diff options
Diffstat (limited to 'OpenSim/Region/Physics/BulletSPlugin/BSDynamics.cs')
-rw-r--r-- | OpenSim/Region/Physics/BulletSPlugin/BSDynamics.cs | 346 |
1 files changed, 182 insertions, 164 deletions
diff --git a/OpenSim/Region/Physics/BulletSPlugin/BSDynamics.cs b/OpenSim/Region/Physics/BulletSPlugin/BSDynamics.cs index aa247dd..0204967 100644 --- a/OpenSim/Region/Physics/BulletSPlugin/BSDynamics.cs +++ b/OpenSim/Region/Physics/BulletSPlugin/BSDynamics.cs | |||
@@ -125,33 +125,12 @@ namespace OpenSim.Region.Physics.BulletSPlugin | |||
125 | static readonly float PIOverFour = ((float)Math.PI) / 4f; | 125 | static readonly float PIOverFour = ((float)Math.PI) / 4f; |
126 | static readonly float PIOverTwo = ((float)Math.PI) / 2f; | 126 | static readonly float PIOverTwo = ((float)Math.PI) / 2f; |
127 | 127 | ||
128 | // For debugging, flags to turn on and off individual corrections. | ||
129 | public bool enableAngularVerticalAttraction; | ||
130 | public bool enableAngularDeflection; | ||
131 | public bool enableAngularBanking; | ||
132 | |||
133 | public BSDynamics(BSScene myScene, BSPrim myPrim, string actorName) | 128 | public BSDynamics(BSScene myScene, BSPrim myPrim, string actorName) |
134 | : base(myScene, myPrim, actorName) | 129 | : base(myScene, myPrim, actorName) |
135 | { | 130 | { |
136 | ControllingPrim = myPrim; | 131 | ControllingPrim = myPrim; |
137 | Type = Vehicle.TYPE_NONE; | 132 | Type = Vehicle.TYPE_NONE; |
138 | m_haveRegisteredForSceneEvents = false; | 133 | m_haveRegisteredForSceneEvents = false; |
139 | SetupVehicleDebugging(); | ||
140 | } | ||
141 | |||
142 | // Stopgap debugging enablement. Allows source level debugging but still checking | ||
143 | // in changes by making enablement of debugging flags from INI file. | ||
144 | public void SetupVehicleDebugging() | ||
145 | { | ||
146 | enableAngularVerticalAttraction = true; | ||
147 | enableAngularDeflection = false; | ||
148 | enableAngularBanking = true; | ||
149 | if (BSParam.VehicleDebuggingEnable) | ||
150 | { | ||
151 | enableAngularVerticalAttraction = true; | ||
152 | enableAngularDeflection = false; | ||
153 | enableAngularBanking = false; | ||
154 | } | ||
155 | } | 134 | } |
156 | 135 | ||
157 | // Return 'true' if this vehicle is doing vehicle things | 136 | // Return 'true' if this vehicle is doing vehicle things |
@@ -173,7 +152,7 @@ namespace OpenSim.Region.Physics.BulletSPlugin | |||
173 | switch (pParam) | 152 | switch (pParam) |
174 | { | 153 | { |
175 | case Vehicle.ANGULAR_DEFLECTION_EFFICIENCY: | 154 | case Vehicle.ANGULAR_DEFLECTION_EFFICIENCY: |
176 | m_angularDeflectionEfficiency = Math.Max(pValue, 0.01f); | 155 | m_angularDeflectionEfficiency = ClampInRange(0f, pValue, 1f); |
177 | break; | 156 | break; |
178 | case Vehicle.ANGULAR_DEFLECTION_TIMESCALE: | 157 | case Vehicle.ANGULAR_DEFLECTION_TIMESCALE: |
179 | m_angularDeflectionTimescale = Math.Max(pValue, 0.01f); | 158 | m_angularDeflectionTimescale = Math.Max(pValue, 0.01f); |
@@ -556,10 +535,10 @@ namespace OpenSim.Region.Physics.BulletSPlugin | |||
556 | } | 535 | } |
557 | 536 | ||
558 | m_linearMotor = new BSVMotor("LinearMotor", m_linearMotorTimescale, m_linearMotorDecayTimescale, 1f); | 537 | m_linearMotor = new BSVMotor("LinearMotor", m_linearMotorTimescale, m_linearMotorDecayTimescale, 1f); |
559 | m_linearMotor.PhysicsScene = m_physicsScene; // DEBUG DEBUG DEBUG (enables detail logging) | 538 | // m_linearMotor.PhysicsScene = m_physicsScene; // DEBUG DEBUG DEBUG (enables detail logging) |
560 | 539 | ||
561 | m_angularMotor = new BSVMotor("AngularMotor", m_angularMotorTimescale, m_angularMotorDecayTimescale, 1f); | 540 | m_angularMotor = new BSVMotor("AngularMotor", m_angularMotorTimescale, m_angularMotorDecayTimescale, 1f); |
562 | m_angularMotor.PhysicsScene = m_physicsScene; // DEBUG DEBUG DEBUG (enables detail logging) | 541 | // m_angularMotor.PhysicsScene = m_physicsScene; // DEBUG DEBUG DEBUG (enables detail logging) |
563 | 542 | ||
564 | /* Not implemented | 543 | /* Not implemented |
565 | m_verticalAttractionMotor = new BSVMotor("VerticalAttraction", m_verticalAttractionTimescale, | 544 | m_verticalAttractionMotor = new BSVMotor("VerticalAttraction", m_verticalAttractionTimescale, |
@@ -774,7 +753,7 @@ namespace OpenSim.Region.Physics.BulletSPlugin | |||
774 | 753 | ||
775 | // Since the computation of terrain height can be a little involved, this routine | 754 | // Since the computation of terrain height can be a little involved, this routine |
776 | // is used to fetch the height only once for each vehicle simulation step. | 755 | // is used to fetch the height only once for each vehicle simulation step. |
777 | Vector3 lastRememberedHeightPos; | 756 | Vector3 lastRememberedHeightPos = new Vector3(-1, -1, -1); |
778 | private float GetTerrainHeight(Vector3 pos) | 757 | private float GetTerrainHeight(Vector3 pos) |
779 | { | 758 | { |
780 | if ((m_knownHas & m_knownChangedTerrainHeight) == 0 || pos != lastRememberedHeightPos) | 759 | if ((m_knownHas & m_knownChangedTerrainHeight) == 0 || pos != lastRememberedHeightPos) |
@@ -788,14 +767,16 @@ namespace OpenSim.Region.Physics.BulletSPlugin | |||
788 | 767 | ||
789 | // Since the computation of water level can be a little involved, this routine | 768 | // Since the computation of water level can be a little involved, this routine |
790 | // is used ot fetch the level only once for each vehicle simulation step. | 769 | // is used ot fetch the level only once for each vehicle simulation step. |
770 | Vector3 lastRememberedWaterHeightPos = new Vector3(-1, -1, -1); | ||
791 | private float GetWaterLevel(Vector3 pos) | 771 | private float GetWaterLevel(Vector3 pos) |
792 | { | 772 | { |
793 | if ((m_knownHas & m_knownChangedWaterLevel) == 0) | 773 | if ((m_knownHas & m_knownChangedWaterLevel) == 0 || pos != lastRememberedWaterHeightPos) |
794 | { | 774 | { |
775 | lastRememberedWaterHeightPos = pos; | ||
795 | m_knownWaterLevel = ControllingPrim.PhysScene.TerrainManager.GetWaterLevelAtXYZ(pos); | 776 | m_knownWaterLevel = ControllingPrim.PhysScene.TerrainManager.GetWaterLevelAtXYZ(pos); |
796 | m_knownHas |= m_knownChangedWaterLevel; | 777 | m_knownHas |= m_knownChangedWaterLevel; |
797 | } | 778 | } |
798 | return (float)m_knownWaterLevel; | 779 | return m_knownWaterLevel; |
799 | } | 780 | } |
800 | 781 | ||
801 | private Vector3 VehiclePosition | 782 | private Vector3 VehiclePosition |
@@ -924,6 +905,7 @@ namespace OpenSim.Region.Physics.BulletSPlugin | |||
924 | return VehicleVelocity * Quaternion.Inverse(Quaternion.Normalize(VehicleOrientation)); | 905 | return VehicleVelocity * Quaternion.Inverse(Quaternion.Normalize(VehicleOrientation)); |
925 | } | 906 | } |
926 | } | 907 | } |
908 | |||
927 | private float VehicleForwardSpeed | 909 | private float VehicleForwardSpeed |
928 | { | 910 | { |
929 | get | 911 | get |
@@ -991,11 +973,17 @@ namespace OpenSim.Region.Physics.BulletSPlugin | |||
991 | { | 973 | { |
992 | Vector3 vel = VehicleVelocity; | 974 | Vector3 vel = VehicleVelocity; |
993 | if ((m_flags & (VehicleFlag.NO_X)) != 0) | 975 | if ((m_flags & (VehicleFlag.NO_X)) != 0) |
976 | { | ||
994 | vel.X = 0; | 977 | vel.X = 0; |
978 | } | ||
995 | if ((m_flags & (VehicleFlag.NO_Y)) != 0) | 979 | if ((m_flags & (VehicleFlag.NO_Y)) != 0) |
980 | { | ||
996 | vel.Y = 0; | 981 | vel.Y = 0; |
982 | } | ||
997 | if ((m_flags & (VehicleFlag.NO_Z)) != 0) | 983 | if ((m_flags & (VehicleFlag.NO_Z)) != 0) |
984 | { | ||
998 | vel.Z = 0; | 985 | vel.Z = 0; |
986 | } | ||
999 | VehicleVelocity = vel; | 987 | VehicleVelocity = vel; |
1000 | } | 988 | } |
1001 | 989 | ||
@@ -1053,26 +1041,37 @@ namespace OpenSim.Region.Physics.BulletSPlugin | |||
1053 | Vector3 linearDeflectionV = Vector3.Zero; | 1041 | Vector3 linearDeflectionV = Vector3.Zero; |
1054 | Vector3 velocityV = VehicleForwardVelocity; | 1042 | Vector3 velocityV = VehicleForwardVelocity; |
1055 | 1043 | ||
1056 | // Velocity in Y and Z dimensions is movement to the side or turning. | 1044 | if (BSParam.VehicleEnableLinearDeflection) |
1057 | // Compute deflection factor from the to the side and rotational velocity | 1045 | { |
1058 | linearDeflectionV.Y = SortedClampInRange(0, (velocityV.Y * m_linearDeflectionEfficiency) / m_linearDeflectionTimescale, velocityV.Y); | 1046 | // Velocity in Y and Z dimensions is movement to the side or turning. |
1059 | linearDeflectionV.Z = SortedClampInRange(0, (velocityV.Z * m_linearDeflectionEfficiency) / m_linearDeflectionTimescale, velocityV.Z); | 1047 | // Compute deflection factor from the to the side and rotational velocity |
1048 | linearDeflectionV.Y = SortedClampInRange(0, (velocityV.Y * m_linearDeflectionEfficiency) / m_linearDeflectionTimescale, velocityV.Y); | ||
1049 | linearDeflectionV.Z = SortedClampInRange(0, (velocityV.Z * m_linearDeflectionEfficiency) / m_linearDeflectionTimescale, velocityV.Z); | ||
1060 | 1050 | ||
1061 | // Velocity to the side and around is corrected and moved into the forward direction | 1051 | // Velocity to the side and around is corrected and moved into the forward direction |
1062 | linearDeflectionV.X += Math.Abs(linearDeflectionV.Y); | 1052 | linearDeflectionV.X += Math.Abs(linearDeflectionV.Y); |
1063 | linearDeflectionV.X += Math.Abs(linearDeflectionV.Z); | 1053 | linearDeflectionV.X += Math.Abs(linearDeflectionV.Z); |
1064 | 1054 | ||
1065 | // Scale the deflection to the fractional simulation time | 1055 | // Scale the deflection to the fractional simulation time |
1066 | linearDeflectionV *= pTimestep; | 1056 | linearDeflectionV *= pTimestep; |
1067 | 1057 | ||
1068 | // Subtract the sideways and rotational velocity deflection factors while adding the correction forward | 1058 | // Subtract the sideways and rotational velocity deflection factors while adding the correction forward |
1069 | linearDeflectionV *= new Vector3(1,-1,-1); | 1059 | linearDeflectionV *= new Vector3(1, -1, -1); |
1060 | |||
1061 | // Correction is vehicle relative. Convert to world coordinates. | ||
1062 | Vector3 linearDeflectionW = linearDeflectionV * VehicleOrientation; | ||
1063 | |||
1064 | // Optionally, if not colliding, don't effect world downward velocity. Let falling things fall. | ||
1065 | if (BSParam.VehicleLinearDeflectionNotCollidingNoZ && !m_controllingPrim.IsColliding) | ||
1066 | { | ||
1067 | linearDeflectionW.Z = 0f; | ||
1068 | } | ||
1070 | 1069 | ||
1071 | // Correciont is vehicle relative. Convert to world coordinates and add to the velocity | 1070 | VehicleVelocity += linearDeflectionW; |
1072 | VehicleVelocity += linearDeflectionV * VehicleOrientation; | ||
1073 | 1071 | ||
1074 | VDetailLog("{0}, MoveLinear,LinearDeflection,linDefEff={1},linDefTS={2},linDeflectionV={3}", | 1072 | VDetailLog("{0}, MoveLinear,LinearDeflection,linDefEff={1},linDefTS={2},linDeflectionV={3}", |
1075 | ControllingPrim.LocalID, m_linearDeflectionEfficiency, m_linearDeflectionTimescale, linearDeflectionV); | 1073 | ControllingPrim.LocalID, m_linearDeflectionEfficiency, m_linearDeflectionTimescale, linearDeflectionV); |
1074 | } | ||
1076 | } | 1075 | } |
1077 | 1076 | ||
1078 | public void ComputeLinearTerrainHeightCorrection(float pTimestep) | 1077 | public void ComputeLinearTerrainHeightCorrection(float pTimestep) |
@@ -1385,116 +1384,134 @@ namespace OpenSim.Region.Physics.BulletSPlugin | |||
1385 | { | 1384 | { |
1386 | 1385 | ||
1387 | // If vertical attaction timescale is reasonable | 1386 | // If vertical attaction timescale is reasonable |
1388 | if (enableAngularVerticalAttraction && m_verticalAttractionTimescale < m_verticalAttractionCutoff) | 1387 | if (BSParam.VehicleEnableAngularVerticalAttraction && m_verticalAttractionTimescale < m_verticalAttractionCutoff) |
1389 | { | 1388 | { |
1390 | //Another formula to try got from : | 1389 | Vector3 vehicleUpAxis = Vector3.UnitZ * VehicleOrientation; |
1391 | //http://answers.unity3d.com/questions/10425/how-to-stabilize-angular-motion-alignment-of-hover.html | 1390 | switch (BSParam.VehicleAngularVerticalAttractionAlgorithm) |
1392 | |||
1393 | Vector3 VehicleUpAxis = Vector3.UnitZ * VehicleOrientation; | ||
1394 | |||
1395 | // Flipping what was originally a timescale into a speed variable and then multiplying it by 2 | ||
1396 | // since only computing half the distance between the angles. | ||
1397 | float VerticalAttractionSpeed = (1 / m_verticalAttractionTimescale) * 2.0f; | ||
1398 | |||
1399 | // Make a prediction of where the up axis will be when this is applied rather then where it is now as | ||
1400 | // this makes for a smoother adjustment and less fighting between the various forces. | ||
1401 | Vector3 predictedUp = VehicleUpAxis * Quaternion.CreateFromAxisAngle(VehicleRotationalVelocity, 0f); | ||
1402 | |||
1403 | // This is only half the distance to the target so it will take 2 seconds to complete the turn. | ||
1404 | Vector3 torqueVector = Vector3.Cross(predictedUp, Vector3.UnitZ); | ||
1405 | |||
1406 | // Scale vector by our timescale since it is an acceleration it is r/s^2 or radians a timescale squared | ||
1407 | Vector3 vertContributionV = torqueVector * VerticalAttractionSpeed * VerticalAttractionSpeed; | ||
1408 | |||
1409 | VehicleRotationalVelocity += vertContributionV; | ||
1410 | |||
1411 | VDetailLog("{0}, MoveAngular,verticalAttraction,UpAxis={1},PredictedUp={2},torqueVector={3},contrib={4}", | ||
1412 | ControllingPrim.LocalID, | ||
1413 | VehicleUpAxis, | ||
1414 | predictedUp, | ||
1415 | torqueVector, | ||
1416 | vertContributionV); | ||
1417 | //===================================================================== | ||
1418 | /* | ||
1419 | // Possible solution derived from a discussion at: | ||
1420 | // http://stackoverflow.com/questions/14939657/computing-vector-from-quaternion-works-computing-quaternion-from-vector-does-no | ||
1421 | |||
1422 | // Create a rotation that is only the vehicle's rotation around Z | ||
1423 | Vector3 currentEuler = Vector3.Zero; | ||
1424 | VehicleOrientation.GetEulerAngles(out currentEuler.X, out currentEuler.Y, out currentEuler.Z); | ||
1425 | Quaternion justZOrientation = Quaternion.CreateFromAxisAngle(Vector3.UnitZ, currentEuler.Z); | ||
1426 | |||
1427 | // Create the axis that is perpendicular to the up vector and the rotated up vector. | ||
1428 | Vector3 differenceAxis = Vector3.Cross(Vector3.UnitZ * justZOrientation, Vector3.UnitZ * VehicleOrientation); | ||
1429 | // Compute the angle between those to vectors. | ||
1430 | double differenceAngle = Math.Acos((double)Vector3.Dot(Vector3.UnitZ, Vector3.Normalize(Vector3.UnitZ * VehicleOrientation))); | ||
1431 | // 'differenceAngle' is the angle to rotate and 'differenceAxis' is the plane to rotate in to get the vehicle vertical | ||
1432 | |||
1433 | // Reduce the change by the time period it is to change in. Timestep is handled when velocity is applied. | ||
1434 | // TODO: add 'efficiency'. | ||
1435 | differenceAngle /= m_verticalAttractionTimescale; | ||
1436 | |||
1437 | // Create the quaterian representing the correction angle | ||
1438 | Quaternion correctionRotation = Quaternion.CreateFromAxisAngle(differenceAxis, (float)differenceAngle); | ||
1439 | |||
1440 | // Turn that quaternion into Euler values to make it into velocities to apply. | ||
1441 | Vector3 vertContributionV = Vector3.Zero; | ||
1442 | correctionRotation.GetEulerAngles(out vertContributionV.X, out vertContributionV.Y, out vertContributionV.Z); | ||
1443 | vertContributionV *= -1f; | ||
1444 | |||
1445 | VehicleRotationalVelocity += vertContributionV; | ||
1446 | |||
1447 | VDetailLog("{0}, MoveAngular,verticalAttraction,diffAxis={1},diffAng={2},corrRot={3},contrib={4}", | ||
1448 | ControllingPrim.LocalID, | ||
1449 | differenceAxis, | ||
1450 | differenceAngle, | ||
1451 | correctionRotation, | ||
1452 | vertContributionV); | ||
1453 | */ | ||
1454 | |||
1455 | // =================================================================== | ||
1456 | /* | ||
1457 | Vector3 vertContributionV = Vector3.Zero; | ||
1458 | Vector3 origRotVelW = VehicleRotationalVelocity; // DEBUG DEBUG | ||
1459 | |||
1460 | // Take a vector pointing up and convert it from world to vehicle relative coords. | ||
1461 | Vector3 verticalError = Vector3.Normalize(Vector3.UnitZ * VehicleOrientation); | ||
1462 | |||
1463 | // If vertical attraction correction is needed, the vector that was pointing up (UnitZ) | ||
1464 | // is now: | ||
1465 | // leaning to one side: rotated around the X axis with the Y value going | ||
1466 | // from zero (nearly straight up) to one (completely to the side)) or | ||
1467 | // leaning front-to-back: rotated around the Y axis with the value of X being between | ||
1468 | // zero and one. | ||
1469 | // The value of Z is how far the rotation is off with 1 meaning none and 0 being 90 degrees. | ||
1470 | |||
1471 | // Y error means needed rotation around X axis and visa versa. | ||
1472 | // Since the error goes from zero to one, the asin is the corresponding angle. | ||
1473 | vertContributionV.X = (float)Math.Asin(verticalError.Y); | ||
1474 | // (Tilt forward (positive X) needs to tilt back (rotate negative) around Y axis.) | ||
1475 | vertContributionV.Y = -(float)Math.Asin(verticalError.X); | ||
1476 | |||
1477 | // If verticalError.Z is negative, the vehicle is upside down. Add additional push. | ||
1478 | if (verticalError.Z < 0f) | ||
1479 | { | 1391 | { |
1480 | vertContributionV.X += Math.Sign(vertContributionV.X) * PIOverFour; | 1392 | case 0: |
1481 | // vertContribution.Y -= PIOverFour; | 1393 | { |
1394 | //Another formula to try got from : | ||
1395 | //http://answers.unity3d.com/questions/10425/how-to-stabilize-angular-motion-alignment-of-hover.html | ||
1396 | |||
1397 | // Flipping what was originally a timescale into a speed variable and then multiplying it by 2 | ||
1398 | // since only computing half the distance between the angles. | ||
1399 | float VerticalAttractionSpeed = (1 / m_verticalAttractionTimescale) * 2.0f; | ||
1400 | |||
1401 | // Make a prediction of where the up axis will be when this is applied rather then where it is now as | ||
1402 | // this makes for a smoother adjustment and less fighting between the various forces. | ||
1403 | Vector3 predictedUp = vehicleUpAxis * Quaternion.CreateFromAxisAngle(VehicleRotationalVelocity, 0f); | ||
1404 | |||
1405 | // This is only half the distance to the target so it will take 2 seconds to complete the turn. | ||
1406 | Vector3 torqueVector = Vector3.Cross(predictedUp, Vector3.UnitZ); | ||
1407 | |||
1408 | // Scale vector by our timescale since it is an acceleration it is r/s^2 or radians a timescale squared | ||
1409 | Vector3 vertContributionV = torqueVector * VerticalAttractionSpeed * VerticalAttractionSpeed; | ||
1410 | |||
1411 | VehicleRotationalVelocity += vertContributionV; | ||
1412 | |||
1413 | VDetailLog("{0}, MoveAngular,verticalAttraction,upAxis={1},PredictedUp={2},torqueVector={3},contrib={4}", | ||
1414 | ControllingPrim.LocalID, | ||
1415 | vehicleUpAxis, | ||
1416 | predictedUp, | ||
1417 | torqueVector, | ||
1418 | vertContributionV); | ||
1419 | break; | ||
1420 | } | ||
1421 | case 1: | ||
1422 | { | ||
1423 | // Possible solution derived from a discussion at: | ||
1424 | // http://stackoverflow.com/questions/14939657/computing-vector-from-quaternion-works-computing-quaternion-from-vector-does-no | ||
1425 | |||
1426 | // Create a rotation that is only the vehicle's rotation around Z | ||
1427 | Vector3 currentEuler = Vector3.Zero; | ||
1428 | VehicleOrientation.GetEulerAngles(out currentEuler.X, out currentEuler.Y, out currentEuler.Z); | ||
1429 | Quaternion justZOrientation = Quaternion.CreateFromAxisAngle(Vector3.UnitZ, currentEuler.Z); | ||
1430 | |||
1431 | // Create the axis that is perpendicular to the up vector and the rotated up vector. | ||
1432 | Vector3 differenceAxis = Vector3.Cross(Vector3.UnitZ * justZOrientation, Vector3.UnitZ * VehicleOrientation); | ||
1433 | // Compute the angle between those to vectors. | ||
1434 | double differenceAngle = Math.Acos((double)Vector3.Dot(Vector3.UnitZ, Vector3.Normalize(Vector3.UnitZ * VehicleOrientation))); | ||
1435 | // 'differenceAngle' is the angle to rotate and 'differenceAxis' is the plane to rotate in to get the vehicle vertical | ||
1436 | |||
1437 | // Reduce the change by the time period it is to change in. Timestep is handled when velocity is applied. | ||
1438 | // TODO: add 'efficiency'. | ||
1439 | differenceAngle /= m_verticalAttractionTimescale; | ||
1440 | |||
1441 | // Create the quaterian representing the correction angle | ||
1442 | Quaternion correctionRotation = Quaternion.CreateFromAxisAngle(differenceAxis, (float)differenceAngle); | ||
1443 | |||
1444 | // Turn that quaternion into Euler values to make it into velocities to apply. | ||
1445 | Vector3 vertContributionV = Vector3.Zero; | ||
1446 | correctionRotation.GetEulerAngles(out vertContributionV.X, out vertContributionV.Y, out vertContributionV.Z); | ||
1447 | vertContributionV *= -1f; | ||
1448 | |||
1449 | VehicleRotationalVelocity += vertContributionV; | ||
1450 | |||
1451 | VDetailLog("{0}, MoveAngular,verticalAttraction,upAxis={1},diffAxis={2},diffAng={3},corrRot={4},contrib={5}", | ||
1452 | ControllingPrim.LocalID, | ||
1453 | vehicleUpAxis, | ||
1454 | differenceAxis, | ||
1455 | differenceAngle, | ||
1456 | correctionRotation, | ||
1457 | vertContributionV); | ||
1458 | break; | ||
1459 | } | ||
1460 | case 2: | ||
1461 | { | ||
1462 | Vector3 vertContributionV = Vector3.Zero; | ||
1463 | Vector3 origRotVelW = VehicleRotationalVelocity; // DEBUG DEBUG | ||
1464 | |||
1465 | // Take a vector pointing up and convert it from world to vehicle relative coords. | ||
1466 | Vector3 verticalError = Vector3.Normalize(Vector3.UnitZ * VehicleOrientation); | ||
1467 | |||
1468 | // If vertical attraction correction is needed, the vector that was pointing up (UnitZ) | ||
1469 | // is now: | ||
1470 | // leaning to one side: rotated around the X axis with the Y value going | ||
1471 | // from zero (nearly straight up) to one (completely to the side)) or | ||
1472 | // leaning front-to-back: rotated around the Y axis with the value of X being between | ||
1473 | // zero and one. | ||
1474 | // The value of Z is how far the rotation is off with 1 meaning none and 0 being 90 degrees. | ||
1475 | |||
1476 | // Y error means needed rotation around X axis and visa versa. | ||
1477 | // Since the error goes from zero to one, the asin is the corresponding angle. | ||
1478 | vertContributionV.X = (float)Math.Asin(verticalError.Y); | ||
1479 | // (Tilt forward (positive X) needs to tilt back (rotate negative) around Y axis.) | ||
1480 | vertContributionV.Y = -(float)Math.Asin(verticalError.X); | ||
1481 | |||
1482 | // If verticalError.Z is negative, the vehicle is upside down. Add additional push. | ||
1483 | if (verticalError.Z < 0f) | ||
1484 | { | ||
1485 | vertContributionV.X += Math.Sign(vertContributionV.X) * PIOverFour; | ||
1486 | // vertContribution.Y -= PIOverFour; | ||
1487 | } | ||
1488 | |||
1489 | // 'vertContrbution' is now the necessary angular correction to correct tilt in one second. | ||
1490 | // Correction happens over a number of seconds. | ||
1491 | Vector3 unscaledContribVerticalErrorV = vertContributionV; // DEBUG DEBUG | ||
1492 | |||
1493 | // The correction happens over the user's time period | ||
1494 | vertContributionV /= m_verticalAttractionTimescale; | ||
1495 | |||
1496 | // Rotate the vehicle rotation to the world coordinates. | ||
1497 | VehicleRotationalVelocity += (vertContributionV * VehicleOrientation); | ||
1498 | |||
1499 | VDetailLog("{0}, MoveAngular,verticalAttraction,,upAxis={1},origRotVW={2},vertError={3},unscaledV={4},eff={5},ts={6},vertContribV={7}", | ||
1500 | ControllingPrim.LocalID, | ||
1501 | vehicleUpAxis, | ||
1502 | origRotVelW, | ||
1503 | verticalError, | ||
1504 | unscaledContribVerticalErrorV, | ||
1505 | m_verticalAttractionEfficiency, | ||
1506 | m_verticalAttractionTimescale, | ||
1507 | vertContributionV); | ||
1508 | break; | ||
1509 | } | ||
1510 | default: | ||
1511 | { | ||
1512 | break; | ||
1513 | } | ||
1482 | } | 1514 | } |
1483 | |||
1484 | // 'vertContrbution' is now the necessary angular correction to correct tilt in one second. | ||
1485 | // Correction happens over a number of seconds. | ||
1486 | Vector3 unscaledContribVerticalErrorV = vertContributionV; // DEBUG DEBUG | ||
1487 | |||
1488 | // The correction happens over the user's time period | ||
1489 | vertContributionV /= m_verticalAttractionTimescale; | ||
1490 | |||
1491 | // Rotate the vehicle rotation to the world coordinates. | ||
1492 | VehicleRotationalVelocity += (vertContributionV * VehicleOrientation); | ||
1493 | |||
1494 | VDetailLog("{0}, MoveAngular,verticalAttraction,,origRotVW={1},vertError={2},unscaledV={3},eff={4},ts={5},vertContribV={6}", | ||
1495 | Prim.LocalID, origRotVelW, verticalError, unscaledContribVerticalErrorV, | ||
1496 | m_verticalAttractionEfficiency, m_verticalAttractionTimescale, vertContributionV); | ||
1497 | */ | ||
1498 | } | 1515 | } |
1499 | } | 1516 | } |
1500 | 1517 | ||
@@ -1504,13 +1521,9 @@ namespace OpenSim.Region.Physics.BulletSPlugin | |||
1504 | // in that direction. | 1521 | // in that direction. |
1505 | // TODO: implement reference frame. | 1522 | // TODO: implement reference frame. |
1506 | public void ComputeAngularDeflection() | 1523 | public void ComputeAngularDeflection() |
1507 | { | 1524 | { |
1508 | // Since angularMotorUp and angularDeflection are computed independently, they will calculate | ||
1509 | // approximately the same X or Y correction. When added together (when contributions are combined) | ||
1510 | // this creates an over-correction and then wabbling as the target is overshot. | ||
1511 | // TODO: rethink how the different correction computations inter-relate. | ||
1512 | 1525 | ||
1513 | if (enableAngularDeflection && m_angularDeflectionEfficiency != 0 && VehicleForwardSpeed > 0.2) | 1526 | if (BSParam.VehicleEnableAngularDeflection && m_angularDeflectionEfficiency != 0 && VehicleForwardSpeed > 0.2) |
1514 | { | 1527 | { |
1515 | Vector3 deflectContributionV = Vector3.Zero; | 1528 | Vector3 deflectContributionV = Vector3.Zero; |
1516 | 1529 | ||
@@ -1523,10 +1536,14 @@ namespace OpenSim.Region.Physics.BulletSPlugin | |||
1523 | 1536 | ||
1524 | // The direction the vehicle is pointing | 1537 | // The direction the vehicle is pointing |
1525 | Vector3 pointingDirection = Vector3.UnitX * VehicleOrientation; | 1538 | Vector3 pointingDirection = Vector3.UnitX * VehicleOrientation; |
1526 | pointingDirection.Normalize(); | 1539 | //Predict where the Vehicle will be pointing after AngularVelocity change is applied. This will keep |
1540 | // from overshooting and allow this correction to merge with the Vertical Attraction peacefully. | ||
1541 | Vector3 predictedPointingDirection = pointingDirection * Quaternion.CreateFromAxisAngle(VehicleRotationalVelocity, 0f); | ||
1542 | predictedPointingDirection.Normalize(); | ||
1527 | 1543 | ||
1528 | // The difference between what is and what should be. | 1544 | // The difference between what is and what should be. |
1529 | Vector3 deflectionError = movingDirection - pointingDirection; | 1545 | // Vector3 deflectionError = movingDirection - predictedPointingDirection; |
1546 | Vector3 deflectionError = Vector3.Cross(movingDirection, predictedPointingDirection); | ||
1530 | 1547 | ||
1531 | // Don't try to correct very large errors (not our job) | 1548 | // Don't try to correct very large errors (not our job) |
1532 | // if (Math.Abs(deflectionError.X) > PIOverFour) deflectionError.X = PIOverTwo * Math.Sign(deflectionError.X); | 1549 | // if (Math.Abs(deflectionError.X) > PIOverFour) deflectionError.X = PIOverTwo * Math.Sign(deflectionError.X); |
@@ -1539,15 +1556,16 @@ namespace OpenSim.Region.Physics.BulletSPlugin | |||
1539 | // ret = m_angularDeflectionCorrectionMotor(1f, deflectionError); | 1556 | // ret = m_angularDeflectionCorrectionMotor(1f, deflectionError); |
1540 | 1557 | ||
1541 | // Scale the correction by recovery timescale and efficiency | 1558 | // Scale the correction by recovery timescale and efficiency |
1542 | deflectContributionV = (-deflectionError) * m_angularDeflectionEfficiency; | 1559 | // Not modeling a spring so clamp the scale to no more then the arc |
1543 | deflectContributionV /= m_angularDeflectionTimescale; | 1560 | deflectContributionV = (-deflectionError) * ClampInRange(0, m_angularDeflectionEfficiency/m_angularDeflectionTimescale,1f); |
1544 | 1561 | //deflectContributionV /= m_angularDeflectionTimescale; | |
1545 | VehicleRotationalVelocity += deflectContributionV * VehicleOrientation; | ||
1546 | 1562 | ||
1563 | // VehicleRotationalVelocity += deflectContributionV * VehicleOrientation; | ||
1564 | VehicleRotationalVelocity += deflectContributionV; | ||
1547 | VDetailLog("{0}, MoveAngular,Deflection,movingDir={1},pointingDir={2},deflectError={3},ret={4}", | 1565 | VDetailLog("{0}, MoveAngular,Deflection,movingDir={1},pointingDir={2},deflectError={3},ret={4}", |
1548 | ControllingPrim.LocalID, movingDirection, pointingDirection, deflectionError, deflectContributionV); | 1566 | ControllingPrim.LocalID, movingDirection, pointingDirection, deflectionError, deflectContributionV); |
1549 | VDetailLog("{0}, MoveAngular,Deflection,fwdSpd={1},defEff={2},defTS={3}", | 1567 | VDetailLog("{0}, MoveAngular,Deflection,fwdSpd={1},defEff={2},defTS={3},PredictedPointingDir={4}", |
1550 | ControllingPrim.LocalID, VehicleForwardSpeed, m_angularDeflectionEfficiency, m_angularDeflectionTimescale); | 1568 | ControllingPrim.LocalID, VehicleForwardSpeed, m_angularDeflectionEfficiency, m_angularDeflectionTimescale, predictedPointingDirection); |
1551 | } | 1569 | } |
1552 | } | 1570 | } |
1553 | 1571 | ||
@@ -1584,7 +1602,7 @@ namespace OpenSim.Region.Physics.BulletSPlugin | |||
1584 | // make a sluggish vehicle by giving it a timescale of several seconds. | 1602 | // make a sluggish vehicle by giving it a timescale of several seconds. |
1585 | public void ComputeAngularBanking() | 1603 | public void ComputeAngularBanking() |
1586 | { | 1604 | { |
1587 | if (enableAngularBanking && m_bankingEfficiency != 0 && m_verticalAttractionTimescale < m_verticalAttractionCutoff) | 1605 | if (BSParam.VehicleEnableAngularBanking && m_bankingEfficiency != 0 && m_verticalAttractionTimescale < m_verticalAttractionCutoff) |
1588 | { | 1606 | { |
1589 | Vector3 bankingContributionV = Vector3.Zero; | 1607 | Vector3 bankingContributionV = Vector3.Zero; |
1590 | 1608 | ||