diff options
Diffstat (limited to 'OpenSim/Region/Physics/BulletSPlugin/BSDynamics.cs')
-rw-r--r-- | OpenSim/Region/Physics/BulletSPlugin/BSDynamics.cs | 1018 |
1 files changed, 647 insertions, 371 deletions
diff --git a/OpenSim/Region/Physics/BulletSPlugin/BSDynamics.cs b/OpenSim/Region/Physics/BulletSPlugin/BSDynamics.cs index dbc9039..a5acd86 100644 --- a/OpenSim/Region/Physics/BulletSPlugin/BSDynamics.cs +++ b/OpenSim/Region/Physics/BulletSPlugin/BSDynamics.cs | |||
@@ -24,30 +24,17 @@ | |||
24 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS | 24 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS |
25 | * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | 25 | * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
26 | * | 26 | * |
27 | 27 | * The quotations from http://wiki.secondlife.com/wiki/Linden_Vehicle_Tutorial | |
28 | /* RA: June 14, 2011. Copied from ODEDynamics.cs and converted to | 28 | * are Copyright (c) 2009 Linden Research, Inc and are used under their license |
29 | * call the BulletSim system. | 29 | * of Creative Commons Attribution-Share Alike 3.0 |
30 | */ | 30 | * (http://creativecommons.org/licenses/by-sa/3.0/). |
31 | /* Revised Aug, Sept 2009 by Kitto Flora. ODEDynamics.cs replaces | ||
32 | * ODEVehicleSettings.cs. It and ODEPrim.cs are re-organised: | ||
33 | * ODEPrim.cs contains methods dealing with Prim editing, Prim | ||
34 | * characteristics and Kinetic motion. | ||
35 | * ODEDynamics.cs contains methods dealing with Prim Physical motion | ||
36 | * (dynamics) and the associated settings. Old Linear and angular | ||
37 | * motors for dynamic motion have been replace with MoveLinear() | ||
38 | * and MoveAngular(); 'Physical' is used only to switch ODE dynamic | ||
39 | * simualtion on/off; VEHICAL_TYPE_NONE/VEHICAL_TYPE_<other> is to | ||
40 | * switch between 'VEHICLE' parameter use and general dynamics | ||
41 | * settings use. | ||
42 | */ | 31 | */ |
43 | 32 | ||
44 | using System; | 33 | using System; |
45 | using System.Collections.Generic; | 34 | using System.Collections.Generic; |
46 | using System.Reflection; | 35 | using System.Reflection; |
47 | using System.Runtime.InteropServices; | 36 | using System.Runtime.InteropServices; |
48 | using log4net; | ||
49 | using OpenMetaverse; | 37 | using OpenMetaverse; |
50 | using OpenSim.Framework; | ||
51 | using OpenSim.Region.Physics.Manager; | 38 | using OpenSim.Region.Physics.Manager; |
52 | 39 | ||
53 | namespace OpenSim.Region.Physics.BulletSPlugin | 40 | namespace OpenSim.Region.Physics.BulletSPlugin |
@@ -80,10 +67,10 @@ namespace OpenSim.Region.Physics.BulletSPlugin | |||
80 | private Quaternion m_referenceFrame = Quaternion.Identity; | 67 | private Quaternion m_referenceFrame = Quaternion.Identity; |
81 | 68 | ||
82 | // Linear properties | 69 | // Linear properties |
70 | private BSVMotor m_linearMotor = new BSVMotor("LinearMotor"); | ||
83 | private Vector3 m_linearMotorDirection = Vector3.Zero; // velocity requested by LSL, decayed by time | 71 | private Vector3 m_linearMotorDirection = Vector3.Zero; // velocity requested by LSL, decayed by time |
84 | private Vector3 m_linearMotorOffset = Vector3.Zero; // the point of force can be offset from the center | 72 | private Vector3 m_linearMotorOffset = Vector3.Zero; // the point of force can be offset from the center |
85 | private Vector3 m_linearMotorDirectionLASTSET = Vector3.Zero; // velocity requested by LSL | 73 | private Vector3 m_linearMotorDirectionLASTSET = Vector3.Zero; // velocity requested by LSL |
86 | private Vector3 m_newVelocity = Vector3.Zero; // velocity computed to be applied to body | ||
87 | private Vector3 m_linearFrictionTimescale = Vector3.Zero; | 74 | private Vector3 m_linearFrictionTimescale = Vector3.Zero; |
88 | private float m_linearMotorDecayTimescale = 0; | 75 | private float m_linearMotorDecayTimescale = 0; |
89 | private float m_linearMotorTimescale = 0; | 76 | private float m_linearMotorTimescale = 0; |
@@ -93,16 +80,18 @@ namespace OpenSim.Region.Physics.BulletSPlugin | |||
93 | // private Vector3 m_linearMotorOffset = Vector3.Zero; | 80 | // private Vector3 m_linearMotorOffset = Vector3.Zero; |
94 | 81 | ||
95 | //Angular properties | 82 | //Angular properties |
83 | private BSVMotor m_angularMotor = new BSVMotor("AngularMotor"); | ||
96 | private Vector3 m_angularMotorDirection = Vector3.Zero; // angular velocity requested by LSL motor | 84 | private Vector3 m_angularMotorDirection = Vector3.Zero; // angular velocity requested by LSL motor |
97 | // private int m_angularMotorApply = 0; // application frame counter | 85 | // private int m_angularMotorApply = 0; // application frame counter |
98 | private Vector3 m_angularMotorVelocity = Vector3.Zero; // current angular motor velocity | 86 | private Vector3 m_angularMotorVelocity = Vector3.Zero; // current angular motor velocity |
99 | private float m_angularMotorTimescale = 0; // motor angular velocity ramp up rate | 87 | private float m_angularMotorTimescale = 0; // motor angular velocity ramp up rate |
100 | private float m_angularMotorDecayTimescale = 0; // motor angular velocity decay rate | 88 | private float m_angularMotorDecayTimescale = 0; // motor angular velocity decay rate |
101 | private Vector3 m_angularFrictionTimescale = Vector3.Zero; // body angular velocity decay rate | 89 | private Vector3 m_angularFrictionTimescale = Vector3.Zero; // body angular velocity decay rate |
102 | private Vector3 m_lastAngularVelocity = Vector3.Zero; // what was last applied to body | 90 | private Vector3 m_lastAngularVelocity = Vector3.Zero; |
103 | private Vector3 m_lastVertAttractor = Vector3.Zero; // what VA was last applied to body | 91 | private Vector3 m_lastVertAttractor = Vector3.Zero; // what VA was last applied to body |
104 | 92 | ||
105 | //Deflection properties | 93 | //Deflection properties |
94 | private BSVMotor m_angularDeflectionMotor = new BSVMotor("AngularDeflection"); | ||
106 | private float m_angularDeflectionEfficiency = 0; | 95 | private float m_angularDeflectionEfficiency = 0; |
107 | private float m_angularDeflectionTimescale = 0; | 96 | private float m_angularDeflectionTimescale = 0; |
108 | private float m_linearDeflectionEfficiency = 0; | 97 | private float m_linearDeflectionEfficiency = 0; |
@@ -114,6 +103,7 @@ namespace OpenSim.Region.Physics.BulletSPlugin | |||
114 | private float m_bankingTimescale = 0; | 103 | private float m_bankingTimescale = 0; |
115 | 104 | ||
116 | //Hover and Buoyancy properties | 105 | //Hover and Buoyancy properties |
106 | private BSVMotor m_hoverMotor = new BSVMotor("Hover"); | ||
117 | private float m_VhoverHeight = 0f; | 107 | private float m_VhoverHeight = 0f; |
118 | private float m_VhoverEfficiency = 0f; | 108 | private float m_VhoverEfficiency = 0f; |
119 | private float m_VhoverTimescale = 0f; | 109 | private float m_VhoverTimescale = 0f; |
@@ -124,8 +114,15 @@ namespace OpenSim.Region.Physics.BulletSPlugin | |||
124 | // Therefore only m_VehicleBuoyancy=1 (0g) will use the script-requested .Z velocity. | 114 | // Therefore only m_VehicleBuoyancy=1 (0g) will use the script-requested .Z velocity. |
125 | 115 | ||
126 | //Attractor properties | 116 | //Attractor properties |
127 | private float m_verticalAttractionEfficiency = 1.0f; // damped | 117 | private BSVMotor m_verticalAttractionMotor = new BSVMotor("VerticalAttraction"); |
128 | private float m_verticalAttractionTimescale = 500f; // Timescale > 300 means no vert attractor. | 118 | private float m_verticalAttractionEfficiency = 1.0f; // damped |
119 | private float m_verticalAttractionCutoff = 500f; // per the documentation | ||
120 | // Timescale > cutoff means no vert attractor. | ||
121 | private float m_verticalAttractionTimescale = 510f; | ||
122 | |||
123 | // Just some recomputed constants: | ||
124 | static readonly float PIOverFour = ((float)Math.PI) / 4f; | ||
125 | static readonly float PIOverTwo = ((float)Math.PI) / 2f; | ||
129 | 126 | ||
130 | public BSDynamics(BSScene myScene, BSPrim myPrim) | 127 | public BSDynamics(BSScene myScene, BSPrim myPrim) |
131 | { | 128 | { |
@@ -137,7 +134,7 @@ namespace OpenSim.Region.Physics.BulletSPlugin | |||
137 | // Return 'true' if this vehicle is doing vehicle things | 134 | // Return 'true' if this vehicle is doing vehicle things |
138 | public bool IsActive | 135 | public bool IsActive |
139 | { | 136 | { |
140 | get { return Type != Vehicle.TYPE_NONE; } | 137 | get { return Type != Vehicle.TYPE_NONE && Prim.IsPhysical; } |
141 | } | 138 | } |
142 | 139 | ||
143 | internal void ProcessFloatVehicleParam(Vehicle pParam, float pValue) | 140 | internal void ProcessFloatVehicleParam(Vehicle pParam, float pValue) |
@@ -152,13 +149,15 @@ namespace OpenSim.Region.Physics.BulletSPlugin | |||
152 | m_angularDeflectionTimescale = Math.Max(pValue, 0.01f); | 149 | m_angularDeflectionTimescale = Math.Max(pValue, 0.01f); |
153 | break; | 150 | break; |
154 | case Vehicle.ANGULAR_MOTOR_DECAY_TIMESCALE: | 151 | case Vehicle.ANGULAR_MOTOR_DECAY_TIMESCALE: |
155 | m_angularMotorDecayTimescale = Math.Max(pValue, 0.01f); | 152 | m_angularMotorDecayTimescale = ClampInRange(0.01f, pValue, 120); |
153 | m_angularMotor.TargetValueDecayTimeScale = m_angularMotorDecayTimescale; | ||
156 | break; | 154 | break; |
157 | case Vehicle.ANGULAR_MOTOR_TIMESCALE: | 155 | case Vehicle.ANGULAR_MOTOR_TIMESCALE: |
158 | m_angularMotorTimescale = Math.Max(pValue, 0.01f); | 156 | m_angularMotorTimescale = Math.Max(pValue, 0.01f); |
157 | m_angularMotor.TimeScale = m_angularMotorTimescale; | ||
159 | break; | 158 | break; |
160 | case Vehicle.BANKING_EFFICIENCY: | 159 | case Vehicle.BANKING_EFFICIENCY: |
161 | m_bankingEfficiency = Math.Max(-1f, Math.Min(pValue, 1f)); | 160 | m_bankingEfficiency = ClampInRange(-1f, pValue, 1f); |
162 | break; | 161 | break; |
163 | case Vehicle.BANKING_MIX: | 162 | case Vehicle.BANKING_MIX: |
164 | m_bankingMix = Math.Max(pValue, 0.01f); | 163 | m_bankingMix = Math.Max(pValue, 0.01f); |
@@ -167,10 +166,10 @@ namespace OpenSim.Region.Physics.BulletSPlugin | |||
167 | m_bankingTimescale = Math.Max(pValue, 0.01f); | 166 | m_bankingTimescale = Math.Max(pValue, 0.01f); |
168 | break; | 167 | break; |
169 | case Vehicle.BUOYANCY: | 168 | case Vehicle.BUOYANCY: |
170 | m_VehicleBuoyancy = Math.Max(-1f, Math.Min(pValue, 1f)); | 169 | m_VehicleBuoyancy = ClampInRange(-1f, pValue, 1f); |
171 | break; | 170 | break; |
172 | case Vehicle.HOVER_EFFICIENCY: | 171 | case Vehicle.HOVER_EFFICIENCY: |
173 | m_VhoverEfficiency = Math.Max(0f, Math.Min(pValue, 1f)); | 172 | m_VhoverEfficiency = ClampInRange(0f, pValue, 1f); |
174 | break; | 173 | break; |
175 | case Vehicle.HOVER_HEIGHT: | 174 | case Vehicle.HOVER_HEIGHT: |
176 | m_VhoverHeight = pValue; | 175 | m_VhoverHeight = pValue; |
@@ -185,33 +184,40 @@ namespace OpenSim.Region.Physics.BulletSPlugin | |||
185 | m_linearDeflectionTimescale = Math.Max(pValue, 0.01f); | 184 | m_linearDeflectionTimescale = Math.Max(pValue, 0.01f); |
186 | break; | 185 | break; |
187 | case Vehicle.LINEAR_MOTOR_DECAY_TIMESCALE: | 186 | case Vehicle.LINEAR_MOTOR_DECAY_TIMESCALE: |
188 | m_linearMotorDecayTimescale = Math.Max(pValue, 0.01f); | 187 | m_linearMotorDecayTimescale = ClampInRange(0.01f, pValue, 120); |
188 | m_linearMotor.TargetValueDecayTimeScale = m_linearMotorDecayTimescale; | ||
189 | break; | 189 | break; |
190 | case Vehicle.LINEAR_MOTOR_TIMESCALE: | 190 | case Vehicle.LINEAR_MOTOR_TIMESCALE: |
191 | m_linearMotorTimescale = Math.Max(pValue, 0.01f); | 191 | m_linearMotorTimescale = Math.Max(pValue, 0.01f); |
192 | m_linearMotor.TimeScale = m_linearMotorTimescale; | ||
192 | break; | 193 | break; |
193 | case Vehicle.VERTICAL_ATTRACTION_EFFICIENCY: | 194 | case Vehicle.VERTICAL_ATTRACTION_EFFICIENCY: |
194 | m_verticalAttractionEfficiency = Math.Max(0.1f, Math.Min(pValue, 1f)); | 195 | m_verticalAttractionEfficiency = ClampInRange(0.1f, pValue, 1f); |
196 | m_verticalAttractionMotor.Efficiency = m_verticalAttractionEfficiency; | ||
195 | break; | 197 | break; |
196 | case Vehicle.VERTICAL_ATTRACTION_TIMESCALE: | 198 | case Vehicle.VERTICAL_ATTRACTION_TIMESCALE: |
197 | m_verticalAttractionTimescale = Math.Max(pValue, 0.01f); | 199 | m_verticalAttractionTimescale = Math.Max(pValue, 0.01f); |
200 | m_verticalAttractionMotor.TimeScale = m_verticalAttractionTimescale; | ||
198 | break; | 201 | break; |
199 | 202 | ||
200 | // These are vector properties but the engine lets you use a single float value to | 203 | // These are vector properties but the engine lets you use a single float value to |
201 | // set all of the components to the same value | 204 | // set all of the components to the same value |
202 | case Vehicle.ANGULAR_FRICTION_TIMESCALE: | 205 | case Vehicle.ANGULAR_FRICTION_TIMESCALE: |
203 | m_angularFrictionTimescale = new Vector3(pValue, pValue, pValue); | 206 | m_angularFrictionTimescale = new Vector3(pValue, pValue, pValue); |
207 | m_angularMotor.FrictionTimescale = m_angularFrictionTimescale; | ||
204 | break; | 208 | break; |
205 | case Vehicle.ANGULAR_MOTOR_DIRECTION: | 209 | case Vehicle.ANGULAR_MOTOR_DIRECTION: |
206 | m_angularMotorDirection = new Vector3(pValue, pValue, pValue); | 210 | m_angularMotorDirection = new Vector3(pValue, pValue, pValue); |
207 | // m_angularMotorApply = 100; | 211 | m_angularMotor.SetTarget(m_angularMotorDirection); |
208 | break; | 212 | break; |
209 | case Vehicle.LINEAR_FRICTION_TIMESCALE: | 213 | case Vehicle.LINEAR_FRICTION_TIMESCALE: |
210 | m_linearFrictionTimescale = new Vector3(pValue, pValue, pValue); | 214 | m_linearFrictionTimescale = new Vector3(pValue, pValue, pValue); |
215 | m_linearMotor.FrictionTimescale = m_linearFrictionTimescale; | ||
211 | break; | 216 | break; |
212 | case Vehicle.LINEAR_MOTOR_DIRECTION: | 217 | case Vehicle.LINEAR_MOTOR_DIRECTION: |
213 | m_linearMotorDirection = new Vector3(pValue, pValue, pValue); | 218 | m_linearMotorDirection = new Vector3(pValue, pValue, pValue); |
214 | m_linearMotorDirectionLASTSET = new Vector3(pValue, pValue, pValue); | 219 | m_linearMotorDirectionLASTSET = new Vector3(pValue, pValue, pValue); |
220 | m_linearMotor.SetTarget(m_linearMotorDirection); | ||
215 | break; | 221 | break; |
216 | case Vehicle.LINEAR_MOTOR_OFFSET: | 222 | case Vehicle.LINEAR_MOTOR_OFFSET: |
217 | m_linearMotorOffset = new Vector3(pValue, pValue, pValue); | 223 | m_linearMotorOffset = new Vector3(pValue, pValue, pValue); |
@@ -227,21 +233,24 @@ namespace OpenSim.Region.Physics.BulletSPlugin | |||
227 | { | 233 | { |
228 | case Vehicle.ANGULAR_FRICTION_TIMESCALE: | 234 | case Vehicle.ANGULAR_FRICTION_TIMESCALE: |
229 | m_angularFrictionTimescale = new Vector3(pValue.X, pValue.Y, pValue.Z); | 235 | m_angularFrictionTimescale = new Vector3(pValue.X, pValue.Y, pValue.Z); |
236 | m_angularMotor.FrictionTimescale = m_angularFrictionTimescale; | ||
230 | break; | 237 | break; |
231 | case Vehicle.ANGULAR_MOTOR_DIRECTION: | 238 | case Vehicle.ANGULAR_MOTOR_DIRECTION: |
232 | // Limit requested angular speed to 2 rps= 4 pi rads/sec | 239 | // Limit requested angular speed to 2 rps= 4 pi rads/sec |
233 | pValue.X = Math.Max(-12.56f, Math.Min(pValue.X, 12.56f)); | 240 | pValue.X = ClampInRange(-12.56f, pValue.X, 12.56f); |
234 | pValue.Y = Math.Max(-12.56f, Math.Min(pValue.Y, 12.56f)); | 241 | pValue.Y = ClampInRange(-12.56f, pValue.Y, 12.56f); |
235 | pValue.Z = Math.Max(-12.56f, Math.Min(pValue.Z, 12.56f)); | 242 | pValue.Z = ClampInRange(-12.56f, pValue.Z, 12.56f); |
236 | m_angularMotorDirection = new Vector3(pValue.X, pValue.Y, pValue.Z); | 243 | m_angularMotorDirection = new Vector3(pValue.X, pValue.Y, pValue.Z); |
237 | // m_angularMotorApply = 100; | 244 | m_angularMotor.SetTarget(m_angularMotorDirection); |
238 | break; | 245 | break; |
239 | case Vehicle.LINEAR_FRICTION_TIMESCALE: | 246 | case Vehicle.LINEAR_FRICTION_TIMESCALE: |
240 | m_linearFrictionTimescale = new Vector3(pValue.X, pValue.Y, pValue.Z); | 247 | m_linearFrictionTimescale = new Vector3(pValue.X, pValue.Y, pValue.Z); |
248 | m_linearMotor.FrictionTimescale = m_linearFrictionTimescale; | ||
241 | break; | 249 | break; |
242 | case Vehicle.LINEAR_MOTOR_DIRECTION: | 250 | case Vehicle.LINEAR_MOTOR_DIRECTION: |
243 | m_linearMotorDirection = new Vector3(pValue.X, pValue.Y, pValue.Z); | 251 | m_linearMotorDirection = new Vector3(pValue.X, pValue.Y, pValue.Z); |
244 | m_linearMotorDirectionLASTSET = new Vector3(pValue.X, pValue.Y, pValue.Z); | 252 | m_linearMotorDirectionLASTSET = new Vector3(pValue.X, pValue.Y, pValue.Z); |
253 | m_linearMotor.SetTarget(m_linearMotorDirection); | ||
245 | break; | 254 | break; |
246 | case Vehicle.LINEAR_MOTOR_OFFSET: | 255 | case Vehicle.LINEAR_MOTOR_OFFSET: |
247 | m_linearMotorOffset = new Vector3(pValue.X, pValue.Y, pValue.Z); | 256 | m_linearMotorOffset = new Vector3(pValue.X, pValue.Y, pValue.Z); |
@@ -303,7 +312,7 @@ namespace OpenSim.Region.Physics.BulletSPlugin | |||
303 | m_VhoverEfficiency = 0; | 312 | m_VhoverEfficiency = 0; |
304 | m_VhoverTimescale = 0; | 313 | m_VhoverTimescale = 0; |
305 | m_VehicleBuoyancy = 0; | 314 | m_VehicleBuoyancy = 0; |
306 | 315 | ||
307 | m_linearDeflectionEfficiency = 1; | 316 | m_linearDeflectionEfficiency = 1; |
308 | m_linearDeflectionTimescale = 1; | 317 | m_linearDeflectionTimescale = 1; |
309 | 318 | ||
@@ -319,6 +328,7 @@ namespace OpenSim.Region.Physics.BulletSPlugin | |||
319 | 328 | ||
320 | m_referenceFrame = Quaternion.Identity; | 329 | m_referenceFrame = Quaternion.Identity; |
321 | m_flags = (VehicleFlag)0; | 330 | m_flags = (VehicleFlag)0; |
331 | |||
322 | break; | 332 | break; |
323 | 333 | ||
324 | case Vehicle.TYPE_SLED: | 334 | case Vehicle.TYPE_SLED: |
@@ -351,10 +361,14 @@ namespace OpenSim.Region.Physics.BulletSPlugin | |||
351 | m_bankingMix = 1; | 361 | m_bankingMix = 1; |
352 | 362 | ||
353 | m_referenceFrame = Quaternion.Identity; | 363 | m_referenceFrame = Quaternion.Identity; |
354 | m_flags |= (VehicleFlag.NO_DEFLECTION_UP | VehicleFlag.LIMIT_ROLL_ONLY | VehicleFlag.LIMIT_MOTOR_UP); | 364 | m_flags &= ~(VehicleFlag.HOVER_WATER_ONLY |
355 | m_flags &= | 365 | | VehicleFlag.HOVER_TERRAIN_ONLY |
356 | ~(VehicleFlag.HOVER_WATER_ONLY | VehicleFlag.HOVER_TERRAIN_ONLY | | 366 | | VehicleFlag.HOVER_GLOBAL_HEIGHT |
357 | VehicleFlag.HOVER_GLOBAL_HEIGHT | VehicleFlag.HOVER_UP_ONLY); | 367 | | VehicleFlag.HOVER_UP_ONLY); |
368 | m_flags |= (VehicleFlag.NO_DEFLECTION_UP | ||
369 | | VehicleFlag.LIMIT_ROLL_ONLY | ||
370 | | VehicleFlag.LIMIT_MOTOR_UP); | ||
371 | |||
358 | break; | 372 | break; |
359 | case Vehicle.TYPE_CAR: | 373 | case Vehicle.TYPE_CAR: |
360 | m_linearMotorDirection = Vector3.Zero; | 374 | m_linearMotorDirection = Vector3.Zero; |
@@ -498,6 +512,7 @@ namespace OpenSim.Region.Physics.BulletSPlugin | |||
498 | m_bankingEfficiency = 0; | 512 | m_bankingEfficiency = 0; |
499 | m_bankingMix = 0.7f; | 513 | m_bankingMix = 0.7f; |
500 | m_bankingTimescale = 5; | 514 | m_bankingTimescale = 5; |
515 | |||
501 | m_referenceFrame = Quaternion.Identity; | 516 | m_referenceFrame = Quaternion.Identity; |
502 | 517 | ||
503 | m_referenceFrame = Quaternion.Identity; | 518 | m_referenceFrame = Quaternion.Identity; |
@@ -510,6 +525,26 @@ namespace OpenSim.Region.Physics.BulletSPlugin | |||
510 | | VehicleFlag.HOVER_GLOBAL_HEIGHT); | 525 | | VehicleFlag.HOVER_GLOBAL_HEIGHT); |
511 | break; | 526 | break; |
512 | } | 527 | } |
528 | |||
529 | // Update any physical parameters based on this type. | ||
530 | Refresh(); | ||
531 | |||
532 | m_linearMotor = new BSVMotor("LinearMotor", m_linearMotorTimescale, | ||
533 | m_linearMotorDecayTimescale, m_linearFrictionTimescale, | ||
534 | 1f); | ||
535 | m_linearMotor.PhysicsScene = PhysicsScene; // DEBUG DEBUG DEBUG (enables detail logging) | ||
536 | |||
537 | m_angularMotor = new BSVMotor("AngularMotor", m_angularMotorTimescale, | ||
538 | m_angularMotorDecayTimescale, m_angularFrictionTimescale, | ||
539 | 1f); | ||
540 | m_angularMotor.PhysicsScene = PhysicsScene; // DEBUG DEBUG DEBUG (enables detail logging) | ||
541 | |||
542 | m_verticalAttractionMotor = new BSVMotor("VerticalAttraction", m_verticalAttractionTimescale, | ||
543 | BSMotor.Infinite, BSMotor.InfiniteVector, | ||
544 | m_verticalAttractionEfficiency); | ||
545 | // Z goes away and we keep X and Y | ||
546 | m_verticalAttractionMotor.FrictionTimescale = new Vector3(BSMotor.Infinite, BSMotor.Infinite, 0.1f); | ||
547 | m_verticalAttractionMotor.PhysicsScene = PhysicsScene; // DEBUG DEBUG DEBUG (enables detail logging) | ||
513 | } | 548 | } |
514 | 549 | ||
515 | // Some of the properties of this prim may have changed. | 550 | // Some of the properties of this prim may have changed. |
@@ -518,13 +553,32 @@ namespace OpenSim.Region.Physics.BulletSPlugin | |||
518 | { | 553 | { |
519 | if (IsActive) | 554 | if (IsActive) |
520 | { | 555 | { |
521 | // Friction effects are handled by this vehicle code | 556 | // Remember the mass so we don't have to fetch it every step |
522 | BulletSimAPI.SetFriction2(Prim.PhysBody.ptr, 0f); | 557 | m_vehicleMass = Prim.Linkset.LinksetMass; |
523 | BulletSimAPI.SetHitFraction2(Prim.PhysBody.ptr, 0f); | ||
524 | 558 | ||
525 | // BulletSimAPI.SetAngularDamping2(Prim.PhysBody.ptr, 0.8f); | 559 | // Friction affects are handled by this vehicle code |
560 | float friction = 0f; | ||
561 | BulletSimAPI.SetFriction2(Prim.PhysBody.ptr, friction); | ||
526 | 562 | ||
527 | VDetailLog("{0},BSDynamics.Refresh,zeroingFriction and adding damping", Prim.LocalID); | 563 | // Moderate angular movement introduced by Bullet. |
564 | // TODO: possibly set AngularFactor and LinearFactor for the type of vehicle. | ||
565 | // Maybe compute linear and angular factor and damping from params. | ||
566 | float angularDamping = PhysicsScene.Params.vehicleAngularDamping; | ||
567 | BulletSimAPI.SetAngularDamping2(Prim.PhysBody.ptr, angularDamping); | ||
568 | |||
569 | // Vehicles report collision events so we know when it's on the ground | ||
570 | BulletSimAPI.AddToCollisionFlags2(Prim.PhysBody.ptr, CollisionFlags.BS_VEHICLE_COLLISIONS); | ||
571 | |||
572 | Vector3 localInertia = BulletSimAPI.CalculateLocalInertia2(Prim.PhysShape.ptr, m_vehicleMass); | ||
573 | BulletSimAPI.SetMassProps2(Prim.PhysBody.ptr, m_vehicleMass, localInertia); | ||
574 | BulletSimAPI.UpdateInertiaTensor2(Prim.PhysBody.ptr); | ||
575 | |||
576 | VDetailLog("{0},BSDynamics.Refresh,mass={1},frict={2},inert={3},aDamp={4}", | ||
577 | Prim.LocalID, m_vehicleMass, friction, localInertia, angularDamping); | ||
578 | } | ||
579 | else | ||
580 | { | ||
581 | BulletSimAPI.RemoveFromCollisionFlags2(Prim.PhysBody.ptr, CollisionFlags.BS_VEHICLE_COLLISIONS); | ||
528 | } | 582 | } |
529 | } | 583 | } |
530 | 584 | ||
@@ -546,116 +600,317 @@ namespace OpenSim.Region.Physics.BulletSPlugin | |||
546 | Refresh(); | 600 | Refresh(); |
547 | } | 601 | } |
548 | 602 | ||
603 | #region Known vehicle value functions | ||
604 | // Vehicle physical parameters that we buffer from constant getting and setting. | ||
605 | // The "m_known*" values are unknown until they are fetched and the m_knownHas flag is set. | ||
606 | // Changing is remembered and the parameter is stored back into the physics engine only if updated. | ||
607 | // This does two things: 1) saves continuious calls into unmanaged code, and | ||
608 | // 2) signals when a physics property update must happen back to the simulator | ||
609 | // to update values modified for the vehicle. | ||
610 | private int m_knownChanged; | ||
611 | private int m_knownHas; | ||
612 | private float m_knownTerrainHeight; | ||
613 | private float m_knownWaterLevel; | ||
614 | private Vector3 m_knownPosition; | ||
615 | private Vector3 m_knownVelocity; | ||
616 | private Vector3 m_knownForce; | ||
617 | private Quaternion m_knownOrientation; | ||
618 | private Vector3 m_knownRotationalVelocity; | ||
619 | private Vector3 m_knownRotationalForce; | ||
620 | private Vector3 m_knownForwardVelocity; // vehicle relative forward speed | ||
621 | |||
622 | private const int m_knownChangedPosition = 1 << 0; | ||
623 | private const int m_knownChangedVelocity = 1 << 1; | ||
624 | private const int m_knownChangedForce = 1 << 2; | ||
625 | private const int m_knownChangedOrientation = 1 << 3; | ||
626 | private const int m_knownChangedRotationalVelocity = 1 << 4; | ||
627 | private const int m_knownChangedRotationalForce = 1 << 5; | ||
628 | private const int m_knownChangedTerrainHeight = 1 << 6; | ||
629 | private const int m_knownChangedWaterLevel = 1 << 7; | ||
630 | private const int m_knownChangedForwardVelocity = 1 << 8; | ||
631 | |||
632 | private void ForgetKnownVehicleProperties() | ||
633 | { | ||
634 | m_knownHas = 0; | ||
635 | m_knownChanged = 0; | ||
636 | } | ||
637 | private void PushKnownChanged() | ||
638 | { | ||
639 | if (m_knownChanged != 0) | ||
640 | { | ||
641 | if ((m_knownChanged & m_knownChangedPosition) != 0) | ||
642 | Prim.ForcePosition = VehiclePosition; | ||
643 | if ((m_knownChanged & m_knownChangedOrientation) != 0) | ||
644 | Prim.ForceOrientation = VehicleOrientation; | ||
645 | if ((m_knownChanged & m_knownChangedVelocity) != 0) | ||
646 | { | ||
647 | Prim.ForceVelocity = VehicleVelocity; | ||
648 | BulletSimAPI.SetInterpolationLinearVelocity2(Prim.PhysBody.ptr, VehicleVelocity); | ||
649 | } | ||
650 | if ((m_knownChanged & m_knownChangedForce) != 0) | ||
651 | Prim.AddForce((Vector3)m_knownForce, false, true); | ||
652 | |||
653 | if ((m_knownChanged & m_knownChangedRotationalVelocity) != 0) | ||
654 | { | ||
655 | Prim.ForceRotationalVelocity = VehicleRotationalVelocity; | ||
656 | // Fake out Bullet by making it think the velocity is the same as last time. | ||
657 | BulletSimAPI.SetInterpolationAngularVelocity2(Prim.PhysBody.ptr, VehicleRotationalVelocity); | ||
658 | } | ||
659 | if ((m_knownChanged & m_knownChangedRotationalForce) != 0) | ||
660 | Prim.AddAngularForce((Vector3)m_knownRotationalForce, false, true); | ||
661 | |||
662 | // If we set one of the values (ie, the physics engine didn't do it) we must force | ||
663 | // an UpdateProperties event to send the changes up to the simulator. | ||
664 | BulletSimAPI.PushUpdate2(Prim.PhysBody.ptr); | ||
665 | } | ||
666 | m_knownChanged = 0; | ||
667 | } | ||
668 | |||
669 | // Since the computation of terrain height can be a little involved, this routine | ||
670 | // is used ot fetch the height only once for each vehicle simulation step. | ||
671 | private float GetTerrainHeight(Vector3 pos) | ||
672 | { | ||
673 | if ((m_knownHas & m_knownChangedTerrainHeight) == 0) | ||
674 | { | ||
675 | m_knownTerrainHeight = Prim.PhysicsScene.TerrainManager.GetTerrainHeightAtXYZ(pos); | ||
676 | m_knownHas |= m_knownChangedTerrainHeight; | ||
677 | } | ||
678 | return m_knownTerrainHeight; | ||
679 | } | ||
680 | |||
681 | // Since the computation of water level can be a little involved, this routine | ||
682 | // is used ot fetch the level only once for each vehicle simulation step. | ||
683 | private float GetWaterLevel(Vector3 pos) | ||
684 | { | ||
685 | if ((m_knownHas & m_knownChangedWaterLevel) == 0) | ||
686 | { | ||
687 | m_knownWaterLevel = Prim.PhysicsScene.TerrainManager.GetWaterLevelAtXYZ(pos); | ||
688 | m_knownHas |= m_knownChangedWaterLevel; | ||
689 | } | ||
690 | return (float)m_knownWaterLevel; | ||
691 | } | ||
692 | |||
693 | private Vector3 VehiclePosition | ||
694 | { | ||
695 | get | ||
696 | { | ||
697 | if ((m_knownHas & m_knownChangedPosition) == 0) | ||
698 | { | ||
699 | m_knownPosition = Prim.ForcePosition; | ||
700 | m_knownHas |= m_knownChangedPosition; | ||
701 | } | ||
702 | return (Vector3)m_knownPosition; | ||
703 | } | ||
704 | set | ||
705 | { | ||
706 | m_knownPosition = value; | ||
707 | m_knownChanged |= m_knownChangedPosition; | ||
708 | } | ||
709 | } | ||
710 | |||
711 | private Quaternion VehicleOrientation | ||
712 | { | ||
713 | get | ||
714 | { | ||
715 | if ((m_knownHas & m_knownChangedOrientation) == 0) | ||
716 | { | ||
717 | m_knownOrientation = Prim.ForceOrientation; | ||
718 | m_knownHas |= m_knownChangedOrientation; | ||
719 | } | ||
720 | return (Quaternion)m_knownOrientation; | ||
721 | } | ||
722 | set | ||
723 | { | ||
724 | m_knownOrientation = value; | ||
725 | m_knownChanged |= m_knownChangedOrientation; | ||
726 | } | ||
727 | } | ||
728 | |||
729 | private Vector3 VehicleVelocity | ||
730 | { | ||
731 | get | ||
732 | { | ||
733 | if ((m_knownHas & m_knownChangedVelocity) == 0) | ||
734 | { | ||
735 | m_knownVelocity = Prim.ForceVelocity; | ||
736 | m_knownHas |= m_knownChangedVelocity; | ||
737 | } | ||
738 | return (Vector3)m_knownVelocity; | ||
739 | } | ||
740 | set | ||
741 | { | ||
742 | m_knownVelocity = value; | ||
743 | m_knownChanged |= m_knownChangedVelocity; | ||
744 | } | ||
745 | } | ||
746 | |||
747 | private void VehicleAddForce(Vector3 aForce) | ||
748 | { | ||
749 | m_knownForce += aForce; | ||
750 | m_knownChanged |= m_knownChangedForce; | ||
751 | } | ||
752 | |||
753 | private Vector3 VehicleRotationalVelocity | ||
754 | { | ||
755 | get | ||
756 | { | ||
757 | if ((m_knownHas & m_knownChangedRotationalVelocity) == 0) | ||
758 | { | ||
759 | m_knownRotationalVelocity = Prim.ForceRotationalVelocity; | ||
760 | m_knownHas |= m_knownChangedRotationalVelocity; | ||
761 | } | ||
762 | return (Vector3)m_knownRotationalVelocity; | ||
763 | } | ||
764 | set | ||
765 | { | ||
766 | m_knownRotationalVelocity = value; | ||
767 | m_knownChanged |= m_knownChangedRotationalVelocity; | ||
768 | } | ||
769 | } | ||
770 | private void VehicleAddAngularForce(Vector3 aForce) | ||
771 | { | ||
772 | m_knownRotationalForce += aForce; | ||
773 | m_knownChanged |= m_knownChangedRotationalForce; | ||
774 | } | ||
775 | // Vehicle relative forward velocity | ||
776 | private Vector3 VehicleForwardVelocity | ||
777 | { | ||
778 | get | ||
779 | { | ||
780 | if ((m_knownHas & m_knownChangedForwardVelocity) == 0) | ||
781 | { | ||
782 | m_knownForwardVelocity = VehicleVelocity * Quaternion.Inverse(Quaternion.Normalize(VehicleOrientation)); | ||
783 | m_knownHas |= m_knownChangedForwardVelocity; | ||
784 | } | ||
785 | return (Vector3)m_knownForwardVelocity; | ||
786 | } | ||
787 | } | ||
788 | private float VehicleForwardSpeed | ||
789 | { | ||
790 | get | ||
791 | { | ||
792 | return VehicleForwardVelocity.X; | ||
793 | } | ||
794 | } | ||
795 | |||
796 | #endregion // Known vehicle value functions | ||
797 | |||
549 | // One step of the vehicle properties for the next 'pTimestep' seconds. | 798 | // One step of the vehicle properties for the next 'pTimestep' seconds. |
550 | internal void Step(float pTimestep) | 799 | internal void Step(float pTimestep) |
551 | { | 800 | { |
552 | if (!IsActive) return; | 801 | if (!IsActive) return; |
553 | 802 | ||
554 | // DEBUG | 803 | ForgetKnownVehicleProperties(); |
555 | // Because Bullet does apply forces to the vehicle, our last computed | ||
556 | // linear and angular velocities are not what is happening now. | ||
557 | // Vector3 externalAngularVelocity = Prim.ForceRotationalVelocity - m_lastAngularVelocity; | ||
558 | // m_lastAngularVelocity += (externalAngularVelocity * 0.5f) * pTimestep; | ||
559 | // m_lastAngularVelocity = Prim.ForceRotationalVelocity; // DEBUG: account for what Bullet did last time | ||
560 | // m_lastLinearVelocityVector = Prim.ForceVelocity * Quaternion.Inverse(Prim.ForceOrientation); // DEBUG: | ||
561 | // END DEBUG | ||
562 | |||
563 | m_vehicleMass = Prim.Linkset.LinksetMass; | ||
564 | 804 | ||
565 | MoveLinear(pTimestep); | 805 | MoveLinear(pTimestep); |
566 | // Commented out for debug | ||
567 | MoveAngular(pTimestep); | 806 | MoveAngular(pTimestep); |
568 | // Prim.ApplyTorqueImpulse(-Prim.RotationalVelocity * m_vehicleMass, false); // DEBUG DEBUG | ||
569 | // Prim.ForceRotationalVelocity = -Prim.RotationalVelocity; // DEBUG DEBUG | ||
570 | 807 | ||
571 | LimitRotation(pTimestep); | 808 | LimitRotation(pTimestep); |
572 | 809 | ||
573 | // remember the position so next step we can limit absolute movement effects | 810 | // remember the position so next step we can limit absolute movement effects |
574 | m_lastPositionVector = Prim.ForcePosition; | 811 | m_lastPositionVector = VehiclePosition; |
575 | 812 | ||
576 | VDetailLog("{0},BSDynamics.Step,frict={1},grav={2},inertia={3},mass={4}", // DEBUG DEBUG | 813 | // If we forced the changing of some vehicle parameters, update the values and |
577 | Prim.LocalID, | 814 | // for the physics engine to note the changes so an UpdateProperties event will happen. |
578 | BulletSimAPI.GetFriction2(Prim.PhysBody.ptr), | 815 | PushKnownChanged(); |
579 | BulletSimAPI.GetGravity2(Prim.PhysBody.ptr), | 816 | |
580 | Prim.Inertia, | ||
581 | m_vehicleMass | ||
582 | ); | ||
583 | VDetailLog("{0},BSDynamics.Step,done,pos={1},force={2},velocity={3},angvel={4}", | 817 | VDetailLog("{0},BSDynamics.Step,done,pos={1},force={2},velocity={3},angvel={4}", |
584 | Prim.LocalID, Prim.ForcePosition, Prim.Force, Prim.ForceVelocity, Prim.RotationalVelocity); | 818 | Prim.LocalID, VehiclePosition, Prim.Force, VehicleVelocity, VehicleRotationalVelocity); |
585 | }// end Step | 819 | } |
586 | 820 | ||
587 | // Apply the effect of the linear motor. | 821 | // Apply the effect of the linear motor and other linear motions (like hover and float). |
588 | // Also does hover and float. | ||
589 | private void MoveLinear(float pTimestep) | 822 | private void MoveLinear(float pTimestep) |
590 | { | 823 | { |
591 | // m_linearMotorDirection is the target direction we are moving relative to the vehicle coordinates | 824 | Vector3 linearMotorContribution = m_linearMotor.Step(pTimestep); |
592 | // m_lastLinearVelocityVector is the current speed we are moving in that direction | ||
593 | if (m_linearMotorDirection.LengthSquared() > 0.001f) | ||
594 | { | ||
595 | Vector3 origDir = m_linearMotorDirection; // DEBUG | ||
596 | Vector3 origVel = m_lastLinearVelocityVector; // DEBUG | ||
597 | // DEBUG: the vehicle velocity rotated to be relative to vehicle coordinates for comparison | ||
598 | Vector3 vehicleVelocity = Prim.ForceVelocity * Quaternion.Inverse(Prim.ForceOrientation); // DEBUG | ||
599 | 825 | ||
600 | // Add (desiredVelocity - lastAppliedVelocity) / howLongItShouldTakeToComplete | 826 | // The movement computed in the linear motor is relative to the vehicle |
601 | Vector3 addAmount = (m_linearMotorDirection - m_lastLinearVelocityVector)/(m_linearMotorTimescale) * pTimestep; | 827 | // coordinates. Rotate the movement to world coordinates. |
602 | m_lastLinearVelocityVector += addAmount; | 828 | linearMotorContribution *= VehicleOrientation; |
603 | 829 | ||
604 | float decayFactor = (1.0f / m_linearMotorDecayTimescale) * pTimestep; | 830 | // ================================================================== |
605 | m_linearMotorDirection *= (1f - decayFactor); | 831 | // Buoyancy: force to overcome gravity. |
832 | // m_VehicleBuoyancy: -1=2g; 0=1g; 1=0g; | ||
833 | // So, if zero, don't change anything (let gravity happen). If one, negate the effect of gravity. | ||
834 | Vector3 buoyancyContribution = Prim.PhysicsScene.DefaultGravity * m_VehicleBuoyancy; | ||
606 | 835 | ||
607 | // Rotate new object velocity from vehicle relative to world coordinates | 836 | Vector3 terrainHeightContribution = ComputeLinearTerrainHeightCorrection(pTimestep); |
608 | m_newVelocity = m_lastLinearVelocityVector * Prim.ForceOrientation; | ||
609 | 837 | ||
610 | // Apply friction for next time | 838 | Vector3 hoverContribution = ComputeLinearHover(pTimestep); |
611 | Vector3 frictionFactor = (Vector3.One / m_linearFrictionTimescale) * pTimestep; | ||
612 | m_lastLinearVelocityVector *= (Vector3.One - frictionFactor); | ||
613 | 839 | ||
614 | VDetailLog("{0},MoveLinear,nonZero,origlmDir={1},origlvVel={2},vehVel={3},add={4},decay={5},frict={6},lmDir={7},lvVec={8},newVel={9}", | 840 | ComputeLinearBlockingEndPoint(pTimestep); |
615 | Prim.LocalID, origDir, origVel, vehicleVelocity, addAmount, decayFactor, frictionFactor, | 841 | |
616 | m_linearMotorDirection, m_lastLinearVelocityVector, m_newVelocity); | 842 | Vector3 limitMotorUpContribution = ComputeLinearMotorUp(pTimestep); |
617 | } | 843 | |
618 | else | 844 | // ================================================================== |
619 | { | 845 | Vector3 newVelocity = linearMotorContribution |
620 | // if what remains of direction is very small, zero it. | 846 | + terrainHeightContribution |
621 | m_linearMotorDirection = Vector3.Zero; | 847 | + hoverContribution |
622 | m_lastLinearVelocityVector = Vector3.Zero; | 848 | + limitMotorUpContribution; |
623 | m_newVelocity = Vector3.Zero; | 849 | |
850 | Vector3 newForce = buoyancyContribution; | ||
624 | 851 | ||
625 | VDetailLog("{0},MoveLinear,zeroed", Prim.LocalID); | 852 | // If not changing some axis, reduce out velocity |
853 | if ((m_flags & (VehicleFlag.NO_X)) != 0) | ||
854 | newVelocity.X = 0; | ||
855 | if ((m_flags & (VehicleFlag.NO_Y)) != 0) | ||
856 | newVelocity.Y = 0; | ||
857 | if ((m_flags & (VehicleFlag.NO_Z)) != 0) | ||
858 | newVelocity.Z = 0; | ||
859 | |||
860 | // ================================================================== | ||
861 | // Clamp high or low velocities | ||
862 | float newVelocityLengthSq = newVelocity.LengthSquared(); | ||
863 | if (newVelocityLengthSq > 1000f) | ||
864 | { | ||
865 | newVelocity /= newVelocity.Length(); | ||
866 | newVelocity *= 1000f; | ||
626 | } | 867 | } |
868 | else if (newVelocityLengthSq < 0.001f) | ||
869 | newVelocity = Vector3.Zero; | ||
627 | 870 | ||
628 | // m_newVelocity is velocity computed from linear motor in world coordinates | 871 | // ================================================================== |
872 | // Stuff new linear velocity into the vehicle. | ||
873 | // Since the velocity is just being set, it is not scaled by pTimeStep. Bullet will do that for us. | ||
874 | VehicleVelocity = newVelocity; | ||
629 | 875 | ||
630 | // Gravity and Buoyancy | 876 | // Other linear forces are applied as forces. |
631 | // There is some gravity, make a gravity force vector that is applied after object velocity. | 877 | Vector3 totalDownForce = newForce * m_vehicleMass; |
632 | // m_VehicleBuoyancy: -1=2g; 0=1g; 1=0g; | 878 | if (!totalDownForce.ApproxEquals(Vector3.Zero, 0.01f)) |
633 | Vector3 grav = Prim.PhysicsScene.DefaultGravity * (1f - m_VehicleBuoyancy); | 879 | { |
880 | VehicleAddForce(totalDownForce); | ||
881 | } | ||
634 | 882 | ||
635 | /* | 883 | VDetailLog("{0}, MoveLinear,done,newVel={1},totDown={2},IsColliding={3}", |
636 | * RA: Not sure why one would do this unless we are hoping external forces are doing gravity, ... | 884 | Prim.LocalID, newVelocity, totalDownForce, Prim.IsColliding); |
637 | // Preserve the current Z velocity | 885 | VDetailLog("{0}, MoveLinear,done,linContrib={1},terrContrib={2},hoverContrib={3},limitContrib={4},buoyContrib={5}", |
638 | Vector3 vel_now = m_prim.Velocity; | 886 | Prim.LocalID, |
639 | m_dir.Z = vel_now.Z; // Preserve the accumulated falling velocity | 887 | linearMotorContribution, terrainHeightContribution, hoverContribution, |
640 | */ | 888 | limitMotorUpContribution, buoyancyContribution |
889 | ); | ||
641 | 890 | ||
642 | Vector3 pos = Prim.ForcePosition; | 891 | } // end MoveLinear() |
643 | // Vector3 accel = new Vector3(-(m_dir.X - m_lastLinearVelocityVector.X / 0.1f), -(m_dir.Y - m_lastLinearVelocityVector.Y / 0.1f), m_dir.Z - m_lastLinearVelocityVector.Z / 0.1f); | ||
644 | 892 | ||
893 | public Vector3 ComputeLinearTerrainHeightCorrection(float pTimestep) | ||
894 | { | ||
895 | Vector3 ret = Vector3.Zero; | ||
645 | // If below the terrain, move us above the ground a little. | 896 | // If below the terrain, move us above the ground a little. |
646 | float terrainHeight = Prim.PhysicsScene.TerrainManager.GetTerrainHeightAtXYZ(pos); | 897 | // TODO: Consider taking the rotated size of the object or possibly casting a ray. |
647 | // Taking the rotated size doesn't work here because m_prim.Size is the size of the root prim and not the linkset. | 898 | if (VehiclePosition.Z < GetTerrainHeight(VehiclePosition)) |
648 | // TODO: Add a m_prim.LinkSet.Size similar to m_prim.LinkSet.Mass. | ||
649 | // Vector3 rotatedSize = m_prim.Size * m_prim.ForceOrientation; | ||
650 | // if (rotatedSize.Z < terrainHeight) | ||
651 | if (pos.Z < terrainHeight) | ||
652 | { | 899 | { |
653 | pos.Z = terrainHeight + 2; | 900 | // TODO: correct position by applying force rather than forcing position. |
654 | Prim.ForcePosition = pos; | 901 | Vector3 newPosition = VehiclePosition; |
655 | VDetailLog("{0},MoveLinear,terrainHeight,terrainHeight={1},pos={2}", Prim.LocalID, terrainHeight, pos); | 902 | newPosition.Z = GetTerrainHeight(VehiclePosition) + 1f; |
903 | VehiclePosition = newPosition; | ||
904 | VDetailLog("{0}, MoveLinear,terrainHeight,terrainHeight={1},pos={2}", | ||
905 | Prim.LocalID, GetTerrainHeight(VehiclePosition), VehiclePosition); | ||
656 | } | 906 | } |
907 | return ret; | ||
908 | } | ||
909 | |||
910 | public Vector3 ComputeLinearHover(float pTimestep) | ||
911 | { | ||
912 | Vector3 ret = Vector3.Zero; | ||
657 | 913 | ||
658 | // Check if hovering | ||
659 | // m_VhoverEfficiency: 0=bouncy, 1=totally damped | 914 | // m_VhoverEfficiency: 0=bouncy, 1=totally damped |
660 | // m_VhoverTimescale: time to achieve height | 915 | // m_VhoverTimescale: time to achieve height |
661 | if ((m_flags & (VehicleFlag.HOVER_WATER_ONLY | VehicleFlag.HOVER_TERRAIN_ONLY | VehicleFlag.HOVER_GLOBAL_HEIGHT)) != 0) | 916 | if ((m_flags & (VehicleFlag.HOVER_WATER_ONLY | VehicleFlag.HOVER_TERRAIN_ONLY | VehicleFlag.HOVER_GLOBAL_HEIGHT)) != 0) |
@@ -663,11 +918,11 @@ namespace OpenSim.Region.Physics.BulletSPlugin | |||
663 | // We should hover, get the target height | 918 | // We should hover, get the target height |
664 | if ((m_flags & VehicleFlag.HOVER_WATER_ONLY) != 0) | 919 | if ((m_flags & VehicleFlag.HOVER_WATER_ONLY) != 0) |
665 | { | 920 | { |
666 | m_VhoverTargetHeight = Prim.PhysicsScene.GetWaterLevelAtXYZ(pos) + m_VhoverHeight; | 921 | m_VhoverTargetHeight = GetWaterLevel(VehiclePosition) + m_VhoverHeight; |
667 | } | 922 | } |
668 | if ((m_flags & VehicleFlag.HOVER_TERRAIN_ONLY) != 0) | 923 | if ((m_flags & VehicleFlag.HOVER_TERRAIN_ONLY) != 0) |
669 | { | 924 | { |
670 | m_VhoverTargetHeight = terrainHeight + m_VhoverHeight; | 925 | m_VhoverTargetHeight = GetTerrainHeight(VehiclePosition) + m_VhoverHeight; |
671 | } | 926 | } |
672 | if ((m_flags & VehicleFlag.HOVER_GLOBAL_HEIGHT) != 0) | 927 | if ((m_flags & VehicleFlag.HOVER_GLOBAL_HEIGHT) != 0) |
673 | { | 928 | { |
@@ -677,45 +932,47 @@ namespace OpenSim.Region.Physics.BulletSPlugin | |||
677 | if ((m_flags & VehicleFlag.HOVER_UP_ONLY) != 0) | 932 | if ((m_flags & VehicleFlag.HOVER_UP_ONLY) != 0) |
678 | { | 933 | { |
679 | // If body is already heigher, use its height as target height | 934 | // If body is already heigher, use its height as target height |
680 | if (pos.Z > m_VhoverTargetHeight) | 935 | if (VehiclePosition.Z > m_VhoverTargetHeight) |
681 | m_VhoverTargetHeight = pos.Z; | 936 | m_VhoverTargetHeight = VehiclePosition.Z; |
682 | } | 937 | } |
938 | |||
683 | if ((m_flags & VehicleFlag.LOCK_HOVER_HEIGHT) != 0) | 939 | if ((m_flags & VehicleFlag.LOCK_HOVER_HEIGHT) != 0) |
684 | { | 940 | { |
685 | if (Math.Abs(pos.Z - m_VhoverTargetHeight) > 0.2f) | 941 | if (Math.Abs(VehiclePosition.Z - m_VhoverTargetHeight) > 0.2f) |
686 | { | 942 | { |
943 | Vector3 pos = VehiclePosition; | ||
687 | pos.Z = m_VhoverTargetHeight; | 944 | pos.Z = m_VhoverTargetHeight; |
688 | Prim.ForcePosition = pos; | 945 | VehiclePosition = pos; |
689 | } | 946 | } |
690 | } | 947 | } |
691 | else | 948 | else |
692 | { | 949 | { |
693 | float verticalError = pos.Z - m_VhoverTargetHeight; | 950 | // Error is positive if below the target and negative if above. |
694 | // RA: where does the 50 come from? | 951 | float verticalError = m_VhoverTargetHeight - VehiclePosition.Z; |
695 | float verticalCorrectionVelocity = pTimestep * ((verticalError * 50.0f) / m_VhoverTimescale); | 952 | float verticalCorrectionVelocity = verticalError / m_VhoverTimescale; |
696 | // Replace Vertical speed with correction figure if significant | 953 | |
697 | if (Math.Abs(verticalError) > 0.01f) | 954 | // TODO: implement m_VhoverEfficiency correctly |
698 | { | 955 | if (Math.Abs(verticalError) > m_VhoverEfficiency) |
699 | m_newVelocity.Z += verticalCorrectionVelocity; | ||
700 | //KF: m_VhoverEfficiency is not yet implemented | ||
701 | } | ||
702 | else if (verticalError < -0.01) | ||
703 | { | ||
704 | m_newVelocity.Z -= verticalCorrectionVelocity; | ||
705 | } | ||
706 | else | ||
707 | { | 956 | { |
708 | m_newVelocity.Z = 0f; | 957 | ret = new Vector3(0f, 0f, verticalCorrectionVelocity); |
709 | } | 958 | } |
710 | } | 959 | } |
711 | 960 | ||
712 | VDetailLog("{0},MoveLinear,hover,pos={1},dir={2},height={3},target={4}", Prim.LocalID, pos, m_newVelocity, m_VhoverHeight, m_VhoverTargetHeight); | 961 | VDetailLog("{0}, MoveLinear,hover,pos={1},ret={2},hoverTS={3},height={4},target={5}", |
962 | Prim.LocalID, VehiclePosition, ret, m_VhoverTimescale, m_VhoverHeight, m_VhoverTargetHeight); | ||
713 | } | 963 | } |
714 | 964 | ||
965 | return ret; | ||
966 | } | ||
967 | |||
968 | public bool ComputeLinearBlockingEndPoint(float pTimestep) | ||
969 | { | ||
970 | bool changed = false; | ||
971 | |||
972 | Vector3 pos = VehiclePosition; | ||
715 | Vector3 posChange = pos - m_lastPositionVector; | 973 | Vector3 posChange = pos - m_lastPositionVector; |
716 | if (m_BlockingEndPoint != Vector3.Zero) | 974 | if (m_BlockingEndPoint != Vector3.Zero) |
717 | { | 975 | { |
718 | bool changed = false; | ||
719 | if (pos.X >= (m_BlockingEndPoint.X - (float)1)) | 976 | if (pos.X >= (m_BlockingEndPoint.X - (float)1)) |
720 | { | 977 | { |
721 | pos.X -= posChange.X + 1; | 978 | pos.X -= posChange.X + 1; |
@@ -743,233 +1000,109 @@ namespace OpenSim.Region.Physics.BulletSPlugin | |||
743 | } | 1000 | } |
744 | if (changed) | 1001 | if (changed) |
745 | { | 1002 | { |
746 | Prim.ForcePosition = pos; | 1003 | VehiclePosition = pos; |
747 | VDetailLog("{0},MoveLinear,blockingEndPoint,block={1},origPos={2},pos={3}", | 1004 | VDetailLog("{0}, MoveLinear,blockingEndPoint,block={1},origPos={2},pos={3}", |
748 | Prim.LocalID, m_BlockingEndPoint, posChange, pos); | 1005 | Prim.LocalID, m_BlockingEndPoint, posChange, pos); |
749 | } | 1006 | } |
750 | } | 1007 | } |
1008 | return changed; | ||
1009 | } | ||
751 | 1010 | ||
752 | #region downForce | 1011 | // From http://wiki.secondlife.com/wiki/LlSetVehicleFlags : |
753 | Vector3 downForce = Vector3.Zero; | 1012 | // Prevent ground vehicles from motoring into the sky. This flag has a subtle effect when |
1013 | // used with conjunction with banking: the strength of the banking will decay when the | ||
1014 | // vehicle no longer experiences collisions. The decay timescale is the same as | ||
1015 | // VEHICLE_BANKING_TIMESCALE. This is to help prevent ground vehicles from steering | ||
1016 | // when they are in mid jump. | ||
1017 | // TODO: this code is wrong. Also, what should it do for boats (height from water)? | ||
1018 | // This is just using the ground and a general collision check. Should really be using | ||
1019 | // a downward raycast to find what is below. | ||
1020 | public Vector3 ComputeLinearMotorUp(float pTimestep) | ||
1021 | { | ||
1022 | Vector3 ret = Vector3.Zero; | ||
1023 | float distanceAboveGround = 0f; | ||
754 | 1024 | ||
755 | if ((m_flags & (VehicleFlag.LIMIT_MOTOR_UP)) != 0) | 1025 | if ((m_flags & (VehicleFlag.LIMIT_MOTOR_UP)) != 0) |
756 | { | 1026 | { |
757 | // If the vehicle is motoring into the sky, get it going back down. | 1027 | float targetHeight = Type == Vehicle.TYPE_BOAT ? GetWaterLevel(VehiclePosition) : GetTerrainHeight(VehiclePosition); |
758 | // Is this an angular force or both linear and angular?? | 1028 | distanceAboveGround = VehiclePosition.Z - targetHeight; |
759 | float distanceAboveGround = pos.Z - terrainHeight; | 1029 | // Not colliding if the vehicle is off the ground |
760 | if (distanceAboveGround > 2f) | 1030 | if (!Prim.IsColliding) |
761 | { | 1031 | { |
762 | // downForce = new Vector3(0, 0, (-distanceAboveGround / m_bankingTimescale) * pTimestep); | ||
763 | // downForce = new Vector3(0, 0, -distanceAboveGround / m_bankingTimescale); | 1032 | // downForce = new Vector3(0, 0, -distanceAboveGround / m_bankingTimescale); |
764 | downForce = new Vector3(0, 0, -distanceAboveGround); | 1033 | ret = new Vector3(0, 0, -distanceAboveGround); |
765 | } | 1034 | } |
766 | // TODO: this calculation is all wrong. From the description at | 1035 | // TODO: this calculation is wrong. From the description at |
767 | // (http://wiki.secondlife.com/wiki/Category:LSL_Vehicle), the downForce | 1036 | // (http://wiki.secondlife.com/wiki/Category:LSL_Vehicle), the downForce |
768 | // has a decay factor. This says this force should | 1037 | // has a decay factor. This says this force should |
769 | // be computed with a motor. | 1038 | // be computed with a motor. |
770 | VDetailLog("{0},MoveLinear,limitMotorUp,distAbove={1},downForce={2}", | 1039 | // TODO: add interaction with banking. |
771 | Prim.LocalID, distanceAboveGround, downForce); | ||
772 | } | ||
773 | #endregion // downForce | ||
774 | |||
775 | // If not changing some axis, reduce out velocity | ||
776 | if ((m_flags & (VehicleFlag.NO_X)) != 0) | ||
777 | m_newVelocity.X = 0; | ||
778 | if ((m_flags & (VehicleFlag.NO_Y)) != 0) | ||
779 | m_newVelocity.Y = 0; | ||
780 | if ((m_flags & (VehicleFlag.NO_Z)) != 0) | ||
781 | m_newVelocity.Z = 0; | ||
782 | |||
783 | // Clamp REALLY high or low velocities | ||
784 | if (m_newVelocity.LengthSquared() > 1e6f) | ||
785 | { | ||
786 | m_newVelocity /= m_newVelocity.Length(); | ||
787 | m_newVelocity *= 1000f; | ||
788 | } | ||
789 | else if (m_newVelocity.LengthSquared() < 1e-6f) | ||
790 | m_newVelocity = Vector3.Zero; | ||
791 | |||
792 | // Stuff new linear velocity into the vehicle | ||
793 | Prim.ForceVelocity = m_newVelocity; | ||
794 | // Prim.ApplyForceImpulse((m_newVelocity - Prim.Velocity) * m_vehicleMass, false); // DEBUG DEBUG | ||
795 | |||
796 | Vector3 totalDownForce = downForce + grav; | ||
797 | if (totalDownForce != Vector3.Zero) | ||
798 | { | ||
799 | Prim.AddForce(totalDownForce * m_vehicleMass, false); | ||
800 | // Prim.ApplyForceImpulse(totalDownForce * m_vehicleMass, false); | ||
801 | } | 1040 | } |
802 | 1041 | VDetailLog("{0}, MoveLinear,limitMotorUp,distAbove={1},colliding={2},ret={3}", | |
803 | VDetailLog("{0},MoveLinear,done,lmDir={1},lmVel={2},newVel={3},primVel={4},totalDown={5}", | 1042 | Prim.LocalID, distanceAboveGround, Prim.IsColliding, ret); |
804 | Prim.LocalID, m_linearMotorDirection, m_lastLinearVelocityVector, m_newVelocity, Prim.Velocity, totalDownForce); | 1043 | return ret; |
805 | 1044 | } | |
806 | } // end MoveLinear() | ||
807 | 1045 | ||
808 | // ======================================================================= | 1046 | // ======================================================================= |
1047 | // ======================================================================= | ||
809 | // Apply the effect of the angular motor. | 1048 | // Apply the effect of the angular motor. |
1049 | // The 'contribution' is how much angular correction velocity each function wants. | ||
1050 | // All the contributions are added together and the resulting velocity is | ||
1051 | // set directly on the vehicle. | ||
810 | private void MoveAngular(float pTimestep) | 1052 | private void MoveAngular(float pTimestep) |
811 | { | 1053 | { |
812 | // m_angularMotorDirection // angular velocity requested by LSL motor | 1054 | // The user wants this many radians per second angular change? |
813 | // m_angularMotorApply // application frame counter | 1055 | Vector3 angularMotorContribution = m_angularMotor.Step(pTimestep); |
814 | // m_angularMotorVelocity // current angular motor velocity (ramps up and down) | 1056 | |
815 | // m_angularMotorTimescale // motor angular velocity ramp up rate | 1057 | // ================================================================== |
816 | // m_angularMotorDecayTimescale // motor angular velocity decay rate | 1058 | // From http://wiki.secondlife.com/wiki/LlSetVehicleFlags : |
817 | // m_angularFrictionTimescale // body angular velocity decay rate | 1059 | // This flag prevents linear deflection parallel to world z-axis. This is useful |
818 | // m_lastAngularVelocity // what was last applied to body | 1060 | // for preventing ground vehicles with large linear deflection, like bumper cars, |
819 | 1061 | // from climbing their linear deflection into the sky. | |
820 | if (m_angularMotorDirection.LengthSquared() > 0.0001) | 1062 | // That is, NO_DEFLECTION_UP says angular motion should not add any pitch or roll movement |
821 | { | 1063 | if ((m_flags & (VehicleFlag.NO_DEFLECTION_UP)) != 0) |
822 | Vector3 origVel = m_angularMotorVelocity; | ||
823 | Vector3 origDir = m_angularMotorDirection; | ||
824 | |||
825 | // new velocity += error / ( time to get there / step interval) | ||
826 | // requested direction - current vehicle direction | ||
827 | m_angularMotorVelocity += (m_angularMotorDirection - m_angularMotorVelocity) / (m_angularMotorTimescale / pTimestep); | ||
828 | // decay requested direction | ||
829 | m_angularMotorDirection *= (1.0f - (pTimestep * 1.0f/m_angularMotorDecayTimescale)); | ||
830 | |||
831 | VDetailLog("{0},MoveAngular,angularMotorApply,angTScale={1},timeStep={2},origvel={3},origDir={4},vel={5}", | ||
832 | Prim.LocalID, m_angularMotorTimescale, pTimestep, origVel, origDir, m_angularMotorVelocity); | ||
833 | } | ||
834 | else | ||
835 | { | 1064 | { |
836 | m_angularMotorVelocity = Vector3.Zero; | 1065 | angularMotorContribution.X = 0f; |
1066 | angularMotorContribution.Y = 0f; | ||
1067 | VDetailLog("{0}, MoveAngular,noDeflectionUp,angularMotorContrib={1}", Prim.LocalID, angularMotorContribution); | ||
837 | } | 1068 | } |
838 | 1069 | ||
839 | #region Vertical attactor | 1070 | Vector3 verticalAttractionContribution = ComputeAngularVerticalAttraction(); |
840 | 1071 | ||
841 | Vector3 vertattr = Vector3.Zero; | 1072 | Vector3 deflectionContribution = ComputeAngularDeflection(); |
842 | Vector3 deflection = Vector3.Zero; | ||
843 | Vector3 banking = Vector3.Zero; | ||
844 | 1073 | ||
845 | // If vertical attaction timescale is reasonable and we applied an angular force last time... | 1074 | Vector3 bankingContribution = ComputeAngularBanking(); |
846 | if (m_verticalAttractionTimescale < 300 && m_lastAngularVelocity != Vector3.Zero) | ||
847 | { | ||
848 | float VAservo = pTimestep * 0.2f / m_verticalAttractionTimescale; | ||
849 | if (Prim.IsColliding) | ||
850 | VAservo = pTimestep * 0.05f / (m_verticalAttractionTimescale); | ||
851 | |||
852 | VAservo *= (m_verticalAttractionEfficiency * m_verticalAttractionEfficiency); | ||
853 | |||
854 | // Create a vector of the vehicle "up" in world coordinates | ||
855 | Vector3 verticalError = Vector3.UnitZ * Prim.ForceOrientation; | ||
856 | // verticalError.X and .Y are the World error amounts. They are 0 when there is no | ||
857 | // error (Vehicle Body is 'vertical'), and .Z will be 1. As the body leans to its | ||
858 | // side |.X| will increase to 1 and .Z fall to 0. As body inverts |.X| will fall | ||
859 | // and .Z will go // negative. Similar for tilt and |.Y|. .X and .Y must be | ||
860 | // modulated to prevent a stable inverted body. | ||
861 | |||
862 | // Error is 0 (no error) to +/- 2 (max error) | ||
863 | if (verticalError.Z < 0.0f) | ||
864 | { | ||
865 | verticalError.X = 2.0f - verticalError.X; | ||
866 | verticalError.Y = 2.0f - verticalError.Y; | ||
867 | } | ||
868 | // scale it by VAservo (timestep and timescale) | ||
869 | verticalError = verticalError * VAservo; | ||
870 | 1075 | ||
871 | // As the body rotates around the X axis, then verticalError.Y increases; Rotated around Y | 1076 | // ================================================================== |
872 | // then .X increases, so change Body angular velocity X based on Y, and Y based on X. | 1077 | m_lastVertAttractor = verticalAttractionContribution; |
873 | // Z is not changed. | ||
874 | vertattr.X = verticalError.Y; | ||
875 | vertattr.Y = - verticalError.X; | ||
876 | vertattr.Z = 0f; | ||
877 | 1078 | ||
878 | // scaling appears better usingsquare-law | 1079 | m_lastAngularVelocity = angularMotorContribution |
879 | Vector3 angularVelocity = Prim.ForceRotationalVelocity; | 1080 | + verticalAttractionContribution |
880 | float bounce = 1.0f - (m_verticalAttractionEfficiency * m_verticalAttractionEfficiency); | 1081 | + deflectionContribution |
881 | vertattr.X += bounce * angularVelocity.X; | 1082 | + bankingContribution; |
882 | vertattr.Y += bounce * angularVelocity.Y; | ||
883 | |||
884 | VDetailLog("{0},MoveAngular,verticalAttraction,VAservo={1},effic={2},verticalError={3},bounce={4},vertattr={5}", | ||
885 | Prim.LocalID, VAservo, m_verticalAttractionEfficiency, verticalError, bounce, vertattr); | ||
886 | |||
887 | } | ||
888 | #endregion // Vertical attactor | ||
889 | 1083 | ||
890 | #region Deflection | 1084 | // ================================================================== |
891 | 1085 | // Apply the correction velocity. | |
892 | if (m_angularDeflectionEfficiency != 0) | 1086 | // TODO: Should this be applied as an angular force (torque)? |
1087 | if (!m_lastAngularVelocity.ApproxEquals(Vector3.Zero, 0.01f)) | ||
893 | { | 1088 | { |
894 | // Compute a scaled vector that points in the preferred axis (X direction) | 1089 | VehicleRotationalVelocity = m_lastAngularVelocity; |
895 | Vector3 scaledDefaultDirection = | ||
896 | new Vector3((pTimestep * 10 * (m_angularDeflectionEfficiency / m_angularDeflectionTimescale)), 0, 0); | ||
897 | // Adding the current vehicle orientation and reference frame displaces the orientation to the frame. | ||
898 | // Rotate the scaled default axix relative to the actual vehicle direction giving where it should point. | ||
899 | Vector3 preferredAxisOfMotion = scaledDefaultDirection * Quaternion.Add(Prim.ForceOrientation, m_referenceFrame); | ||
900 | |||
901 | // Scale by efficiency and timescale | ||
902 | deflection = (preferredAxisOfMotion * (m_angularDeflectionEfficiency) / m_angularDeflectionTimescale) * pTimestep; | ||
903 | |||
904 | VDetailLog("{0},MoveAngular,Deflection,perfAxis={1},deflection={2}", | ||
905 | Prim.LocalID, preferredAxisOfMotion, deflection); | ||
906 | // This deflection computation is not correct. | ||
907 | deflection = Vector3.Zero; | ||
908 | } | ||
909 | |||
910 | #endregion | ||
911 | 1090 | ||
912 | #region Banking | 1091 | VDetailLog("{0}, MoveAngular,done,nonZero,angMotorContrib={1},vertAttrContrib={2},bankContrib={3},deflectContrib={4},totalContrib={5}", |
913 | 1092 | Prim.LocalID, | |
914 | if (m_bankingEfficiency != 0) | 1093 | angularMotorContribution, verticalAttractionContribution, |
1094 | bankingContribution, deflectionContribution, | ||
1095 | m_lastAngularVelocity | ||
1096 | ); | ||
1097 | } | ||
1098 | else | ||
915 | { | 1099 | { |
916 | Vector3 dir = Vector3.One * Prim.ForceOrientation; | 1100 | // The vehicle is not adding anything angular wise. |
917 | float mult = (m_bankingMix*m_bankingMix)*-1*(m_bankingMix < 0 ? -1 : 1); | 1101 | VehicleRotationalVelocity = Vector3.Zero; |
918 | //Changes which way it banks in and out of turns | 1102 | VDetailLog("{0}, MoveAngular,done,zero", Prim.LocalID); |
919 | |||
920 | //Use the square of the efficiency, as it looks much more how SL banking works | ||
921 | float effSquared = (m_bankingEfficiency*m_bankingEfficiency); | ||
922 | if (m_bankingEfficiency < 0) | ||
923 | effSquared *= -1; //Keep the negative! | ||
924 | |||
925 | float mix = Math.Abs(m_bankingMix); | ||
926 | if (m_angularMotorVelocity.X == 0) | ||
927 | { | ||
928 | /*if (!parent.Orientation.ApproxEquals(this.m_referenceFrame, 0.25f)) | ||
929 | { | ||
930 | Vector3 axisAngle; | ||
931 | float angle; | ||
932 | parent.Orientation.GetAxisAngle(out axisAngle, out angle); | ||
933 | Vector3 rotatedVel = parent.Velocity * parent.Orientation; | ||
934 | if ((rotatedVel.X < 0 && axisAngle.Y > 0) || (rotatedVel.X > 0 && axisAngle.Y < 0)) | ||
935 | m_angularMotorVelocity.X += (effSquared * (mult * mix)) * (1f) * 10; | ||
936 | else | ||
937 | m_angularMotorVelocity.X += (effSquared * (mult * mix)) * (-1f) * 10; | ||
938 | }*/ | ||
939 | } | ||
940 | else | ||
941 | banking.Z += (effSquared*(mult*mix))*(m_angularMotorVelocity.X) * 4; | ||
942 | if (!Prim.IsColliding && Math.Abs(m_angularMotorVelocity.X) > mix) | ||
943 | //If they are colliding, we probably shouldn't shove the prim around... probably | ||
944 | { | ||
945 | float angVelZ = m_angularMotorVelocity.X*-1; | ||
946 | /*if(angVelZ > mix) | ||
947 | angVelZ = mix; | ||
948 | else if(angVelZ < -mix) | ||
949 | angVelZ = -mix;*/ | ||
950 | //This controls how fast and how far the banking occurs | ||
951 | Vector3 bankingRot = new Vector3(angVelZ*(effSquared*mult), 0, 0); | ||
952 | if (bankingRot.X > 3) | ||
953 | bankingRot.X = 3; | ||
954 | else if (bankingRot.X < -3) | ||
955 | bankingRot.X = -3; | ||
956 | bankingRot *= Prim.ForceOrientation; | ||
957 | banking += bankingRot; | ||
958 | } | ||
959 | m_angularMotorVelocity.X *= m_bankingEfficiency == 1 ? 0.0f : 1 - m_bankingEfficiency; | ||
960 | VDetailLog("{0},MoveAngular,Banking,bEff={1},angMotVel={2},banking={3}", | ||
961 | Prim.LocalID, m_bankingEfficiency, m_angularMotorVelocity, banking); | ||
962 | } | 1103 | } |
963 | 1104 | ||
964 | #endregion | 1105 | // ================================================================== |
965 | |||
966 | m_lastVertAttractor = vertattr; | ||
967 | |||
968 | // Sum velocities | ||
969 | m_lastAngularVelocity = m_angularMotorVelocity + vertattr + banking + deflection; | ||
970 | |||
971 | #region Linear Motor Offset | ||
972 | |||
973 | //Offset section | 1106 | //Offset section |
974 | if (m_linearMotorOffset != Vector3.Zero) | 1107 | if (m_linearMotorOffset != Vector3.Zero) |
975 | { | 1108 | { |
@@ -985,8 +1118,8 @@ namespace OpenSim.Region.Physics.BulletSPlugin | |||
985 | // | 1118 | // |
986 | // The torque created is the linear velocity crossed with the offset | 1119 | // The torque created is the linear velocity crossed with the offset |
987 | 1120 | ||
988 | // NOTE: this computation does should be in the linear section | 1121 | // TODO: this computation should be in the linear section |
989 | // because there we know the impulse being applied. | 1122 | // because that is where we know the impulse being applied. |
990 | Vector3 torqueFromOffset = Vector3.Zero; | 1123 | Vector3 torqueFromOffset = Vector3.Zero; |
991 | // torqueFromOffset = Vector3.Cross(m_linearMotorOffset, appliedImpulse); | 1124 | // torqueFromOffset = Vector3.Cross(m_linearMotorOffset, appliedImpulse); |
992 | if (float.IsNaN(torqueFromOffset.X)) | 1125 | if (float.IsNaN(torqueFromOffset.X)) |
@@ -995,47 +1128,184 @@ namespace OpenSim.Region.Physics.BulletSPlugin | |||
995 | torqueFromOffset.Y = 0; | 1128 | torqueFromOffset.Y = 0; |
996 | if (float.IsNaN(torqueFromOffset.Z)) | 1129 | if (float.IsNaN(torqueFromOffset.Z)) |
997 | torqueFromOffset.Z = 0; | 1130 | torqueFromOffset.Z = 0; |
998 | torqueFromOffset *= m_vehicleMass; | 1131 | |
999 | Prim.ApplyTorqueImpulse(torqueFromOffset, true); | 1132 | VehicleAddAngularForce(torqueFromOffset * m_vehicleMass); |
1000 | VDetailLog("{0},BSDynamic.MoveAngular,motorOffset,applyTorqueImpulse={1}", Prim.LocalID, torqueFromOffset); | 1133 | VDetailLog("{0}, BSDynamic.MoveAngular,motorOffset,applyTorqueImpulse={1}", Prim.LocalID, torqueFromOffset); |
1001 | } | 1134 | } |
1002 | 1135 | ||
1003 | #endregion | 1136 | } |
1137 | // From http://wiki.secondlife.com/wiki/Linden_Vehicle_Tutorial: | ||
1138 | // Some vehicles, like boats, should always keep their up-side up. This can be done by | ||
1139 | // enabling the "vertical attractor" behavior that springs the vehicle's local z-axis to | ||
1140 | // the world z-axis (a.k.a. "up"). To take advantage of this feature you would set the | ||
1141 | // VEHICLE_VERTICAL_ATTRACTION_TIMESCALE to control the period of the spring frequency, | ||
1142 | // and then set the VEHICLE_VERTICAL_ATTRACTION_EFFICIENCY to control the damping. An | ||
1143 | // efficiency of 0.0 will cause the spring to wobble around its equilibrium, while an | ||
1144 | // efficiency of 1.0 will cause the spring to reach its equilibrium with exponential decay. | ||
1145 | public Vector3 ComputeAngularVerticalAttraction() | ||
1146 | { | ||
1147 | Vector3 ret = Vector3.Zero; | ||
1004 | 1148 | ||
1005 | if ((m_flags & (VehicleFlag.NO_DEFLECTION_UP)) != 0) | 1149 | // If vertical attaction timescale is reasonable |
1150 | if (m_verticalAttractionTimescale < m_verticalAttractionCutoff) | ||
1006 | { | 1151 | { |
1007 | m_lastAngularVelocity.X = 0; | 1152 | // Take a vector pointing up and convert it from world to vehicle relative coords. |
1008 | m_lastAngularVelocity.Y = 0; | 1153 | Vector3 verticalError = Vector3.UnitZ * VehicleOrientation; |
1009 | VDetailLog("{0},MoveAngular,noDeflectionUp,lastAngular={1}", Prim.LocalID, m_lastAngularVelocity); | 1154 | |
1155 | // If vertical attraction correction is needed, the vector that was pointing up (UnitZ) | ||
1156 | // is now: | ||
1157 | // leaning to one side: rotated around the X axis with the Y value going | ||
1158 | // from zero (nearly straight up) to one (completely to the side)) or | ||
1159 | // leaning front-to-back: rotated around the Y axis with the value of X being between | ||
1160 | // zero and one. | ||
1161 | // The value of Z is how far the rotation is off with 1 meaning none and 0 being 90 degrees. | ||
1162 | |||
1163 | // Y error means needed rotation around X axis and visa versa. | ||
1164 | // Since the error goes from zero to one, the asin is the corresponding angle. | ||
1165 | ret.X = (float)Math.Asin(verticalError.Y); | ||
1166 | // (Tilt forward (positive X) needs to tilt back (rotate negative) around Y axis.) | ||
1167 | ret.Y = -(float)Math.Asin(verticalError.X); | ||
1168 | |||
1169 | // If verticalError.Z is negative, the vehicle is upside down. Add additional push. | ||
1170 | if (verticalError.Z < 0f) | ||
1171 | { | ||
1172 | ret.X += PIOverFour; | ||
1173 | ret.Y += PIOverFour; | ||
1174 | } | ||
1175 | |||
1176 | // 'ret' is now the necessary velocity to correct tilt in one second. | ||
1177 | // Correction happens over a number of seconds. | ||
1178 | Vector3 unscaledContrib = ret; | ||
1179 | ret /= m_verticalAttractionTimescale; | ||
1180 | |||
1181 | VDetailLog("{0}, MoveAngular,verticalAttraction,,verticalError={1},unscaled={2},eff={3},ts={4},vertAttr={5}", | ||
1182 | Prim.LocalID, verticalError, unscaledContrib, m_verticalAttractionEfficiency, m_verticalAttractionTimescale, ret); | ||
1010 | } | 1183 | } |
1184 | return ret; | ||
1185 | } | ||
1186 | |||
1187 | // Return the angular correction to correct the direction the vehicle is pointing to be | ||
1188 | // the direction is should want to be pointing. | ||
1189 | // The vehicle is moving in some direction and correct its orientation to it is pointing | ||
1190 | // in that direction. | ||
1191 | // TODO: implement reference frame. | ||
1192 | public Vector3 ComputeAngularDeflection() | ||
1193 | { | ||
1194 | Vector3 ret = Vector3.Zero; | ||
1195 | return ret; // DEBUG DEBUG DEBUG | ||
1196 | // Disable angular deflection for the moment. | ||
1197 | // Since angularMotorUp and angularDeflection are computed independently, they will calculate | ||
1198 | // approximately the same X or Y correction. When added together (when contributions are combined) | ||
1199 | // this creates an over-correction and then wabbling as the target is overshot. | ||
1200 | // TODO: rethink how the different correction computations inter-relate. | ||
1011 | 1201 | ||
1012 | if (m_lastAngularVelocity.ApproxEquals(Vector3.Zero, 0.01f)) | 1202 | if (m_angularDeflectionEfficiency != 0) |
1013 | { | 1203 | { |
1014 | m_lastAngularVelocity = Vector3.Zero; // Reduce small value to zero. | 1204 | // The direction the vehicle is moving |
1015 | Prim.ZeroAngularMotion(true); | 1205 | Vector3 movingDirection = VehicleVelocity; |
1016 | VDetailLog("{0},MoveAngular,zeroAngularMotion,lastAngular={1}", Prim.LocalID, m_lastAngularVelocity); | 1206 | movingDirection.Normalize(); |
1207 | |||
1208 | // The direction the vehicle is pointing | ||
1209 | Vector3 pointingDirection = Vector3.UnitX * VehicleOrientation; | ||
1210 | pointingDirection.Normalize(); | ||
1211 | |||
1212 | // The difference between what is and what should be. | ||
1213 | Vector3 deflectionError = movingDirection - pointingDirection; | ||
1214 | |||
1215 | // Don't try to correct very large errors (not our job) | ||
1216 | if (Math.Abs(deflectionError.X) > PIOverFour) deflectionError.X = 0f; | ||
1217 | if (Math.Abs(deflectionError.Y) > PIOverFour) deflectionError.Y = 0f; | ||
1218 | if (Math.Abs(deflectionError.Z) > PIOverFour) deflectionError.Z = 0f; | ||
1219 | |||
1220 | // ret = m_angularDeflectionCorrectionMotor(1f, deflectionError); | ||
1221 | |||
1222 | // Scale the correction by recovery timescale and efficiency | ||
1223 | ret = (-deflectionError) * m_angularDeflectionEfficiency; | ||
1224 | ret /= m_angularDeflectionTimescale; | ||
1225 | |||
1226 | VDetailLog("{0}, MoveAngular,Deflection,movingDir={1},pointingDir={2},deflectError={3},ret={4}", | ||
1227 | Prim.LocalID, movingDirection, pointingDirection, deflectionError, ret); | ||
1228 | VDetailLog("{0}, MoveAngular,Deflection,fwdSpd={1},defEff={2},defTS={3}", | ||
1229 | Prim.LocalID, VehicleForwardSpeed, m_angularDeflectionEfficiency, m_angularDeflectionTimescale); | ||
1017 | } | 1230 | } |
1018 | else | 1231 | return ret; |
1232 | } | ||
1233 | |||
1234 | // Return an angular change to rotate the vehicle around the Z axis when the vehicle | ||
1235 | // is tipped around the X axis. | ||
1236 | // From http://wiki.secondlife.com/wiki/Linden_Vehicle_Tutorial: | ||
1237 | // The vertical attractor feature must be enabled in order for the banking behavior to | ||
1238 | // function. The way banking works is this: a rotation around the vehicle's roll-axis will | ||
1239 | // produce a angular velocity around the yaw-axis, causing the vehicle to turn. The magnitude | ||
1240 | // of the yaw effect will be proportional to the | ||
1241 | // VEHICLE_BANKING_EFFICIENCY, the angle of the roll rotation, and sometimes the vehicle's | ||
1242 | // velocity along its preferred axis of motion. | ||
1243 | // The VEHICLE_BANKING_EFFICIENCY can vary between -1 and +1. When it is positive then any | ||
1244 | // positive rotation (by the right-hand rule) about the roll-axis will effect a | ||
1245 | // (negative) torque around the yaw-axis, making it turn to the right--that is the | ||
1246 | // vehicle will lean into the turn, which is how real airplanes and motorcycle's work. | ||
1247 | // Negating the banking coefficient will make it so that the vehicle leans to the | ||
1248 | // outside of the turn (not very "physical" but might allow interesting vehicles so why not?). | ||
1249 | // The VEHICLE_BANKING_MIX is a fake (i.e. non-physical) parameter that is useful for making | ||
1250 | // banking vehicles do what you want rather than what the laws of physics allow. | ||
1251 | // For example, consider a real motorcycle...it must be moving forward in order for | ||
1252 | // it to turn while banking, however video-game motorcycles are often configured | ||
1253 | // to turn in place when at a dead stop--because they are often easier to control | ||
1254 | // that way using the limited interface of the keyboard or game controller. The | ||
1255 | // VEHICLE_BANKING_MIX enables combinations of both realistic and non-realistic | ||
1256 | // banking by functioning as a slider between a banking that is correspondingly | ||
1257 | // totally static (0.0) and totally dynamic (1.0). By "static" we mean that the | ||
1258 | // banking effect depends only on the vehicle's rotation about its roll-axis compared | ||
1259 | // to "dynamic" where the banking is also proportional to its velocity along its | ||
1260 | // roll-axis. Finding the best value of the "mixture" will probably require trial and error. | ||
1261 | // The time it takes for the banking behavior to defeat a preexisting angular velocity about the | ||
1262 | // world z-axis is determined by the VEHICLE_BANKING_TIMESCALE. So if you want the vehicle to | ||
1263 | // bank quickly then give it a banking timescale of about a second or less, otherwise you can | ||
1264 | // make a sluggish vehicle by giving it a timescale of several seconds. | ||
1265 | public Vector3 ComputeAngularBanking() | ||
1266 | { | ||
1267 | Vector3 ret = Vector3.Zero; | ||
1268 | |||
1269 | if (m_bankingEfficiency != 0 && m_verticalAttractionTimescale < m_verticalAttractionCutoff) | ||
1019 | { | 1270 | { |
1020 | // Apply to the body. | 1271 | // This works by rotating a unit vector to the orientation of the vehicle. The |
1021 | // The above calculates the absolute angular velocity needed. Angular velocity is massless. | 1272 | // roll (tilt) will be Y component of a tilting Z vector (zero for no tilt |
1022 | // Since we are stuffing the angular velocity directly into the object, the computed | 1273 | // up to one for full over). |
1023 | // velocity needs to be scaled by the timestep. | 1274 | Vector3 rollComponents = Vector3.UnitZ * VehicleOrientation; |
1024 | Vector3 applyAngularForce = ((m_lastAngularVelocity * pTimestep) - Prim.ForceRotationalVelocity); | 1275 | |
1025 | Prim.ForceRotationalVelocity = applyAngularForce; | 1276 | // Figure out the yaw value for this much roll. |
1026 | 1277 | float turnComponent = rollComponents.Y * rollComponents.Y * m_bankingEfficiency; | |
1027 | // Decay the angular movement for next time | 1278 | // Keep the sign |
1028 | Vector3 decayamount = (Vector3.One / m_angularFrictionTimescale) * pTimestep; | 1279 | if (rollComponents.Y < 0f) |
1029 | m_lastAngularVelocity *= Vector3.One - decayamount; | 1280 | turnComponent = -turnComponent; |
1030 | 1281 | ||
1031 | VDetailLog("{0},MoveAngular,done,newRotVel={1},decay={2},lastAngular={3}", | 1282 | // TODO: there must be a better computation of the banking force. |
1032 | Prim.LocalID, applyAngularForce, decayamount, m_lastAngularVelocity); | 1283 | float bankingTurnForce = turnComponent; |
1284 | |||
1285 | // actual error = static turn error + dynamic turn error | ||
1286 | float mixedBankingError = bankingTurnForce * (1f - m_bankingMix) + bankingTurnForce * m_bankingMix * VehicleForwardSpeed; | ||
1287 | // TODO: the banking effect should not go to infinity but what to limit it to? | ||
1288 | mixedBankingError = ClampInRange(-20f, mixedBankingError, 20f); | ||
1289 | |||
1290 | // Build the force vector to change rotation from what it is to what it should be | ||
1291 | ret.Z = -mixedBankingError; | ||
1292 | |||
1293 | // Don't do it all at once. | ||
1294 | ret /= m_bankingTimescale; | ||
1295 | |||
1296 | VDetailLog("{0}, MoveAngular,Banking,rollComp={1},speed={2},turnComp={3},bankErr={4},mixedBankErr={5},ret={6}", | ||
1297 | Prim.LocalID, rollComponents, VehicleForwardSpeed, turnComponent, bankingTurnForce, mixedBankingError, ret); | ||
1033 | } | 1298 | } |
1034 | } //end MoveAngular | 1299 | return ret; |
1300 | } | ||
1035 | 1301 | ||
1302 | // This is from previous instantiations of XXXDynamics.cs. | ||
1303 | // Applies roll reference frame. | ||
1304 | // TODO: is this the right way to separate the code to do this operation? | ||
1305 | // Should this be in MoveAngular()? | ||
1036 | internal void LimitRotation(float timestep) | 1306 | internal void LimitRotation(float timestep) |
1037 | { | 1307 | { |
1038 | Quaternion rotq = Prim.ForceOrientation; | 1308 | Quaternion rotq = VehicleOrientation; |
1039 | Quaternion m_rot = rotq; | 1309 | Quaternion m_rot = rotq; |
1040 | if (m_RollreferenceFrame != Quaternion.Identity) | 1310 | if (m_RollreferenceFrame != Quaternion.Identity) |
1041 | { | 1311 | { |
@@ -1063,12 +1333,18 @@ namespace OpenSim.Region.Physics.BulletSPlugin | |||
1063 | } | 1333 | } |
1064 | if (rotq != m_rot) | 1334 | if (rotq != m_rot) |
1065 | { | 1335 | { |
1066 | Prim.ForceOrientation = m_rot; | 1336 | VehicleOrientation = m_rot; |
1067 | VDetailLog("{0},LimitRotation,done,orig={1},new={2}", Prim.LocalID, rotq, m_rot); | 1337 | VDetailLog("{0}, LimitRotation,done,orig={1},new={2}", Prim.LocalID, rotq, m_rot); |
1068 | } | 1338 | } |
1069 | 1339 | ||
1070 | } | 1340 | } |
1071 | 1341 | ||
1342 | private float ClampInRange(float low, float val, float high) | ||
1343 | { | ||
1344 | return Math.Max(low, Math.Min(val, high)); | ||
1345 | // return Utils.Clamp(val, low, high); | ||
1346 | } | ||
1347 | |||
1072 | // Invoke the detailed logger and output something if it's enabled. | 1348 | // Invoke the detailed logger and output something if it's enabled. |
1073 | private void VDetailLog(string msg, params Object[] args) | 1349 | private void VDetailLog(string msg, params Object[] args) |
1074 | { | 1350 | { |