *= BSParam.VehicleMaxLinearVelocity;
626 } 954 }
955 else if (newVelocityLengthSq < 0.001f)
956 VehicleVelocity = Vector3.Zero;
627 957
628 // m_newVelocity is velocity computed from linear motor in world coordinates 958 VDetailLog("{0}, MoveLinear,done,isColl={1},newVel={2}", Prim.LocalID, Prim.IsColliding, VehicleVelocity );
629 959
630 // Gravity and Buoyancy 960 } // end MoveLinear()
631 // There is some gravity, make a gravity force vector that is applied after object velocity.
632 // m_VehicleBuoyancy: -1=2g; 0=1g; 1=0g;
633 Vector3 grav = Prim.PhysicsScene.DefaultGravity * (1f - m_VehicleBuoyancy);
634 961
635 /* 962 public void ComputeLinearVelocity(float pTimestep)
636 * RA: Not sure why one would do this unless we are hoping external forces are doing gravity, ... 963 {
637 // Preserve the current Z velocity 964 // Step the motor from the current value. Get the correction needed this step.
638 Vector3 vel_now = m_prim.Velocity; 965 Vector3 currentVel = VehicleVelocity * Quaternion.Inverse(VehicleOrientation);
639 m_dir.Z = vel_now.Z; // Preserve the accumulated falling velocity 966 Vector3 linearMotorCorrection = m_linearMotor.Step(pTimestep, currentVel);
640 */
641 967
642 Vector3 pos = Prim.ForcePosition; 968 // Motor is vehicle coordinates. Rotate it to world coordinates
643// Vector3 accel = new Vector3(-(m_dir.X - m_lastLinearVelocityVector.X / 0.1f), -(m_dir.Y - m_lastLinearVelocityVector.Y / 0.1f), m_dir.Z - m_lastLinearVelocityVector.Z / 0.1f); 969 Vector3 linearMotorVelocity = linearMotorCorrection * VehicleOrientation;
644 970
971 // If we're a ground vehicle, don't add any upward Z movement
972 if ((m_flags & VehicleFlag.LIMIT_MOTOR_UP) != 0)
973 {
974 if (linearMotorVelocity.Z > 0f)
975 linearMotorVelocity.Z = 0f;
976 }
977
978 // Add this correction to the velocity to make it faster/slower.
979 VehicleVelocity += linearMotorVelocity;
980
981 VDetailLog("{0}, MoveLinear,velocity,vehVel={1},correction={2},force={3}",
982 Prim.LocalID, VehicleVelocity, linearMotorCorrection, linearMotorVelocity);
983 }
984
985 public void ComputeLinearTerrainHeightCorrection(float pTimestep)
986 {
645 // If below the terrain, move us above the ground a little. 987 // If below the terrain, move us above the ground a little.
646 float terrainHeight = Prim.PhysicsScene.TerrainManager.GetTerrainHeightAtXYZ(pos); 988 // TODO: Consider taking the rotated size of the object or possibly casting a ray.
647 // Taking the rotated size doesn't work here because m_prim.Size is the size of the root prim and not the linkset. 989 if (VehiclePosition.Z < GetTerrainHeight(VehiclePosition))
648 // TODO: Add a m_prim.LinkSet.Size similar to m_prim.LinkSet.Mass.
649 // Vector3 rotatedSize = m_prim.Size * m_prim.ForceOrientation;
650 // if (rotatedSize.Z < terrainHeight)
651 if (pos.Z < terrainHeight)
652 { 990 {
653 pos.Z = terrainHeight + 2; 991 // Force position because applying force won't get the vehicle through the terrain
654 Prim.ForcePosition = pos; 992 Vector3 newPosition = VehiclePosition;
655 VDetailLog("{0},MoveLinear,terrainHeight,terrainHeight={1},pos={2}", Prim.LocalID, terrainHeight, pos); 993 newPosition.Z = GetTerrainHeight(VehiclePosition) + 1f;
994 VehiclePosition = newPosition;
995 VDetailLog("{0}, MoveLinear,terrainHeight,terrainHeight={1},pos={2}",
996 Prim.LocalID, GetTerrainHeight(VehiclePosition), VehiclePosition);
656 } 997 }
998 }
657 999
658 // Check if hovering 1000 public void ComputeLinearHover(float pTimestep)
1001 {
659 // m_VhoverEfficiency: 0=bouncy, 1=totally damped 1002 // m_VhoverEfficiency: 0=bouncy, 1=totally damped
660 // m_VhoverTimescale: time to achieve height 1003 // m_VhoverTimescale: time to achieve height
661 if ((m_flags & (VehicleFlag.HOVER_WATER_ONLY | VehicleFlag.HOVER_TERRAIN_ONLY | VehicleFlag.HOVER_GLOBAL_HEIGHT)) != 0) 1004 if ((m_flags & (VehicleFlag.HOVER_WATER_ONLY | VehicleFlag.HOVER_TERRAIN_ONLY | VehicleFlag.HOVER_GLOBAL_HEIGHT)) != 0)
@@ -663,11 +1006,11 @@ namespace OpenSim.Region.Physics.BulletSPlugin
663 // We should hover, get the target height 1006 // We should hover, get the target height
664 if ((m_flags & VehicleFlag.HOVER_WATER_ONLY) != 0) 1007 if ((m_flags & VehicleFlag.HOVER_WATER_ONLY) != 0)
665 { 1008 {
666 m_VhoverTargetHeight = Prim.PhysicsScene.GetWaterLevelAtXYZ(pos) + m_VhoverHeight; 1009 m_VhoverTargetHeight = GetWaterLevel(VehiclePosition) + m_VhoverHeight;
667 } 1010 }
668 if ((m_flags & VehicleFlag.HOVER_TERRAIN_ONLY) != 0) 1011 if ((m_flags & VehicleFlag.HOVER_TERRAIN_ONLY) != 0)
669 { 1012 {
670 m_VhoverTargetHeight = terrainHeight + m_VhoverHeight; 1013 m_VhoverTargetHeight = GetTerrainHeight(VehiclePosition) + m_VhoverHeight;
671 } 1014 }
672 if ((m_flags & VehicleFlag.HOVER_GLOBAL_HEIGHT) != 0) 1015 if ((m_flags & VehicleFlag.HOVER_GLOBAL_HEIGHT) != 0)
673 { 1016 {
@@ -677,45 +1020,63 @@ namespace OpenSim.Region.Physics.BulletSPlugin
677 if ((m_flags & VehicleFlag.HOVER_UP_ONLY) != 0) 1020 if ((m_flags & VehicleFlag.HOVER_UP_ONLY) != 0)
678 { 1021 {
679 // If body is already heigher, use its height as target height 1022 // If body is already heigher, use its height as target height
680 if (pos.Z > m_VhoverTargetHeight) 1023 if (VehiclePosition.Z > m_VhoverTargetHeight)
681 m_VhoverTargetHeight = pos.Z; 1024 m_VhoverTargetHeight = VehiclePosition.Z;
682 } 1025 }
1026
683 if ((m_flags & VehicleFlag.LOCK_HOVER_HEIGHT) != 0) 1027 if ((m_flags & VehicleFlag.LOCK_HOVER_HEIGHT) != 0)
684 { 1028 {
685 if (Math.Abs(pos.Z - m_VhoverTargetHeight) > 0.2f) 1029 if (Math.Abs(VehiclePosition.Z - m_VhoverTargetHeight) > 0.2f)
686 { 1030 {
1031 Vector3 pos = VehiclePosition;
687 pos.Z = m_VhoverTargetHeight; 1032 pos.Z = m_VhoverTargetHeight;
688 Prim.ForcePosition = pos; 1033 VehiclePosition = pos;
1034
1035 VDetailLog("{0}, MoveLinear,hover,pos={1},lockHoverHeight", Prim.LocalID, pos);
689 } 1036 }
690 } 1037 }
691 else 1038 else
692 { 1039 {
693 float verticalError = pos.Z - m_VhoverTargetHeight; 1040 // Error is positive if below the target and negative if above.
694 // RA: where does the 50 come from? 1041 Vector3 hpos = VehiclePosition;
695 float verticalCorrectionVelocity = pTimestep * ((verticalError * 50.0f) / m_VhoverTimescale); 1042 float verticalError = m_VhoverTargetHeight - hpos.Z;
696 // Replace Vertical speed with correction figure if significant 1043 float verticalCorrection = verticalError / m_VhoverTimescale;
697 if (Math.Abs(verticalError) > 0.01f) 1044 verticalCorrection *= m_VhoverEfficiency;
698 { 1045
699 m_newVelocity.Z += verticalCorrectionVelocity; 1046 hpos.Z += verticalCorrection;
700 //KF: m_VhoverEfficiency is not yet implemented 1047 VehiclePosition = hpos;
701 } 1048
702 else if (verticalError < -0.01) 1049 // Since we are hovering, we need to do the opposite of falling -- get rid of world Z
703 { 1050 Vector3 vel = VehicleVelocity;
704 m_newVelocity.Z -= verticalCorrectionVelocity; 1051 vel.Z = 0f;
705 } 1052 VehicleVelocity = vel;
706 else 1053
707 { 1054 /*
708 m_newVelocity.Z = 0f; 1055 float verticalCorrectionVelocity = verticalError / m_VhoverTimescale;
709 } 1056 Vector3 verticalCorrection = new Vector3(0f, 0f, verticalCorrectionVelocity);
1057 verticalCorrection *= m_vehicleMass;
1058
1059 // TODO: implement m_VhoverEfficiency correctly
1060 VehicleAddForceImpulse(verticalCorrection);
1061 */
1062
1063 VDetailLog("{0}, MoveLinear,hover,pos={1},eff={2},hoverTS={3},height={4},target={5},err={6},corr={7}",
1064 Prim.LocalID, VehiclePosition, m_VhoverEfficiency,
1065 m_VhoverTimescale, m_VhoverHeight, m_VhoverTargetHeight,
1066 verticalError, verticalCorrection);
710 } 1067 }
711 1068
712 VDetailLog("{0},MoveLinear,hover,pos={1},dir={2},height={3},target={4}", Prim.LocalID, pos, m_newVelocity, m_VhoverHeight, m_VhoverTargetHeight);
713 } 1069 }
1070 }
714 1071
1072 public bool ComputeLinearBlockingEndPoint(float pTimestep)
1073 {
1074 bool changed = false;
1075
1076 Vector3 pos = VehiclePosition;
715 Vector3 posChange = pos - m_lastPositionVector; 1077 Vector3 posChange = pos - m_lastPositionVector;
716 if (m_BlockingEndPoint != Vector3.Zero) 1078 if (m_BlockingEndPoint != Vector3.Zero)
717 { 1079 {
718 bool changed = false;
719 if (pos.X >= (m_BlockingEndPoint.X - (float)1)) 1080 if (pos.X >= (m_BlockingEndPoint.X - (float)1))
720 { 1081 {
721 pos.X -= posChange.X + 1; 1082 pos.X -= posChange.X + 1;
@@ -743,233 +1104,117 @@ namespace OpenSim.Region.Physics.BulletSPlugin
743 } 1104 }
744 if (changed) 1105 if (changed)
745 { 1106 {
746 Prim.ForcePosition = pos; 1107 VehiclePosition = pos;
747 VDetailLog("{0},MoveLinear,blockingEndPoint,block={1},origPos={2},pos={3}", 1108 VDetailLog("{0}, MoveLinear,blockingEndPoint,block={1},origPos={2},pos={3}",
748 Prim.LocalID, m_BlockingEndPoint, posChange, pos); 1109 Prim.LocalID, m_BlockingEndPoint, posChange, pos);
749 } 1110 }
750 } 1111 }
1112 return changed;
1113 }
751 1114
752 #region downForce 1115 // From http://wiki.secondlife.com/wiki/LlSetVehicleFlags :
753 Vector3 downForce = Vector3.Zero; 1116 // Prevent ground vehicles from motoring into the sky. This flag has a subtle effect when
1117 // used with conjunction with banking: the strength of the banking will decay when the
1118 // vehicle no longer experiences collisions. The decay timescale is the same as
1119 // VEHICLE_BANKING_TIMESCALE. This is to help prevent ground vehicles from steering
1120 // when they are in mid jump.
1121 // TODO: this code is wrong. Also, what should it do for boats (height from water)?
1122 // This is just using the ground and a general collision check. Should really be using
1123 // a downward raycast to find what is below.
1124 public void ComputeLinearMotorUp(float pTimestep)
1125 {
1126 Vector3 ret = Vector3.Zero;
754 1127
755 if ((m_flags & (VehicleFlag.LIMIT_MOTOR_UP)) != 0) 1128 if ((m_flags & (VehicleFlag.LIMIT_MOTOR_UP)) != 0)
756 { 1129 {
757 // If the vehicle is motoring into the sky, get it going back down. 1130 // This code tries to decide if the object is not on the ground and then pushing down
758 // Is this an angular force or both linear and angular?? 1131 /*
759 float distanceAboveGround = pos.Z - terrainHeight; 1132 float targetHeight = Type == Vehicle.TYPE_BOAT ? GetWaterLevel(VehiclePosition) : GetTerrainHeight(VehiclePosition);
760 if (distanceAboveGround > 2f) 1133 distanceAboveGround = VehiclePosition.Z - targetHeight;
1134 // Not colliding if the vehicle is off the ground
1135 if (!Prim.IsColliding)
761 { 1136 {
762 // downForce = new Vector3(0, 0, (-distanceAboveGround / m_bankingTimescale) * pTimestep);
763 // downForce = new Vector3(0, 0, -distanceAboveGround / m_bankingTimescale); 1137 // downForce = new Vector3(0, 0, -distanceAboveGround / m_bankingTimescale);
764 downForce = new Vector3(0, 0, -distanceAboveGround); 1138 VehicleVelocity += new Vector3(0, 0, -distanceAboveGround);
765 } 1139 }
766 // TODO: this calculation is all wrong. From the description at 1140 // TODO: this calculation is wrong. From the description at
767 // (http://wiki.secondlife.com/wiki/Category:LSL_Vehicle), the downForce 1141 // (http://wiki.secondlife.com/wiki/Category:LSL_Vehicle), the downForce
768 // has a decay factor. This says this force should 1142 // has a decay factor. This says this force should
769 // be computed with a motor. 1143 // be computed with a motor.
770 VDetailLog("{0},MoveLinear,limitMotorUp,distAbove={1},downForce={2}", 1144 // TODO: add interaction with banking.
771 Prim.LocalID, distanceAboveGround, downForce); 1145 VDetailLog("{0}, MoveLinear,limitMotorUp,distAbove={1},colliding={2},ret={3}",
772 } 1146 Prim.LocalID, distanceAboveGround, Prim.IsColliding, ret);
773 #endregion // downForce 1147 */
774 1148
775 // If not changing some axis, reduce out velocity 1149 // Another approach is to measure if we're going up. If going up and not colliding,
776 if ((m_flags & (VehicleFlag.NO_X)) != 0) 1150 // the vehicle is in the air. Fix that by pushing down.
777 m_newVelocity.X = 0; 1151 if (!Prim.IsColliding && VehicleVelocity.Z > 0.1)
778 if ((m_flags & (VehicleFlag.NO_Y)) != 0) 1152 {
779 m_newVelocity.Y = 0; 1153 // Get rid of any of the velocity vector that is pushing us up.
780 if ((m_flags & (VehicleFlag.NO_Z)) != 0) 1154 float upVelocity = VehicleVelocity.Z;
781 m_newVelocity.Z = 0; 1155 VehicleVelocity += new Vector3(0, 0, -upVelocity);
782 1156
783 // Clamp REALLY high or low velocities 1157 /*
784 if (m_newVelocity.LengthSquared() > 1e6f) 1158 // If we're pointed up into the air, we should nose down
785 { 1159 Vector3 pointingDirection = Vector3.UnitX * VehicleOrientation;
786 m_newVelocity /= m_newVelocity.Length(); 1160 // The rotation around the Y axis is pitch up or down
787 m_newVelocity *= 1000f; 1161 if (pointingDirection.Y > 0.01f)
788 } 1162 {
789 else if (m_newVelocity.LengthSquared() < 1e-6f) 1163 float angularCorrectionForce = -(float)Math.Asin(pointingDirection.Y);
790 m_newVelocity = Vector3.Zero; 1164 Vector3 angularCorrectionVector = new Vector3(0f, angularCorrectionForce, 0f);
791 1165 // Rotate into world coordinates and apply to vehicle
792 // Stuff new linear velocity into the vehicle 1166 angularCorrectionVector *= VehicleOrientation;
793 Prim.ForceVelocity = m_newVelocity; 1167 VehicleAddAngularForce(angularCorrectionVector);
794 // Prim.ApplyForceImpulse((m_newVelocity - Prim.Velocity) * m_vehicleMass, false); // DEBUG DEBUG 1168 VDetailLog("{0}, MoveLinear,limitMotorUp,newVel={1},pntDir={2},corrFrc={3},aCorr={4}",
795 1169 Prim.LocalID, VehicleVelocity, pointingDirection, angularCorrectionForce, angularCorrectionVector);
796 Vector3 totalDownForce = downForce + grav; 1170 }
797 if (totalDownForce != Vector3.Zero) 1171 */
798 { 1172 VDetailLog("{0}, MoveLinear,limitMotorUp,collide={1},upVel={2},newVel={3}",
799 Prim.AddForce(totalDownForce * m_vehicleMass, false); 1173 Prim.LocalID, Prim.IsColliding, upVelocity, VehicleVelocity);
800 // Prim.ApplyForceImpulse(totalDownForce * m_vehicleMass, false); 1174 }
801 } 1175 }
1176 }
802 1177
803 VDetailLog("{0},MoveLinear,done,lmDir={1},lmVel={2},newVel={3},primVel={4},totalDown={5}", 1178 private void ApplyGravity(float pTimeStep)
804 Prim.LocalID, m_linearMotorDirection, m_lastLinearVelocityVector, m_newVelocity, Prim.Velocity, totalDownForce); 1179 {
1180 Vector3 appliedGravity = m_VehicleGravity * m_vehicleMass;
1181 VehicleAddForce(appliedGravity);
805 1182
806 } // end MoveLinear() 1183 VDetailLog("{0}, MoveLinear,applyGravity,vehGrav={1},appliedForce-{2}",
1184 Prim.LocalID, m_VehicleGravity, appliedGravity);
1185 }
807 1186
808 // ======================================================================= 1187 // =======================================================================
1188 // =======================================================================
809 // Apply the effect of the angular motor. 1189 // Apply the effect of the angular motor.
1190 // The 'contribution' is how much angular correction velocity each function wants.
1191 // All the contributions are added together and the resulting velocity is
1192 // set directly on the vehicle.
810 private void MoveAngular(float pTimestep) 1193 private void MoveAngular(float pTimestep)
811 { 1194 {
812 // m_angularMotorDirection // angular velocity requested by LSL motor 1195 // VehicleRotationalVelocity = Vector3.Zero;
813 // m_angularMotorApply // application frame counter
814 // m_angularMotorVelocity // current angular motor velocity (ramps up and down)
815 // m_angularMotorTimescale // motor angular velocity ramp up rate
816 // m_angularMotorDecayTimescale // motor angular velocity decay rate
817 // m_angularFrictionTimescale // body angular velocity decay rate
818 // m_lastAngularVelocity // what was last applied to body
819
820 if (m_angularMotorDirection.LengthSquared() > 0.0001)
821 {
822 Vector3 origVel = m_angularMotorVelocity;
823 Vector3 origDir = m_angularMotorDirection;
824
825 // new velocity += error / ( time to get there / step interval)
826 // requested direction - current vehicle direction
827 m_angularMotorVelocity += (m_angularMotorDirection - m_angularMotorVelocity) / (m_angularMotorTimescale / pTimestep);
828 // decay requested direction
829 m_angularMotorDirection *= (1.0f - (pTimestep * 1.0f/m_angularMotorDecayTimescale));
830
831 VDetailLog("{0},MoveAngular,angularMotorApply,angTScale={1},timeStep={2},origvel={3},origDir={4},vel={5}",
832 Prim.LocalID, m_angularMotorTimescale, pTimestep, origVel, origDir, m_angularMotorVelocity);
833 }
834 else
835 {
836 m_angularMotorVelocity = Vector3.Zero;
837 }
838
839 #region Vertical attactor
840
841 Vector3 vertattr = Vector3.Zero;
842 Vector3 deflection = Vector3.Zero;
843 Vector3 banking = Vector3.Zero;
844
845 // If vertical attaction timescale is reasonable and we applied an angular force last time...
846 if (m_verticalAttractionTimescale < 300 && m_lastAngularVelocity != Vector3.Zero)
847 {
848 float VAservo = pTimestep * 0.2f / m_verticalAttractionTimescale;
849 if (Prim.IsColliding)
850 VAservo = pTimestep * 0.05f / (m_verticalAttractionTimescale);
851
852 VAservo *= (m_verticalAttractionEfficiency * m_verticalAttractionEfficiency);
853
854 // Create a vector of the vehicle "up" in world coordinates
855 Vector3 verticalError = Vector3.UnitZ * Prim.ForceOrientation;
856 // verticalError.X and .Y are the World error amounts. They are 0 when there is no
857 // error (Vehicle Body is 'vertical'), and .Z will be 1. As the body leans to its
858 // side |.X| will increase to 1 and .Z fall to 0. As body inverts |.X| will fall
859 // and .Z will go // negative. Similar for tilt and |.Y|. .X and .Y must be
860 // modulated to prevent a stable inverted body.
861
862 // Error is 0 (no error) to +/- 2 (max error)
863 if (verticalError.Z < 0.0f)
864 {
865 verticalError.X = 2.0f - verticalError.X;
866 verticalError.Y = 2.0f - verticalError.Y;
867 }
868 // scale it by VAservo (timestep and timescale)
869 verticalError = verticalError * VAservo;
870
871 // As the body rotates around the X axis, then verticalError.Y increases; Rotated around Y
872 // then .X increases, so change Body angular velocity X based on Y, and Y based on X.
873 // Z is not changed.
874 vertattr.X = verticalError.Y;
875 vertattr.Y = - verticalError.X;
876 vertattr.Z = 0f;
877 1196
878 // scaling appears better usingsquare-law 1197 ComputeAngularTurning(pTimestep);
879 Vector3 angularVelocity = Prim.ForceRotationalVelocity;
880 float bounce = 1.0f - (m_verticalAttractionEfficiency * m_verticalAttractionEfficiency);
881 vertattr.X += bounce * angularVelocity.X;
882 vertattr.Y += bounce * angularVelocity.Y;
883 1198
884 VDetailLog("{0},MoveAngular,verticalAttraction,VAservo={1},effic={2},verticalError={3},bounce={4},vertattr={5}", 1199 ComputeAngularVerticalAttraction();
885 Prim.LocalID, VAservo, m_verticalAttractionEfficiency, verticalError, bounce, vertattr);
886 1200
887 } 1201 ComputeAngularDeflection();
888 #endregion // Vertical attactor
889 1202
890 #region Deflection 1203 ComputeAngularBanking();
891 1204
892 if (m_angularDeflectionEfficiency != 0) 1205 // ==================================================================
1206 if (VehicleRotationalVelocity.ApproxEquals(Vector3.Zero, 0.01f))
893 { 1207 {
894 // Compute a scaled vector that points in the preferred axis (X direction) 1208 // The vehicle is not adding anything angular wise.
895 Vector3 scaledDefaultDirection = 1209 VehicleRotationalVelocity = Vector3.Zero;
896 new Vector3((pTimestep * 10 * (m_angularDeflectionEfficiency / m_angularDeflectionTimescale)), 0, 0); 1210 VDetailLog("{0}, MoveAngular,done,zero", Prim.LocalID);
897 // Adding the current vehicle orientation and reference frame displaces the orientation to the frame.
898 // Rotate the scaled default axix relative to the actual vehicle direction giving where it should point.
899 Vector3 preferredAxisOfMotion = scaledDefaultDirection * Quaternion.Add(Prim.ForceOrientation, m_referenceFrame);
900
901 // Scale by efficiency and timescale
902 deflection = (preferredAxisOfMotion * (m_angularDeflectionEfficiency) / m_angularDeflectionTimescale) * pTimestep;
903
904 VDetailLog("{0},MoveAngular,Deflection,perfAxis={1},deflection={2}",
905 Prim.LocalID, preferredAxisOfMotion, deflection);
906 // This deflection computation is not correct.
907 deflection = Vector3.Zero;
908 } 1211 }
909 1212 else
910 #endregion
911
912 #region Banking
913
914 if (m_bankingEfficiency != 0)
915 { 1213 {
916 Vector3 dir = Vector3.One * Prim.ForceOrientation; 1214 VDetailLog("{0}, MoveAngular,done,nonZero,angVel={1}", Prim.LocalID, VehicleRotationalVelocity);
917 float mult = (m_bankingMix*m_bankingMix)*-1*(m_bankingMix < 0 ? -1 : 1);
918 //Changes which way it banks in and out of turns
919
920 //Use the square of the efficiency, as it looks much more how SL banking works
921 float effSquared = (m_bankingEfficiency*m_bankingEfficiency);
922 if (m_bankingEfficiency < 0)
923 effSquared *= -1; //Keep the negative!
924
925 float mix = Math.Abs(m_bankingMix);
926 if (m_angularMotorVelocity.X == 0)
927 {
928 /*if (!parent.Orientation.ApproxEquals(this.m_referenceFrame, 0.25f))
929 {
930 Vector3 axisAngle;
931 float angle;
932 parent.Orientation.GetAxisAngle(out axisAngle, out angle);
933 Vector3 rotatedVel = parent.Velocity * parent.Orientation;
934 if ((rotatedVel.X < 0 && axisAngle.Y > 0) || (rotatedVel.X > 0 && axisAngle.Y < 0))
935 m_angularMotorVelocity.X += (effSquared * (mult * mix)) * (1f) * 10;
936 else
937 m_angularMotorVelocity.X += (effSquared * (mult * mix)) * (-1f) * 10;
938 }*/
939 }
940 else
941 banking.Z += (effSquared*(mult*mix))*(m_angularMotorVelocity.X) * 4;
942 if (!Prim.IsColliding && Math.Abs(m_angularMotorVelocity.X) > mix)
943 //If they are colliding, we probably shouldn't shove the prim around... probably
944 {
945 float angVelZ = m_angularMotorVelocity.X*-1;
946 /*if(angVelZ > mix)
947 angVelZ = mix;
948 else if(angVelZ < -mix)
949 angVelZ = -mix;*/
950 //This controls how fast and how far the banking occurs
951 Vector3 bankingRot = new Vector3(angVelZ*(effSquared*mult), 0, 0);
952 if (bankingRot.X > 3)
953 bankingRot.X = 3;
954 else if (bankingRot.X < -3)
955 bankingRot.X = -3;
956 bankingRot *= Prim.ForceOrientation;
957 banking += bankingRot;
958 }
959 m_angularMotorVelocity.X *= m_bankingEfficiency == 1 ? 0.0f : 1 - m_bankingEfficiency;
960 VDetailLog("{0},MoveAngular,Banking,bEff={1},angMotVel={2},banking={3}",
961 Prim.LocalID, m_bankingEfficiency, m_angularMotorVelocity, banking);
962 } 1215 }
963 1216
964 #endregion 1217 // ==================================================================
965
966 m_lastVertAttractor = vertattr;
967
968 // Sum velocities
969 m_lastAngularVelocity = m_angularMotorVelocity + vertattr + banking + deflection;
970
971 #region Linear Motor Offset
972
973 //Offset section 1218 //Offset section
974 if (m_linearMotorOffset != Vector3.Zero) 1219 if (m_linearMotorOffset != Vector3.Zero)
975 { 1220 {
@@ -985,8 +1230,8 @@ namespace OpenSim.Region.Physics.BulletSPlugin
985 // 1230 //
986 // The torque created is the linear velocity crossed with the offset 1231 // The torque created is the linear velocity crossed with the offset
987 1232
988 // NOTE: this computation does should be in the linear section 1233 // TODO: this computation should be in the linear section
989 // because there we know the impulse being applied. 1234 // because that is where we know the impulse being applied.
990 Vector3 torqueFromOffset = Vector3.Zero; 1235 Vector3 torqueFromOffset = Vector3.Zero;
991 // torqueFromOffset = Vector3.Cross(m_linearMotorOffset, appliedImpulse); 1236 // torqueFromOffset = Vector3.Cross(m_linearMotorOffset, appliedImpulse);
992 if (float.IsNaN(torqueFromOffset.X)) 1237 if (float.IsNaN(torqueFromOffset.X))
@@ -995,47 +1240,213 @@ namespace OpenSim.Region.Physics.BulletSPlugin
995 torqueFromOffset.Y = 0; 1240 torqueFromOffset.Y = 0;
996 if (float.IsNaN(torqueFromOffset.Z)) 1241 if (float.IsNaN(torqueFromOffset.Z))
997 torqueFromOffset.Z = 0; 1242 torqueFromOffset.Z = 0;
998 torqueFromOffset *= m_vehicleMass; 1243
999 Prim.ApplyTorqueImpulse(torqueFromOffset, true); 1244 VehicleAddAngularForce(torqueFromOffset * m_vehicleMass);
1000 VDetailLog("{0},BSDynamic.MoveAngular,motorOffset,applyTorqueImpulse={1}", Prim.LocalID, torqueFromOffset); 1245 VDetailLog("{0}, BSDynamic.MoveAngular,motorOffset,applyTorqueImpulse={1}", Prim.LocalID, torqueFromOffset);
1001 } 1246 }
1002 1247
1003 #endregion 1248 }
1004 1249
1250 private void ComputeAngularTurning(float pTimestep)
1251 {
1252 // The user wants this many radians per second angular change?
1253 Vector3 currentAngular = VehicleRotationalVelocity * Quaternion.Inverse(VehicleOrientation);
1254 Vector3 angularMotorContribution = m_angularMotor.Step(pTimestep, currentAngular);
1255
1256 // ==================================================================
1257 // From http://wiki.secondlife.com/wiki/LlSetVehicleFlags :
1258 // This flag prevents linear deflection parallel to world z-axis. This is useful
1259 // for preventing ground vehicles with large linear deflection, like bumper cars,
1260 // from climbing their linear deflection into the sky.
1261 // That is, NO_DEFLECTION_UP says angular motion should not add any pitch or roll movement
1262 // TODO: This is here because this is where ODE put it but documentation says it
1263 // is a linear effect. Where should this check go?
1005 if ((m_flags & (VehicleFlag.NO_DEFLECTION_UP)) != 0) 1264 if ((m_flags & (VehicleFlag.NO_DEFLECTION_UP)) != 0)
1006 { 1265 {
1007 m_lastAngularVelocity.X = 0; 1266 angularMotorContribution.X = 0f;
1008 m_lastAngularVelocity.Y = 0; 1267 angularMotorContribution.Y = 0f;
1009 VDetailLog("{0},MoveAngular,noDeflectionUp,lastAngular={1}", Prim.LocalID, m_lastAngularVelocity); 1268 }
1269
1270 VehicleRotationalVelocity += angularMotorContribution * VehicleOrientation;
1271 VDetailLog("{0}, MoveAngular,angularTurning,angularMotorContrib={1}", Prim.LocalID, angularMotorContribution);
1272 }
1273
1274 // From http://wiki.secondlife.com/wiki/Linden_Vehicle_Tutorial:
1275 // Some vehicles, like boats, should always keep their up-side up. This can be done by
1276 // enabling the "vertical attractor" behavior that springs the vehicle's local z-axis to
1277 // the world z-axis (a.k.a. "up"). To take advantage of this feature you would set the
1278 // VEHICLE_VERTICAL_ATTRACTION_TIMESCALE to control the period of the spring frequency,
1279 // and then set the VEHICLE_VERTICAL_ATTRACTION_EFFICIENCY to control the damping. An
1280 // efficiency of 0.0 will cause the spring to wobble around its equilibrium, while an
1281 // efficiency of 1.0 will cause the spring to reach its equilibrium with exponential decay.
1282 public void ComputeAngularVerticalAttraction()
1283 {
1284 // If vertical attaction timescale is reasonable
1285 if (enableAngularVerticalAttraction && m_verticalAttractionTimescale < m_verticalAttractionCutoff)
1286 {
1287 Vector3 vertContribution = Vector3.Zero;
1288
1289 // Take a vector pointing up and convert it from world to vehicle relative coords.
1290 Vector3 verticalError = Vector3.UnitZ * VehicleOrientation;
1291
1292 // If vertical attraction correction is needed, the vector that was pointing up (UnitZ)
1293 // is now:
1294 // leaning to one side: rotated around the X axis with the Y value going
1295 // from zero (nearly straight up) to one (completely to the side)) or
1296 // leaning front-to-back: rotated around the Y axis with the value of X being between
1297 // zero and one.
1298 // The value of Z is how far the rotation is off with 1 meaning none and 0 being 90 degrees.
1299
1300 // Y error means needed rotation around X axis and visa versa.
1301 // Since the error goes from zero to one, the asin is the corresponding angle.
1302 vertContribution.X = (float)Math.Asin(verticalError.Y);
1303 // (Tilt forward (positive X) needs to tilt back (rotate negative) around Y axis.)
1304 vertContribution.Y = -(float)Math.Asin(verticalError.X);
1305
1306 // If verticalError.Z is negative, the vehicle is upside down. Add additional push.
1307 if (verticalError.Z < 0f)
1308 {
1309 vertContribution.X += PIOverFour;
1310 // vertContribution.Y -= PIOverFour;
1311 }
1312
1313 // 'vertContrbution' is now the necessary angular correction to correct tilt in one second.
1314 // Correction happens over a number of seconds.
1315 Vector3 unscaledContrib = vertContribution; // DEBUG DEBUG
1316 vertContribution /= m_verticalAttractionTimescale;
1317
1318 VehicleRotationalVelocity += vertContribution * VehicleOrientation;
1319
1320 VDetailLog("{0}, MoveAngular,verticalAttraction,,verticalError={1},unscaled={2},eff={3},ts={4},vertAttr={5}",
1321 Prim.LocalID, verticalError, unscaledContrib, m_verticalAttractionEfficiency, m_verticalAttractionTimescale, vertContribution);
1010 } 1322 }
1323 }
1324
1325 // Angular correction to correct the direction the vehicle is pointing to be
1326 // the direction is should want to be pointing.
1327 // The vehicle is moving in some direction and correct its orientation to it is pointing
1328 // in that direction.
1329 // TODO: implement reference frame.
1330 public void ComputeAngularDeflection()
1331 {
1332 // Since angularMotorUp and angularDeflection are computed independently, they will calculate
1333 // approximately the same X or Y correction. When added together (when contributions are combined)
1334 // this creates an over-correction and then wabbling as the target is overshot.
1335 // TODO: rethink how the different correction computations inter-relate.
1011 1336
1012 if (m_lastAngularVelocity.ApproxEquals(Vector3.Zero, 0.01f)) 1337 if (enableAngularDeflection && m_angularDeflectionEfficiency != 0 && VehicleForwardSpeed > 0.2)
1013 { 1338 {
1014 m_lastAngularVelocity = Vector3.Zero; // Reduce small value to zero. 1339 Vector3 deflectContribution = Vector3.Zero;
1015 Prim.ZeroAngularMotion(true); 1340
1016 VDetailLog("{0},MoveAngular,zeroAngularMotion,lastAngular={1}", Prim.LocalID, m_lastAngularVelocity); 1341 // The direction the vehicle is moving
1342 Vector3 movingDirection = VehicleVelocity;
1343 movingDirection.Normalize();
1344
1345 // If the vehicle is going backward, it is still pointing forward
1346 movingDirection *= Math.Sign(VehicleForwardSpeed);
1347
1348 // The direction the vehicle is pointing
1349 Vector3 pointingDirection = Vector3.UnitX * VehicleOrientation;
1350 pointingDirection.Normalize();
1351
1352 // The difference between what is and what should be.
1353 Vector3 deflectionError = movingDirection - pointingDirection;
1354
1355 // Don't try to correct very large errors (not our job)
1356 // if (Math.Abs(deflectionError.X) > PIOverFour) deflectionError.X = PIOverTwo * Math.Sign(deflectionError.X);
1357 // if (Math.Abs(deflectionError.Y) > PIOverFour) deflectionError.Y = PIOverTwo * Math.Sign(deflectionError.Y);
1358 // if (Math.Abs(deflectionError.Z) > PIOverFour) deflectionError.Z = PIOverTwo * Math.Sign(deflectionError.Z);
1359 if (Math.Abs(deflectionError.X) > PIOverFour) deflectionError.X = 0f;
1360 if (Math.Abs(deflectionError.Y) > PIOverFour) deflectionError.Y = 0f;
1361 if (Math.Abs(deflectionError.Z) > PIOverFour) deflectionError.Z = 0f;
1362
1363 // ret = m_angularDeflectionCorrectionMotor(1f, deflectionError);
1364
1365 // Scale the correction by recovery timescale and efficiency
1366 deflectContribution = (-deflectionError) * m_angularDeflectionEfficiency;
1367 deflectContribution /= m_angularDeflectionTimescale;
1368
1369 VehicleRotationalVelocity += deflectContribution * VehicleOrientation;
1370
1371 VDetailLog("{0}, MoveAngular,Deflection,movingDir={1},pointingDir={2},deflectError={3},ret={4}",
1372 Prim.LocalID, movingDirection, pointingDirection, deflectionError, deflectContribution);
1373 VDetailLog("{0}, MoveAngular,Deflection,fwdSpd={1},defEff={2},defTS={3}",
1374 Prim.LocalID, VehicleForwardSpeed, m_angularDeflectionEfficiency, m_angularDeflectionTimescale);
1017 } 1375 }
1018 else 1376 }
1377
1378 // Angular change to rotate the vehicle around the Z axis when the vehicle
1379 // is tipped around the X axis.
1380 // From http://wiki.secondlife.com/wiki/Linden_Vehicle_Tutorial:
1381 // The vertical attractor feature must be enabled in order for the banking behavior to
1382 // function. The way banking works is this: a rotation around the vehicle's roll-axis will
1383 // produce a angular velocity around the yaw-axis, causing the vehicle to turn. The magnitude
1384 // of the yaw effect will be proportional to the
1385 // VEHICLE_BANKING_EFFICIENCY, the angle of the roll rotation, and sometimes the vehicle's
1386 // velocity along its preferred axis of motion.
1387 // The VEHICLE_BANKING_EFFICIENCY can vary between -1 and +1. When it is positive then any
1388 // positive rotation (by the right-hand rule) about the roll-axis will effect a
1389 // (negative) torque around the yaw-axis, making it turn to the right--that is the
1390 // vehicle will lean into the turn, which is how real airplanes and motorcycle's work.
1391 // Negating the banking coefficient will make it so that the vehicle leans to the
1392 // outside of the turn (not very "physical" but might allow interesting vehicles so why not?).
1393 // The VEHICLE_BANKING_MIX is a fake (i.e. non-physical) parameter that is useful for making
1394 // banking vehicles do what you want rather than what the laws of physics allow.
1395 // For example, consider a real motorcycle...it must be moving forward in order for
1396 // it to turn while banking, however video-game motorcycles are often configured
1397 // to turn in place when at a dead stop--because they are often easier to control
1398 // that way using the limited interface of the keyboard or game controller. The
1399 // VEHICLE_BANKING_MIX enables combinations of both realistic and non-realistic
1400 // banking by functioning as a slider between a banking that is correspondingly
1401 // totally static (0.0) and totally dynamic (1.0). By "static" we mean that the
1402 // banking effect depends only on the vehicle's rotation about its roll-axis compared
1403 // to "dynamic" where the banking is also proportional to its velocity along its
1404 // roll-axis. Finding the best value of the "mixture" will probably require trial and error.
1405 // The time it takes for the banking behavior to defeat a preexisting angular velocity about the
1406 // world z-axis is determined by the VEHICLE_BANKING_TIMESCALE. So if you want the vehicle to
1407 // bank quickly then give it a banking timescale of about a second or less, otherwise you can
1408 // make a sluggish vehicle by giving it a timescale of several seconds.
1409 public void ComputeAngularBanking()
1410 {
1411 if (enableAngularBanking && m_bankingEfficiency != 0 && m_verticalAttractionTimescale < m_verticalAttractionCutoff)
1019 { 1412 {
1020 // Apply to the body. 1413 Vector3 bankingContribution = Vector3.Zero;
1021 // The above calculates the absolute angular velocity needed. Angular velocity is massless. 1414
1022 // Since we are stuffing the angular velocity directly into the object, the computed 1415 // Rotate a UnitZ vector (pointing up) to how the vehicle is oriented.
1023 // velocity needs to be scaled by the timestep. 1416 // As the vehicle rolls to the right or left, the Y value will increase from
1024 Vector3 applyAngularForce = ((m_lastAngularVelocity * pTimestep) - Prim.ForceRotationalVelocity); 1417 // zero (straight up) to 1 or -1 (full tilt right or left)
1025 Prim.ForceRotationalVelocity = applyAngularForce; 1418 Vector3 rollComponents = Vector3.UnitZ * VehicleOrientation;
1026 1419
1027 // Decay the angular movement for next time 1420 // Figure out the yaw value for this much roll.
1028 Vector3 decayamount = (Vector3.One / m_angularFrictionTimescale) * pTimestep; 1421 // Squared because that seems to give a good value
1029 m_lastAngularVelocity *= Vector3.One - decayamount; 1422 float yawAngle = (float)Math.Asin(rollComponents.Y * rollComponents.Y) * m_bankingEfficiency;
1030 1423
1031 VDetailLog("{0},MoveAngular,done,newRotVel={1},decay={2},lastAngular={3}", 1424 // actual error = static turn error + dynamic turn error
1032 Prim.LocalID, applyAngularForce, decayamount, m_lastAngularVelocity); 1425 float mixedYawAngle = yawAngle * (1f - m_bankingMix) + yawAngle * m_bankingMix * VehicleForwardSpeed;
1426
1427 // TODO: the banking effect should not go to infinity but what to limit it to?
1428 mixedYawAngle = ClampInRange(-20f, mixedYawAngle, 20f);
1429
1430 // Build the force vector to change rotation from what it is to what it should be
1431 bankingContribution.Z = -mixedYawAngle;
1432
1433 // Don't do it all at once.
1434 bankingContribution /= m_bankingTimescale;
1435
1436 VehicleRotationalVelocity += bankingContribution * VehicleOrientation;
1437
1438 VDetailLog("{0}, MoveAngular,Banking,rollComp={1},speed={2},rollComp={3},yAng={4},mYAng={5},ret={6}",
1439 Prim.LocalID, rollComponents, VehicleForwardSpeed, rollComponents, yawAngle, mixedYawAngle, bankingContribution);
1033 } 1440 }
1034 } //end MoveAngular 1441 }
1035 1442
1443 // This is from previous instantiations of XXXDynamics.cs.
1444 // Applies roll reference frame.
1445 // TODO: is this the right way to separate the code to do this operation?
1446 // Should this be in MoveAngular()?
1036 internal void LimitRotation(float timestep) 1447 internal void LimitRotation(float timestep)
1037 { 1448 {
1038 Quaternion rotq = Prim.ForceOrientation; 1449 Quaternion rotq = VehicleOrientation;
1039 Quaternion m_rot = rotq; 1450 Quaternion m_rot = rotq;
1040 if (m_RollreferenceFrame != Quaternion.Identity) 1451 if (m_RollreferenceFrame != Quaternion.Identity)
1041 { 1452 {
@@ -1063,12 +1474,18 @@ namespace OpenSim.Region.Physics.BulletSPlugin
1063 } 1474 }
1064 if (rotq != m_rot) 1475 if (rotq != m_rot)
1065 { 1476 {
1066 Prim.ForceOrientation = m_rot; 1477 VehicleOrientation = m_rot;
1067 VDetailLog("{0},LimitRotation,done,orig={1},new={2}", Prim.LocalID, rotq, m_rot); 1478 VDetailLog("{0}, LimitRotation,done,orig={1},new={2}", Prim.LocalID, rotq, m_rot);
1068 } 1479 }
1069 1480
1070 } 1481 }
1071 1482
1483 private float ClampInRange(float low, float val, float high)
1484 {
1485 return Math.Max(low, Math.Min(val, high));
1486 // return Utils.Clamp(val, low, high);
1487 }
1488
1072 // Invoke the detailed logger and output something if it's enabled. 1489 // Invoke the detailed logger and output something if it's enabled.
1073 private void VDetailLog(string msg, params Object[] args) 1490 private void VDetailLog(string msg, params Object[] args)
1074 { 1491 {