aboutsummaryrefslogtreecommitdiffstatshomepage
path: root/OpenSim/Region/Physics/BulletSPlugin/BSDynamics.cs
diff options
context:
space:
mode:
Diffstat (limited to '')
-rw-r--r--OpenSim/Region/Physics/BulletSPlugin/BSDynamics.cs1180
1 files changed, 802 insertions, 378 deletions
diff --git a/OpenSim/Region/Physics/BulletSPlugin/BSDynamics.cs b/OpenSim/Region/Physics/BulletSPlugin/BSDynamics.cs
index dbc9039..7ad7c89 100644
--- a/OpenSim/Region/Physics/BulletSPlugin/BSDynamics.cs
+++ b/OpenSim/Region/Physics/BulletSPlugin/BSDynamics.cs
@@ -24,28 +24,16 @@
24 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 24 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
25 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 25 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26 * 26 *
27 27 * The quotations from http://wiki.secondlife.com/wiki/Linden_Vehicle_Tutorial
28/* RA: June 14, 2011. Copied from ODEDynamics.cs and converted to 28 * are Copyright (c) 2009 Linden Research, Inc and are used under their license
29 * call the BulletSim system. 29 * of Creative Commons Attribution-Share Alike 3.0
30 */ 30 * (http://creativecommons.org/licenses/by-sa/3.0/).
31/* Revised Aug, Sept 2009 by Kitto Flora. ODEDynamics.cs replaces
32 * ODEVehicleSettings.cs. It and ODEPrim.cs are re-organised:
33 * ODEPrim.cs contains methods dealing with Prim editing, Prim
34 * characteristics and Kinetic motion.
35 * ODEDynamics.cs contains methods dealing with Prim Physical motion
36 * (dynamics) and the associated settings. Old Linear and angular
37 * motors for dynamic motion have been replace with MoveLinear()
38 * and MoveAngular(); 'Physical' is used only to switch ODE dynamic
39 * simualtion on/off; VEHICAL_TYPE_NONE/VEHICAL_TYPE_<other> is to
40 * switch between 'VEHICLE' parameter use and general dynamics
41 * settings use.
42 */ 31 */
43 32
44using System; 33using System;
45using System.Collections.Generic; 34using System.Collections.Generic;
46using System.Reflection; 35using System.Reflection;
47using System.Runtime.InteropServices; 36using System.Runtime.InteropServices;
48using log4net;
49using OpenMetaverse; 37using OpenMetaverse;
50using OpenSim.Framework; 38using OpenSim.Framework;
51using OpenSim.Region.Physics.Manager; 39using OpenSim.Region.Physics.Manager;
@@ -80,10 +68,10 @@ namespace OpenSim.Region.Physics.BulletSPlugin
80 private Quaternion m_referenceFrame = Quaternion.Identity; 68 private Quaternion m_referenceFrame = Quaternion.Identity;
81 69
82 // Linear properties 70 // Linear properties
71 private BSVMotor m_linearMotor = new BSVMotor("LinearMotor");
83 private Vector3 m_linearMotorDirection = Vector3.Zero; // velocity requested by LSL, decayed by time 72 private Vector3 m_linearMotorDirection = Vector3.Zero; // velocity requested by LSL, decayed by time
84 private Vector3 m_linearMotorOffset = Vector3.Zero; // the point of force can be offset from the center 73 private Vector3 m_linearMotorOffset = Vector3.Zero; // the point of force can be offset from the center
85 private Vector3 m_linearMotorDirectionLASTSET = Vector3.Zero; // velocity requested by LSL 74 private Vector3 m_linearMotorDirectionLASTSET = Vector3.Zero; // velocity requested by LSL
86 private Vector3 m_newVelocity = Vector3.Zero; // velocity computed to be applied to body
87 private Vector3 m_linearFrictionTimescale = Vector3.Zero; 75 private Vector3 m_linearFrictionTimescale = Vector3.Zero;
88 private float m_linearMotorDecayTimescale = 0; 76 private float m_linearMotorDecayTimescale = 0;
89 private float m_linearMotorTimescale = 0; 77 private float m_linearMotorTimescale = 0;
@@ -93,16 +81,18 @@ namespace OpenSim.Region.Physics.BulletSPlugin
93 // private Vector3 m_linearMotorOffset = Vector3.Zero; 81 // private Vector3 m_linearMotorOffset = Vector3.Zero;
94 82
95 //Angular properties 83 //Angular properties
84 private BSVMotor m_angularMotor = new BSVMotor("AngularMotor");
96 private Vector3 m_angularMotorDirection = Vector3.Zero; // angular velocity requested by LSL motor 85 private Vector3 m_angularMotorDirection = Vector3.Zero; // angular velocity requested by LSL motor
97 // private int m_angularMotorApply = 0; // application frame counter 86 // private int m_angularMotorApply = 0; // application frame counter
98 private Vector3 m_angularMotorVelocity = Vector3.Zero; // current angular motor velocity 87 private Vector3 m_angularMotorVelocity = Vector3.Zero; // current angular motor velocity
99 private float m_angularMotorTimescale = 0; // motor angular velocity ramp up rate 88 private float m_angularMotorTimescale = 0; // motor angular velocity ramp up rate
100 private float m_angularMotorDecayTimescale = 0; // motor angular velocity decay rate 89 private float m_angularMotorDecayTimescale = 0; // motor angular velocity decay rate
101 private Vector3 m_angularFrictionTimescale = Vector3.Zero; // body angular velocity decay rate 90 private Vector3 m_angularFrictionTimescale = Vector3.Zero; // body angular velocity decay rate
102 private Vector3 m_lastAngularVelocity = Vector3.Zero; // what was last applied to body 91 private Vector3 m_lastAngularVelocity = Vector3.Zero;
103 private Vector3 m_lastVertAttractor = Vector3.Zero; // what VA was last applied to body 92 private Vector3 m_lastVertAttractor = Vector3.Zero; // what VA was last applied to body
104 93
105 //Deflection properties 94 //Deflection properties
95 private BSVMotor m_angularDeflectionMotor = new BSVMotor("AngularDeflection");
106 private float m_angularDeflectionEfficiency = 0; 96 private float m_angularDeflectionEfficiency = 0;
107 private float m_angularDeflectionTimescale = 0; 97 private float m_angularDeflectionTimescale = 0;
108 private float m_linearDeflectionEfficiency = 0; 98 private float m_linearDeflectionEfficiency = 0;
@@ -114,32 +104,67 @@ namespace OpenSim.Region.Physics.BulletSPlugin
114 private float m_bankingTimescale = 0; 104 private float m_bankingTimescale = 0;
115 105
116 //Hover and Buoyancy properties 106 //Hover and Buoyancy properties
107 private BSVMotor m_hoverMotor = new BSVMotor("Hover");
117 private float m_VhoverHeight = 0f; 108 private float m_VhoverHeight = 0f;
118 private float m_VhoverEfficiency = 0f; 109 private float m_VhoverEfficiency = 0f;
119 private float m_VhoverTimescale = 0f; 110 private float m_VhoverTimescale = 0f;
120 private float m_VhoverTargetHeight = -1.0f; // if <0 then no hover, else its the current target height 111 private float m_VhoverTargetHeight = -1.0f; // if <0 then no hover, else its the current target height
121 private float m_VehicleBuoyancy = 0f; //KF: m_VehicleBuoyancy is set by VEHICLE_BUOYANCY for a vehicle. 112 // Modifies gravity. Slider between -1 (double-gravity) and 1 (full anti-gravity)
122 // Modifies gravity. Slider between -1 (double-gravity) and 1 (full anti-gravity) 113 private float m_VehicleBuoyancy = 0f;
123 // KF: So far I have found no good method to combine a script-requested .Z velocity and gravity. 114 private Vector3 m_VehicleGravity = Vector3.Zero; // Gravity computed when buoyancy set
124 // Therefore only m_VehicleBuoyancy=1 (0g) will use the script-requested .Z velocity.
125 115
126 //Attractor properties 116 //Attractor properties
127 private float m_verticalAttractionEfficiency = 1.0f; // damped 117 private BSVMotor m_verticalAttractionMotor = new BSVMotor("VerticalAttraction");
128 private float m_verticalAttractionTimescale = 500f; // Timescale > 300 means no vert attractor. 118 private float m_verticalAttractionEfficiency = 1.0f; // damped
119 private float m_verticalAttractionCutoff = 500f; // per the documentation
120 // Timescale > cutoff means no vert attractor.
121 private float m_verticalAttractionTimescale = 510f;
122
123 // Just some recomputed constants:
124 static readonly float PIOverFour = ((float)Math.PI) / 4f;
125 static readonly float PIOverTwo = ((float)Math.PI) / 2f;
126
127 // For debugging, flags to turn on and off individual corrections.
128 private bool enableAngularVerticalAttraction;
129 private bool enableAngularDeflection;
130 private bool enableAngularBanking;
129 131
130 public BSDynamics(BSScene myScene, BSPrim myPrim) 132 public BSDynamics(BSScene myScene, BSPrim myPrim)
131 { 133 {
132 PhysicsScene = myScene; 134 PhysicsScene = myScene;
133 Prim = myPrim; 135 Prim = myPrim;
134 Type = Vehicle.TYPE_NONE; 136 Type = Vehicle.TYPE_NONE;
137 SetupVehicleDebugging();
138 }
139
140 // Stopgap debugging enablement. Allows source level debugging but still checking
141 // in changes by making enablement of debugging flags from INI file.
142 public void SetupVehicleDebugging()
143 {
144 enableAngularVerticalAttraction = true;
145 enableAngularDeflection = false;
146 enableAngularBanking = false;
147 if (BSParam.VehicleDebuggingEnabled != ConfigurationParameters.numericFalse)
148 {
149 enableAngularVerticalAttraction = false;
150 enableAngularDeflection = false;
151 enableAngularBanking = false;
152 }
135 } 153 }
136 154
137 // Return 'true' if this vehicle is doing vehicle things 155 // Return 'true' if this vehicle is doing vehicle things
138 public bool IsActive 156 public bool IsActive
139 { 157 {
140 get { return Type != Vehicle.TYPE_NONE; } 158 get { return (Type != Vehicle.TYPE_NONE && Prim.IsPhysicallyActive); }
159 }
160
161 // Return 'true' if this a vehicle that should be sitting on the ground
162 public bool IsGroundVehicle
163 {
164 get { return (Type == Vehicle.TYPE_CAR || Type == Vehicle.TYPE_SLED); }
141 } 165 }
142 166
167 #region Vehicle parameter setting
143 internal void ProcessFloatVehicleParam(Vehicle pParam, float pValue) 168 internal void ProcessFloatVehicleParam(Vehicle pParam, float pValue)
144 { 169 {
145 VDetailLog("{0},ProcessFloatVehicleParam,param={1},val={2}", Prim.LocalID, pParam, pValue); 170 VDetailLog("{0},ProcessFloatVehicleParam,param={1},val={2}", Prim.LocalID, pParam, pValue);
@@ -152,13 +177,15 @@ namespace OpenSim.Region.Physics.BulletSPlugin
152 m_angularDeflectionTimescale = Math.Max(pValue, 0.01f); 177 m_angularDeflectionTimescale = Math.Max(pValue, 0.01f);
153 break; 178 break;
154 case Vehicle.ANGULAR_MOTOR_DECAY_TIMESCALE: 179 case Vehicle.ANGULAR_MOTOR_DECAY_TIMESCALE:
155 m_angularMotorDecayTimescale = Math.Max(pValue, 0.01f); 180 m_angularMotorDecayTimescale = ClampInRange(0.01f, pValue, 120);
181 m_angularMotor.TargetValueDecayTimeScale = m_angularMotorDecayTimescale;
156 break; 182 break;
157 case Vehicle.ANGULAR_MOTOR_TIMESCALE: 183 case Vehicle.ANGULAR_MOTOR_TIMESCALE:
158 m_angularMotorTimescale = Math.Max(pValue, 0.01f); 184 m_angularMotorTimescale = Math.Max(pValue, 0.01f);
185 m_angularMotor.TimeScale = m_angularMotorTimescale;
159 break; 186 break;
160 case Vehicle.BANKING_EFFICIENCY: 187 case Vehicle.BANKING_EFFICIENCY:
161 m_bankingEfficiency = Math.Max(-1f, Math.Min(pValue, 1f)); 188 m_bankingEfficiency = ClampInRange(-1f, pValue, 1f);
162 break; 189 break;
163 case Vehicle.BANKING_MIX: 190 case Vehicle.BANKING_MIX:
164 m_bankingMix = Math.Max(pValue, 0.01f); 191 m_bankingMix = Math.Max(pValue, 0.01f);
@@ -167,10 +194,11 @@ namespace OpenSim.Region.Physics.BulletSPlugin
167 m_bankingTimescale = Math.Max(pValue, 0.01f); 194 m_bankingTimescale = Math.Max(pValue, 0.01f);
168 break; 195 break;
169 case Vehicle.BUOYANCY: 196 case Vehicle.BUOYANCY:
170 m_VehicleBuoyancy = Math.Max(-1f, Math.Min(pValue, 1f)); 197 m_VehicleBuoyancy = ClampInRange(-1f, pValue, 1f);
198 m_VehicleGravity = Prim.ComputeGravity(m_VehicleBuoyancy);
171 break; 199 break;
172 case Vehicle.HOVER_EFFICIENCY: 200 case Vehicle.HOVER_EFFICIENCY:
173 m_VhoverEfficiency = Math.Max(0f, Math.Min(pValue, 1f)); 201 m_VhoverEfficiency = ClampInRange(0f, pValue, 1f);
174 break; 202 break;
175 case Vehicle.HOVER_HEIGHT: 203 case Vehicle.HOVER_HEIGHT:
176 m_VhoverHeight = pValue; 204 m_VhoverHeight = pValue;
@@ -185,33 +213,41 @@ namespace OpenSim.Region.Physics.BulletSPlugin
185 m_linearDeflectionTimescale = Math.Max(pValue, 0.01f); 213 m_linearDeflectionTimescale = Math.Max(pValue, 0.01f);
186 break; 214 break;
187 case Vehicle.LINEAR_MOTOR_DECAY_TIMESCALE: 215 case Vehicle.LINEAR_MOTOR_DECAY_TIMESCALE:
188 m_linearMotorDecayTimescale = Math.Max(pValue, 0.01f); 216 m_linearMotorDecayTimescale = ClampInRange(0.01f, pValue, 120);
217 m_linearMotor.TargetValueDecayTimeScale = m_linearMotorDecayTimescale;
189 break; 218 break;
190 case Vehicle.LINEAR_MOTOR_TIMESCALE: 219 case Vehicle.LINEAR_MOTOR_TIMESCALE:
191 m_linearMotorTimescale = Math.Max(pValue, 0.01f); 220 m_linearMotorTimescale = Math.Max(pValue, 0.01f);
221 m_linearMotor.TimeScale = m_linearMotorTimescale;
192 break; 222 break;
193 case Vehicle.VERTICAL_ATTRACTION_EFFICIENCY: 223 case Vehicle.VERTICAL_ATTRACTION_EFFICIENCY:
194 m_verticalAttractionEfficiency = Math.Max(0.1f, Math.Min(pValue, 1f)); 224 m_verticalAttractionEfficiency = ClampInRange(0.1f, pValue, 1f);
225 m_verticalAttractionMotor.Efficiency = m_verticalAttractionEfficiency;
195 break; 226 break;
196 case Vehicle.VERTICAL_ATTRACTION_TIMESCALE: 227 case Vehicle.VERTICAL_ATTRACTION_TIMESCALE:
197 m_verticalAttractionTimescale = Math.Max(pValue, 0.01f); 228 m_verticalAttractionTimescale = Math.Max(pValue, 0.01f);
229 m_verticalAttractionMotor.TimeScale = m_verticalAttractionTimescale;
198 break; 230 break;
199 231
200 // These are vector properties but the engine lets you use a single float value to 232 // These are vector properties but the engine lets you use a single float value to
201 // set all of the components to the same value 233 // set all of the components to the same value
202 case Vehicle.ANGULAR_FRICTION_TIMESCALE: 234 case Vehicle.ANGULAR_FRICTION_TIMESCALE:
203 m_angularFrictionTimescale = new Vector3(pValue, pValue, pValue); 235 m_angularFrictionTimescale = new Vector3(pValue, pValue, pValue);
236 m_angularMotor.FrictionTimescale = m_angularFrictionTimescale;
204 break; 237 break;
205 case Vehicle.ANGULAR_MOTOR_DIRECTION: 238 case Vehicle.ANGULAR_MOTOR_DIRECTION:
206 m_angularMotorDirection = new Vector3(pValue, pValue, pValue); 239 m_angularMotorDirection = new Vector3(pValue, pValue, pValue);
207 // m_angularMotorApply = 100; 240 m_angularMotor.Zero();
241 m_angularMotor.SetTarget(m_angularMotorDirection);
208 break; 242 break;
209 case Vehicle.LINEAR_FRICTION_TIMESCALE: 243 case Vehicle.LINEAR_FRICTION_TIMESCALE:
210 m_linearFrictionTimescale = new Vector3(pValue, pValue, pValue); 244 m_linearFrictionTimescale = new Vector3(pValue, pValue, pValue);
245 m_linearMotor.FrictionTimescale = m_linearFrictionTimescale;
211 break; 246 break;
212 case Vehicle.LINEAR_MOTOR_DIRECTION: 247 case Vehicle.LINEAR_MOTOR_DIRECTION:
213 m_linearMotorDirection = new Vector3(pValue, pValue, pValue); 248 m_linearMotorDirection = new Vector3(pValue, pValue, pValue);
214 m_linearMotorDirectionLASTSET = new Vector3(pValue, pValue, pValue); 249 m_linearMotorDirectionLASTSET = new Vector3(pValue, pValue, pValue);
250 m_linearMotor.SetTarget(m_linearMotorDirection);
215 break; 251 break;
216 case Vehicle.LINEAR_MOTOR_OFFSET: 252 case Vehicle.LINEAR_MOTOR_OFFSET:
217 m_linearMotorOffset = new Vector3(pValue, pValue, pValue); 253 m_linearMotorOffset = new Vector3(pValue, pValue, pValue);
@@ -227,21 +263,25 @@ namespace OpenSim.Region.Physics.BulletSPlugin
227 { 263 {
228 case Vehicle.ANGULAR_FRICTION_TIMESCALE: 264 case Vehicle.ANGULAR_FRICTION_TIMESCALE:
229 m_angularFrictionTimescale = new Vector3(pValue.X, pValue.Y, pValue.Z); 265 m_angularFrictionTimescale = new Vector3(pValue.X, pValue.Y, pValue.Z);
266 m_angularMotor.FrictionTimescale = m_angularFrictionTimescale;
230 break; 267 break;
231 case Vehicle.ANGULAR_MOTOR_DIRECTION: 268 case Vehicle.ANGULAR_MOTOR_DIRECTION:
232 // Limit requested angular speed to 2 rps= 4 pi rads/sec 269 // Limit requested angular speed to 2 rps= 4 pi rads/sec
233 pValue.X = Math.Max(-12.56f, Math.Min(pValue.X, 12.56f)); 270 pValue.X = ClampInRange(-12.56f, pValue.X, 12.56f);
234 pValue.Y = Math.Max(-12.56f, Math.Min(pValue.Y, 12.56f)); 271 pValue.Y = ClampInRange(-12.56f, pValue.Y, 12.56f);
235 pValue.Z = Math.Max(-12.56f, Math.Min(pValue.Z, 12.56f)); 272 pValue.Z = ClampInRange(-12.56f, pValue.Z, 12.56f);
236 m_angularMotorDirection = new Vector3(pValue.X, pValue.Y, pValue.Z); 273 m_angularMotorDirection = new Vector3(pValue.X, pValue.Y, pValue.Z);
237 // m_angularMotorApply = 100; 274 m_angularMotor.Zero();
275 m_angularMotor.SetTarget(m_angularMotorDirection);
238 break; 276 break;
239 case Vehicle.LINEAR_FRICTION_TIMESCALE: 277 case Vehicle.LINEAR_FRICTION_TIMESCALE:
240 m_linearFrictionTimescale = new Vector3(pValue.X, pValue.Y, pValue.Z); 278 m_linearFrictionTimescale = new Vector3(pValue.X, pValue.Y, pValue.Z);
279 m_linearMotor.FrictionTimescale = m_linearFrictionTimescale;
241 break; 280 break;
242 case Vehicle.LINEAR_MOTOR_DIRECTION: 281 case Vehicle.LINEAR_MOTOR_DIRECTION:
243 m_linearMotorDirection = new Vector3(pValue.X, pValue.Y, pValue.Z); 282 m_linearMotorDirection = new Vector3(pValue.X, pValue.Y, pValue.Z);
244 m_linearMotorDirectionLASTSET = new Vector3(pValue.X, pValue.Y, pValue.Z); 283 m_linearMotorDirectionLASTSET = new Vector3(pValue.X, pValue.Y, pValue.Z);
284 m_linearMotor.SetTarget(m_linearMotorDirection);
245 break; 285 break;
246 case Vehicle.LINEAR_MOTOR_OFFSET: 286 case Vehicle.LINEAR_MOTOR_OFFSET:
247 m_linearMotorOffset = new Vector3(pValue.X, pValue.Y, pValue.Z); 287 m_linearMotorOffset = new Vector3(pValue.X, pValue.Y, pValue.Z);
@@ -303,7 +343,7 @@ namespace OpenSim.Region.Physics.BulletSPlugin
303 m_VhoverEfficiency = 0; 343 m_VhoverEfficiency = 0;
304 m_VhoverTimescale = 0; 344 m_VhoverTimescale = 0;
305 m_VehicleBuoyancy = 0; 345 m_VehicleBuoyancy = 0;
306 346
307 m_linearDeflectionEfficiency = 1; 347 m_linearDeflectionEfficiency = 1;
308 m_linearDeflectionTimescale = 1; 348 m_linearDeflectionTimescale = 1;
309 349
@@ -319,6 +359,7 @@ namespace OpenSim.Region.Physics.BulletSPlugin
319 359
320 m_referenceFrame = Quaternion.Identity; 360 m_referenceFrame = Quaternion.Identity;
321 m_flags = (VehicleFlag)0; 361 m_flags = (VehicleFlag)0;
362
322 break; 363 break;
323 364
324 case Vehicle.TYPE_SLED: 365 case Vehicle.TYPE_SLED:
@@ -351,10 +392,14 @@ namespace OpenSim.Region.Physics.BulletSPlugin
351 m_bankingMix = 1; 392 m_bankingMix = 1;
352 393
353 m_referenceFrame = Quaternion.Identity; 394 m_referenceFrame = Quaternion.Identity;
354 m_flags |= (VehicleFlag.NO_DEFLECTION_UP | VehicleFlag.LIMIT_ROLL_ONLY | VehicleFlag.LIMIT_MOTOR_UP); 395 m_flags &= ~(VehicleFlag.HOVER_WATER_ONLY
355 m_flags &= 396 | VehicleFlag.HOVER_TERRAIN_ONLY
356 ~(VehicleFlag.HOVER_WATER_ONLY | VehicleFlag.HOVER_TERRAIN_ONLY | 397 | VehicleFlag.HOVER_GLOBAL_HEIGHT
357 VehicleFlag.HOVER_GLOBAL_HEIGHT | VehicleFlag.HOVER_UP_ONLY); 398 | VehicleFlag.HOVER_UP_ONLY);
399 m_flags |= (VehicleFlag.NO_DEFLECTION_UP
400 | VehicleFlag.LIMIT_ROLL_ONLY
401 | VehicleFlag.LIMIT_MOTOR_UP);
402
358 break; 403 break;
359 case Vehicle.TYPE_CAR: 404 case Vehicle.TYPE_CAR:
360 m_linearMotorDirection = Vector3.Zero; 405 m_linearMotorDirection = Vector3.Zero;
@@ -498,6 +543,7 @@ namespace OpenSim.Region.Physics.BulletSPlugin
498 m_bankingEfficiency = 0; 543 m_bankingEfficiency = 0;
499 m_bankingMix = 0.7f; 544 m_bankingMix = 0.7f;
500 m_bankingTimescale = 5; 545 m_bankingTimescale = 5;
546
501 m_referenceFrame = Quaternion.Identity; 547 m_referenceFrame = Quaternion.Identity;
502 548
503 m_referenceFrame = Quaternion.Identity; 549 m_referenceFrame = Quaternion.Identity;
@@ -510,7 +556,30 @@ namespace OpenSim.Region.Physics.BulletSPlugin
510 | VehicleFlag.HOVER_GLOBAL_HEIGHT); 556 | VehicleFlag.HOVER_GLOBAL_HEIGHT);
511 break; 557 break;
512 } 558 }
559
560 // Update any physical parameters based on this type.
561 Refresh();
562
563 m_linearMotor = new BSVMotor("LinearMotor", m_linearMotorTimescale,
564 m_linearMotorDecayTimescale, m_linearFrictionTimescale,
565 1f);
566 m_linearMotor.PhysicsScene = PhysicsScene; // DEBUG DEBUG DEBUG (enables detail logging)
567
568 m_angularMotor = new BSVMotor("AngularMotor", m_angularMotorTimescale,
569 m_angularMotorDecayTimescale, m_angularFrictionTimescale,
570 1f);
571 m_angularMotor.PhysicsScene = PhysicsScene; // DEBUG DEBUG DEBUG (enables detail logging)
572
573 /* Not implemented
574 m_verticalAttractionMotor = new BSVMotor("VerticalAttraction", m_verticalAttractionTimescale,
575 BSMotor.Infinite, BSMotor.InfiniteVector,
576 m_verticalAttractionEfficiency);
577 // Z goes away and we keep X and Y
578 m_verticalAttractionMotor.FrictionTimescale = new Vector3(BSMotor.Infinite, BSMotor.Infinite, 0.1f);
579 m_verticalAttractionMotor.PhysicsScene = PhysicsScene; // DEBUG DEBUG DEBUG (enables detail logging)
580 */
513 } 581 }
582 #endregion // Vehicle parameter setting
514 583
515 // Some of the properties of this prim may have changed. 584 // Some of the properties of this prim may have changed.
516 // Do any updating needed for a vehicle 585 // Do any updating needed for a vehicle
@@ -518,13 +587,38 @@ namespace OpenSim.Region.Physics.BulletSPlugin
518 { 587 {
519 if (IsActive) 588 if (IsActive)
520 { 589 {
521 // Friction effects are handled by this vehicle code 590 // Remember the mass so we don't have to fetch it every step
522 BulletSimAPI.SetFriction2(Prim.PhysBody.ptr, 0f); 591 m_vehicleMass = Prim.Linkset.LinksetMass;
523 BulletSimAPI.SetHitFraction2(Prim.PhysBody.ptr, 0f); 592
524 593 // Friction affects are handled by this vehicle code
525 // BulletSimAPI.SetAngularDamping2(Prim.PhysBody.ptr, 0.8f); 594 float friction = 0f;
526 595 PhysicsScene.PE.SetFriction(Prim.PhysBody, friction);
527 VDetailLog("{0},BSDynamics.Refresh,zeroingFriction and adding damping", Prim.LocalID); 596
597 // Moderate angular movement introduced by Bullet.
598 // TODO: possibly set AngularFactor and LinearFactor for the type of vehicle.
599 // Maybe compute linear and angular factor and damping from params.
600 float angularDamping = BSParam.VehicleAngularDamping;
601 PhysicsScene.PE.SetAngularDamping(Prim.PhysBody, angularDamping);
602
603 // Vehicles report collision events so we know when it's on the ground
604 PhysicsScene.PE.AddToCollisionFlags(Prim.PhysBody, CollisionFlags.BS_VEHICLE_COLLISIONS);
605
606 Prim.Inertia = PhysicsScene.PE.CalculateLocalInertia(Prim.PhysShape, m_vehicleMass);
607 PhysicsScene.PE.SetMassProps(Prim.PhysBody, m_vehicleMass, Prim.Inertia);
608 PhysicsScene.PE.UpdateInertiaTensor(Prim.PhysBody);
609
610 // Set the gravity for the vehicle depending on the buoyancy
611 // TODO: what should be done if prim and vehicle buoyancy differ?
612 m_VehicleGravity = Prim.ComputeGravity(m_VehicleBuoyancy);
613 // The actual vehicle gravity is set to zero in Bullet so we can do all the application of same.
614 PhysicsScene.PE.SetGravity(Prim.PhysBody, Vector3.Zero);
615
616 VDetailLog("{0},BSDynamics.Refresh,mass={1},frict={2},inert={3},aDamp={4},grav={5}",
617 Prim.LocalID, m_vehicleMass, friction, Prim.Inertia, angularDamping, m_VehicleGravity);
618 }
619 else
620 {
621 PhysicsScene.PE.RemoveFromCollisionFlags(Prim.PhysBody, CollisionFlags.BS_VEHICLE_COLLISIONS);
528 } 622 }
529 } 623 }
530 624
@@ -546,116 +640,371 @@ namespace OpenSim.Region.Physics.BulletSPlugin
546 Refresh(); 640 Refresh();
547 } 641 }
548 642
643 #region Known vehicle value functions
644 // Vehicle physical parameters that we buffer from constant getting and setting.
645 // The "m_known*" values are unknown until they are fetched and the m_knownHas flag is set.
646 // Changing is remembered and the parameter is stored back into the physics engine only if updated.
647 // This does two things: 1) saves continuious calls into unmanaged code, and
648 // 2) signals when a physics property update must happen back to the simulator
649 // to update values modified for the vehicle.
650 private int m_knownChanged;
651 private int m_knownHas;
652 private float m_knownTerrainHeight;
653 private float m_knownWaterLevel;
654 private Vector3 m_knownPosition;
655 private Vector3 m_knownVelocity;
656 private Vector3 m_knownForce;
657 private Vector3 m_knownForceImpulse;
658 private Quaternion m_knownOrientation;
659 private Vector3 m_knownRotationalVelocity;
660 private Vector3 m_knownRotationalForce;
661 private Vector3 m_knownRotationalImpulse;
662 private Vector3 m_knownForwardVelocity; // vehicle relative forward speed
663
664 private const int m_knownChangedPosition = 1 << 0;
665 private const int m_knownChangedVelocity = 1 << 1;
666 private const int m_knownChangedForce = 1 << 2;
667 private const int m_knownChangedForceImpulse = 1 << 3;
668 private const int m_knownChangedOrientation = 1 << 4;
669 private const int m_knownChangedRotationalVelocity = 1 << 5;
670 private const int m_knownChangedRotationalForce = 1 << 6;
671 private const int m_knownChangedRotationalImpulse = 1 << 7;
672 private const int m_knownChangedTerrainHeight = 1 << 8;
673 private const int m_knownChangedWaterLevel = 1 << 9;
674 private const int m_knownChangedForwardVelocity = 1 <<10;
675
676 private void ForgetKnownVehicleProperties()
677 {
678 m_knownHas = 0;
679 m_knownChanged = 0;
680 }
681 // Push all the changed values back into the physics engine
682 private void PushKnownChanged()
683 {
684 if (m_knownChanged != 0)
685 {
686 if ((m_knownChanged & m_knownChangedPosition) != 0)
687 Prim.ForcePosition = m_knownPosition;
688
689 if ((m_knownChanged & m_knownChangedOrientation) != 0)
690 Prim.ForceOrientation = m_knownOrientation;
691
692 if ((m_knownChanged & m_knownChangedVelocity) != 0)
693 {
694 Prim.ForceVelocity = m_knownVelocity;
695 // Fake out Bullet by making it think the velocity is the same as last time.
696 // Bullet does a bunch of smoothing for changing parameters.
697 // Since the vehicle is demanding this setting, we override Bullet's smoothing
698 // by telling Bullet the value was the same last time.
699 // PhysicsScene.PE.SetInterpolationLinearVelocity(Prim.PhysBody, m_knownVelocity);
700 }
701
702 if ((m_knownChanged & m_knownChangedForce) != 0)
703 Prim.AddForce((Vector3)m_knownForce, false /*pushForce*/, true /*inTaintTime*/);
704
705 if ((m_knownChanged & m_knownChangedForceImpulse) != 0)
706 Prim.AddForceImpulse((Vector3)m_knownForceImpulse, false /*pushforce*/, true /*inTaintTime*/);
707
708 if ((m_knownChanged & m_knownChangedRotationalVelocity) != 0)
709 {
710 Prim.ForceRotationalVelocity = m_knownRotationalVelocity;
711 // PhysicsScene.PE.SetInterpolationAngularVelocity(Prim.PhysBody, m_knownRotationalVelocity);
712 }
713
714 if ((m_knownChanged & m_knownChangedRotationalImpulse) != 0)
715 Prim.ApplyTorqueImpulse((Vector3)m_knownRotationalImpulse, true /*inTaintTime*/);
716
717 if ((m_knownChanged & m_knownChangedRotationalForce) != 0)
718 {
719 Prim.AddAngularForce((Vector3)m_knownRotationalForce, false /*pushForce*/, true /*inTaintTime*/);
720 }
721
722 // If we set one of the values (ie, the physics engine didn't do it) we must force
723 // an UpdateProperties event to send the changes up to the simulator.
724 PhysicsScene.PE.PushUpdate(Prim.PhysBody);
725 }
726 m_knownChanged = 0;
727 }
728
729 // Since the computation of terrain height can be a little involved, this routine
730 // is used to fetch the height only once for each vehicle simulation step.
731 Vector3 lastRememberedHeightPos;
732 private float GetTerrainHeight(Vector3 pos)
733 {
734 if ((m_knownHas & m_knownChangedTerrainHeight) == 0 || pos != lastRememberedHeightPos)
735 {
736 lastRememberedHeightPos = pos;
737 m_knownTerrainHeight = Prim.PhysicsScene.TerrainManager.GetTerrainHeightAtXYZ(pos);
738 m_knownHas |= m_knownChangedTerrainHeight;
739 }
740 return m_knownTerrainHeight;
741 }
742
743 // Since the computation of water level can be a little involved, this routine
744 // is used ot fetch the level only once for each vehicle simulation step.
745 private float GetWaterLevel(Vector3 pos)
746 {
747 if ((m_knownHas & m_knownChangedWaterLevel) == 0)
748 {
749 m_knownWaterLevel = Prim.PhysicsScene.TerrainManager.GetWaterLevelAtXYZ(pos);
750 m_knownHas |= m_knownChangedWaterLevel;
751 }
752 return (float)m_knownWaterLevel;
753 }
754
755 private Vector3 VehiclePosition
756 {
757 get
758 {
759 if ((m_knownHas & m_knownChangedPosition) == 0)
760 {
761 m_knownPosition = Prim.ForcePosition;
762 m_knownHas |= m_knownChangedPosition;
763 }
764 return m_knownPosition;
765 }
766 set
767 {
768 m_knownPosition = value;
769 m_knownChanged |= m_knownChangedPosition;
770 m_knownHas |= m_knownChangedPosition;
771 }
772 }
773
774 private Quaternion VehicleOrientation
775 {
776 get
777 {
778 if ((m_knownHas & m_knownChangedOrientation) == 0)
779 {
780 m_knownOrientation = Prim.ForceOrientation;
781 m_knownHas |= m_knownChangedOrientation;
782 }
783 return m_knownOrientation;
784 }
785 set
786 {
787 m_knownOrientation = value;
788 m_knownChanged |= m_knownChangedOrientation;
789 m_knownHas |= m_knownChangedOrientation;
790 }
791 }
792
793 private Vector3 VehicleVelocity
794 {
795 get
796 {
797 if ((m_knownHas & m_knownChangedVelocity) == 0)
798 {
799 m_knownVelocity = Prim.ForceVelocity;
800 m_knownHas |= m_knownChangedVelocity;
801 }
802 return (Vector3)m_knownVelocity;
803 }
804 set
805 {
806 m_knownVelocity = value;
807 m_knownChanged |= m_knownChangedVelocity;
808 m_knownHas |= m_knownChangedVelocity;
809 }
810 }
811
812 private void VehicleAddForce(Vector3 pForce)
813 {
814 if ((m_knownHas & m_knownChangedForce) == 0)
815 {
816 m_knownForce = Vector3.Zero;
817 m_knownHas |= m_knownChangedForce;
818 }
819 m_knownForce += pForce;
820 m_knownChanged |= m_knownChangedForce;
821 }
822
823 private void VehicleAddForceImpulse(Vector3 pImpulse)
824 {
825 if ((m_knownHas & m_knownChangedForceImpulse) == 0)
826 {
827 m_knownForceImpulse = Vector3.Zero;
828 m_knownHas |= m_knownChangedForceImpulse;
829 }
830 m_knownForceImpulse += pImpulse;
831 m_knownChanged |= m_knownChangedForceImpulse;
832 }
833
834 private Vector3 VehicleRotationalVelocity
835 {
836 get
837 {
838 if ((m_knownHas & m_knownChangedRotationalVelocity) == 0)
839 {
840 m_knownRotationalVelocity = Prim.ForceRotationalVelocity;
841 m_knownHas |= m_knownChangedRotationalVelocity;
842 }
843 return (Vector3)m_knownRotationalVelocity;
844 }
845 set
846 {
847 m_knownRotationalVelocity = value;
848 m_knownChanged |= m_knownChangedRotationalVelocity;
849 m_knownHas |= m_knownChangedRotationalVelocity;
850 }
851 }
852 private void VehicleAddAngularForce(Vector3 aForce)
853 {
854 if ((m_knownHas & m_knownChangedRotationalForce) == 0)
855 {
856 m_knownRotationalForce = Vector3.Zero;
857 }
858 m_knownRotationalForce += aForce;
859 m_knownChanged |= m_knownChangedRotationalForce;
860 m_knownHas |= m_knownChangedRotationalForce;
861 }
862 private void VehicleAddRotationalImpulse(Vector3 pImpulse)
863 {
864 if ((m_knownHas & m_knownChangedRotationalImpulse) == 0)
865 {
866 m_knownRotationalImpulse = Vector3.Zero;
867 m_knownHas |= m_knownChangedRotationalImpulse;
868 }
869 m_knownRotationalImpulse += pImpulse;
870 m_knownChanged |= m_knownChangedRotationalImpulse;
871 }
872
873 // Vehicle relative forward velocity
874 private Vector3 VehicleForwardVelocity
875 {
876 get
877 {
878 if ((m_knownHas & m_knownChangedForwardVelocity) == 0)
879 {
880 m_knownForwardVelocity = VehicleVelocity * Quaternion.Inverse(Quaternion.Normalize(VehicleOrientation));
881 m_knownHas |= m_knownChangedForwardVelocity;
882 }
883 return m_knownForwardVelocity;
884 }
885 }
886 private float VehicleForwardSpeed
887 {
888 get
889 {
890 return VehicleForwardVelocity.X;
891 }
892 }
893
894 #endregion // Known vehicle value functions
895
549 // One step of the vehicle properties for the next 'pTimestep' seconds. 896 // One step of the vehicle properties for the next 'pTimestep' seconds.
550 internal void Step(float pTimestep) 897 internal void Step(float pTimestep)
551 { 898 {
552 if (!IsActive) return; 899 if (!IsActive) return;
553 900
554 // DEBUG 901 if (PhysicsScene.VehiclePhysicalLoggingEnabled)
555 // Because Bullet does apply forces to the vehicle, our last computed 902 PhysicsScene.PE.DumpRigidBody(PhysicsScene.World, Prim.PhysBody);
556 // linear and angular velocities are not what is happening now.
557 // Vector3 externalAngularVelocity = Prim.ForceRotationalVelocity - m_lastAngularVelocity;
558 // m_lastAngularVelocity += (externalAngularVelocity * 0.5f) * pTimestep;
559 // m_lastAngularVelocity = Prim.ForceRotationalVelocity; // DEBUG: account for what Bullet did last time
560 // m_lastLinearVelocityVector = Prim.ForceVelocity * Quaternion.Inverse(Prim.ForceOrientation); // DEBUG:
561 // END DEBUG
562 903
563 m_vehicleMass = Prim.Linkset.LinksetMass; 904 ForgetKnownVehicleProperties();
564 905
565 MoveLinear(pTimestep); 906 MoveLinear(pTimestep);
566 // Commented out for debug
567 MoveAngular(pTimestep); 907 MoveAngular(pTimestep);
568 // Prim.ApplyTorqueImpulse(-Prim.RotationalVelocity * m_vehicleMass, false); // DEBUG DEBUG
569 // Prim.ForceRotationalVelocity = -Prim.RotationalVelocity; // DEBUG DEBUG
570 908
571 LimitRotation(pTimestep); 909 LimitRotation(pTimestep);
572 910
573 // remember the position so next step we can limit absolute movement effects 911 // remember the position so next step we can limit absolute movement effects
574 m_lastPositionVector = Prim.ForcePosition; 912 m_lastPositionVector = VehiclePosition;
575 913
576 VDetailLog("{0},BSDynamics.Step,frict={1},grav={2},inertia={3},mass={4}", // DEBUG DEBUG 914 // If we forced the changing of some vehicle parameters, update the values and
577 Prim.LocalID, 915 // for the physics engine to note the changes so an UpdateProperties event will happen.
578 BulletSimAPI.GetFriction2(Prim.PhysBody.ptr), 916 PushKnownChanged();
579 BulletSimAPI.GetGravity2(Prim.PhysBody.ptr), 917
580 Prim.Inertia, 918 if (PhysicsScene.VehiclePhysicalLoggingEnabled)
581 m_vehicleMass 919 PhysicsScene.PE.DumpRigidBody(PhysicsScene.World, Prim.PhysBody);
582 ); 920
583 VDetailLog("{0},BSDynamics.Step,done,pos={1},force={2},velocity={3},angvel={4}", 921 VDetailLog("{0},BSDynamics.Step,done,pos={1}, force={2},velocity={3},angvel={4}",
584 Prim.LocalID, Prim.ForcePosition, Prim.Force, Prim.ForceVelocity, Prim.RotationalVelocity); 922 Prim.LocalID, VehiclePosition, m_knownForce, VehicleVelocity, VehicleRotationalVelocity);
585 }// end Step 923 }
586 924
587 // Apply the effect of the linear motor. 925 // Apply the effect of the linear motor and other linear motions (like hover and float).
588 // Also does hover and float.
589 private void MoveLinear(float pTimestep) 926 private void MoveLinear(float pTimestep)
590 { 927 {
591 // m_linearMotorDirection is the target direction we are moving relative to the vehicle coordinates 928 ComputeLinearVelocity(pTimestep);
592 // m_lastLinearVelocityVector is the current speed we are moving in that direction
593 if (m_linearMotorDirection.LengthSquared() > 0.001f)
594 {
595 Vector3 origDir = m_linearMotorDirection; // DEBUG
596 Vector3 origVel = m_lastLinearVelocityVector; // DEBUG
597 // DEBUG: the vehicle velocity rotated to be relative to vehicle coordinates for comparison
598 Vector3 vehicleVelocity = Prim.ForceVelocity * Quaternion.Inverse(Prim.ForceOrientation); // DEBUG
599 929
600 // Add (desiredVelocity - lastAppliedVelocity) / howLongItShouldTakeToComplete 930 ComputeLinearTerrainHeightCorrection(pTimestep);
601 Vector3 addAmount = (m_linearMotorDirection - m_lastLinearVelocityVector)/(m_linearMotorTimescale) * pTimestep;
602 m_lastLinearVelocityVector += addAmount;
603 931
604 float decayFactor = (1.0f / m_linearMotorDecayTimescale) * pTimestep; 932 ComputeLinearHover(pTimestep);
605 m_linearMotorDirection *= (1f - decayFactor);
606 933
607 // Rotate new object velocity from vehicle relative to world coordinates 934 ComputeLinearBlockingEndPoint(pTimestep);
608 m_newVelocity = m_lastLinearVelocityVector * Prim.ForceOrientation;
609 935
610 // Apply friction for next time 936 ComputeLinearMotorUp(pTimestep);
611 Vector3 frictionFactor = (Vector3.One / m_linearFrictionTimescale) * pTimestep;
612 m_lastLinearVelocityVector *= (Vector3.One - frictionFactor);
613 937
614 VDetailLog("{0},MoveLinear,nonZero,origlmDir={1},origlvVel={2},vehVel={3},add={4},decay={5},frict={6},lmDir={7},lvVec={8},newVel={9}", 938 ApplyGravity(pTimestep);
615 Prim.LocalID, origDir, origVel, vehicleVelocity, addAmount, decayFactor, frictionFactor, 939
616 m_linearMotorDirection, m_lastLinearVelocityVector, m_newVelocity); 940 // If not changing some axis, reduce out velocity
617 } 941 if ((m_flags & (VehicleFlag.NO_X | VehicleFlag.NO_Y | VehicleFlag.NO_Z)) != 0)
618 else
619 { 942 {
620 // if what remains of direction is very small, zero it. 943 Vector3 vel = VehicleVelocity;
621 m_linearMotorDirection = Vector3.Zero; 944 if ((m_flags & (VehicleFlag.NO_X)) != 0)
622 m_lastLinearVelocityVector = Vector3.Zero; 945 vel.X = 0;
623 m_newVelocity = Vector3.Zero; 946 if ((m_flags & (VehicleFlag.NO_Y)) != 0)
947 vel.Y = 0;
948 if ((m_flags & (VehicleFlag.NO_Z)) != 0)
949 vel.Z = 0;
950 VehicleVelocity = vel;
951 }
624 952
625 VDetailLog("{0},MoveLinear,zeroed", Prim.LocalID); 953 // ==================================================================
954 // Clamp high or low velocities
955 float newVelocityLengthSq = VehicleVelocity.LengthSquared();
956 if (newVelocityLengthSq > BSParam.VehicleMaxLinearVelocity)
957 {
958 VehicleVelocity /= VehicleVelocity.Length();
959 VehicleVelocity *= BSParam.VehicleMaxLinearVelocity;
626 } 960 }
961 else if (newVelocityLengthSq < 0.001f)
962 VehicleVelocity = Vector3.Zero;
627 963
628 // m_newVelocity is velocity computed from linear motor in world coordinates 964 VDetailLog("{0}, MoveLinear,done,isColl={1},newVel={2}", Prim.LocalID, Prim.IsColliding, VehicleVelocity );
629 965
630 // Gravity and Buoyancy 966 } // end MoveLinear()
631 // There is some gravity, make a gravity force vector that is applied after object velocity.
632 // m_VehicleBuoyancy: -1=2g; 0=1g; 1=0g;
633 Vector3 grav = Prim.PhysicsScene.DefaultGravity * (1f - m_VehicleBuoyancy);
634 967
635 /* 968 public void ComputeLinearVelocity(float pTimestep)
636 * RA: Not sure why one would do this unless we are hoping external forces are doing gravity, ... 969 {
637 // Preserve the current Z velocity 970 // Step the motor from the current value. Get the correction needed this step.
638 Vector3 vel_now = m_prim.Velocity; 971 Vector3 currentVel = VehicleVelocity * Quaternion.Inverse(VehicleOrientation);
639 m_dir.Z = vel_now.Z; // Preserve the accumulated falling velocity 972 Vector3 linearMotorCorrectionV = m_linearMotor.Step(pTimestep, currentVel);
640 */ 973
974 // Motor is vehicle coordinates. Rotate it to world coordinates
975 Vector3 linearMotorVelocityW = linearMotorCorrectionV * VehicleOrientation;
641 976
642 Vector3 pos = Prim.ForcePosition; 977 // If we're a ground vehicle, don't add any upward Z movement
643// Vector3 accel = new Vector3(-(m_dir.X - m_lastLinearVelocityVector.X / 0.1f), -(m_dir.Y - m_lastLinearVelocityVector.Y / 0.1f), m_dir.Z - m_lastLinearVelocityVector.Z / 0.1f); 978 if ((m_flags & VehicleFlag.LIMIT_MOTOR_UP) != 0)
979 {
980 if (linearMotorVelocityW.Z > 0f)
981 linearMotorVelocityW.Z = 0f;
982 }
983
984 // Add this correction to the velocity to make it faster/slower.
985 VehicleVelocity += linearMotorVelocityW;
986
987 VDetailLog("{0}, MoveLinear,velocity,vehVel={1},correction={2},force={3}",
988 Prim.LocalID, VehicleVelocity, linearMotorCorrectionV, linearMotorVelocityW);
989 }
644 990
991 public void ComputeLinearTerrainHeightCorrection(float pTimestep)
992 {
645 // If below the terrain, move us above the ground a little. 993 // If below the terrain, move us above the ground a little.
646 float terrainHeight = Prim.PhysicsScene.TerrainManager.GetTerrainHeightAtXYZ(pos); 994 // TODO: Consider taking the rotated size of the object or possibly casting a ray.
647 // Taking the rotated size doesn't work here because m_prim.Size is the size of the root prim and not the linkset. 995 if (VehiclePosition.Z < GetTerrainHeight(VehiclePosition))
648 // TODO: Add a m_prim.LinkSet.Size similar to m_prim.LinkSet.Mass.
649 // Vector3 rotatedSize = m_prim.Size * m_prim.ForceOrientation;
650 // if (rotatedSize.Z < terrainHeight)
651 if (pos.Z < terrainHeight)
652 { 996 {
653 pos.Z = terrainHeight + 2; 997 // Force position because applying force won't get the vehicle through the terrain
654 Prim.ForcePosition = pos; 998 Vector3 newPosition = VehiclePosition;
655 VDetailLog("{0},MoveLinear,terrainHeight,terrainHeight={1},pos={2}", Prim.LocalID, terrainHeight, pos); 999 newPosition.Z = GetTerrainHeight(VehiclePosition) + 1f;
1000 VehiclePosition = newPosition;
1001 VDetailLog("{0}, MoveLinear,terrainHeight,terrainHeight={1},pos={2}",
1002 Prim.LocalID, GetTerrainHeight(VehiclePosition), VehiclePosition);
656 } 1003 }
1004 }
657 1005
658 // Check if hovering 1006 public void ComputeLinearHover(float pTimestep)
1007 {
659 // m_VhoverEfficiency: 0=bouncy, 1=totally damped 1008 // m_VhoverEfficiency: 0=bouncy, 1=totally damped
660 // m_VhoverTimescale: time to achieve height 1009 // m_VhoverTimescale: time to achieve height
661 if ((m_flags & (VehicleFlag.HOVER_WATER_ONLY | VehicleFlag.HOVER_TERRAIN_ONLY | VehicleFlag.HOVER_GLOBAL_HEIGHT)) != 0) 1010 if ((m_flags & (VehicleFlag.HOVER_WATER_ONLY | VehicleFlag.HOVER_TERRAIN_ONLY | VehicleFlag.HOVER_GLOBAL_HEIGHT)) != 0)
@@ -663,11 +1012,11 @@ namespace OpenSim.Region.Physics.BulletSPlugin
663 // We should hover, get the target height 1012 // We should hover, get the target height
664 if ((m_flags & VehicleFlag.HOVER_WATER_ONLY) != 0) 1013 if ((m_flags & VehicleFlag.HOVER_WATER_ONLY) != 0)
665 { 1014 {
666 m_VhoverTargetHeight = Prim.PhysicsScene.GetWaterLevelAtXYZ(pos) + m_VhoverHeight; 1015 m_VhoverTargetHeight = GetWaterLevel(VehiclePosition) + m_VhoverHeight;
667 } 1016 }
668 if ((m_flags & VehicleFlag.HOVER_TERRAIN_ONLY) != 0) 1017 if ((m_flags & VehicleFlag.HOVER_TERRAIN_ONLY) != 0)
669 { 1018 {
670 m_VhoverTargetHeight = terrainHeight + m_VhoverHeight; 1019 m_VhoverTargetHeight = GetTerrainHeight(VehiclePosition) + m_VhoverHeight;
671 } 1020 }
672 if ((m_flags & VehicleFlag.HOVER_GLOBAL_HEIGHT) != 0) 1021 if ((m_flags & VehicleFlag.HOVER_GLOBAL_HEIGHT) != 0)
673 { 1022 {
@@ -677,45 +1026,63 @@ namespace OpenSim.Region.Physics.BulletSPlugin
677 if ((m_flags & VehicleFlag.HOVER_UP_ONLY) != 0) 1026 if ((m_flags & VehicleFlag.HOVER_UP_ONLY) != 0)
678 { 1027 {
679 // If body is already heigher, use its height as target height 1028 // If body is already heigher, use its height as target height
680 if (pos.Z > m_VhoverTargetHeight) 1029 if (VehiclePosition.Z > m_VhoverTargetHeight)
681 m_VhoverTargetHeight = pos.Z; 1030 m_VhoverTargetHeight = VehiclePosition.Z;
682 } 1031 }
1032
683 if ((m_flags & VehicleFlag.LOCK_HOVER_HEIGHT) != 0) 1033 if ((m_flags & VehicleFlag.LOCK_HOVER_HEIGHT) != 0)
684 { 1034 {
685 if (Math.Abs(pos.Z - m_VhoverTargetHeight) > 0.2f) 1035 if (Math.Abs(VehiclePosition.Z - m_VhoverTargetHeight) > 0.2f)
686 { 1036 {
1037 Vector3 pos = VehiclePosition;
687 pos.Z = m_VhoverTargetHeight; 1038 pos.Z = m_VhoverTargetHeight;
688 Prim.ForcePosition = pos; 1039 VehiclePosition = pos;
1040
1041 VDetailLog("{0}, MoveLinear,hover,pos={1},lockHoverHeight", Prim.LocalID, pos);
689 } 1042 }
690 } 1043 }
691 else 1044 else
692 { 1045 {
693 float verticalError = pos.Z - m_VhoverTargetHeight; 1046 // Error is positive if below the target and negative if above.
694 // RA: where does the 50 come from? 1047 Vector3 hpos = VehiclePosition;
695 float verticalCorrectionVelocity = pTimestep * ((verticalError * 50.0f) / m_VhoverTimescale); 1048 float verticalError = m_VhoverTargetHeight - hpos.Z;
696 // Replace Vertical speed with correction figure if significant 1049 float verticalCorrection = verticalError / m_VhoverTimescale;
697 if (Math.Abs(verticalError) > 0.01f) 1050 verticalCorrection *= m_VhoverEfficiency;
698 { 1051
699 m_newVelocity.Z += verticalCorrectionVelocity; 1052 hpos.Z += verticalCorrection;
700 //KF: m_VhoverEfficiency is not yet implemented 1053 VehiclePosition = hpos;
701 } 1054
702 else if (verticalError < -0.01) 1055 // Since we are hovering, we need to do the opposite of falling -- get rid of world Z
703 { 1056 Vector3 vel = VehicleVelocity;
704 m_newVelocity.Z -= verticalCorrectionVelocity; 1057 vel.Z = 0f;
705 } 1058 VehicleVelocity = vel;
706 else 1059
707 { 1060 /*
708 m_newVelocity.Z = 0f; 1061 float verticalCorrectionVelocity = verticalError / m_VhoverTimescale;
709 } 1062 Vector3 verticalCorrection = new Vector3(0f, 0f, verticalCorrectionVelocity);
1063 verticalCorrection *= m_vehicleMass;
1064
1065 // TODO: implement m_VhoverEfficiency correctly
1066 VehicleAddForceImpulse(verticalCorrection);
1067 */
1068
1069 VDetailLog("{0}, MoveLinear,hover,pos={1},eff={2},hoverTS={3},height={4},target={5},err={6},corr={7}",
1070 Prim.LocalID, VehiclePosition, m_VhoverEfficiency,
1071 m_VhoverTimescale, m_VhoverHeight, m_VhoverTargetHeight,
1072 verticalError, verticalCorrection);
710 } 1073 }
711 1074
712 VDetailLog("{0},MoveLinear,hover,pos={1},dir={2},height={3},target={4}", Prim.LocalID, pos, m_newVelocity, m_VhoverHeight, m_VhoverTargetHeight);
713 } 1075 }
1076 }
714 1077
1078 public bool ComputeLinearBlockingEndPoint(float pTimestep)
1079 {
1080 bool changed = false;
1081
1082 Vector3 pos = VehiclePosition;
715 Vector3 posChange = pos - m_lastPositionVector; 1083 Vector3 posChange = pos - m_lastPositionVector;
716 if (m_BlockingEndPoint != Vector3.Zero) 1084 if (m_BlockingEndPoint != Vector3.Zero)
717 { 1085 {
718 bool changed = false;
719 if (pos.X >= (m_BlockingEndPoint.X - (float)1)) 1086 if (pos.X >= (m_BlockingEndPoint.X - (float)1))
720 { 1087 {
721 pos.X -= posChange.X + 1; 1088 pos.X -= posChange.X + 1;
@@ -743,233 +1110,118 @@ namespace OpenSim.Region.Physics.BulletSPlugin
743 } 1110 }
744 if (changed) 1111 if (changed)
745 { 1112 {
746 Prim.ForcePosition = pos; 1113 VehiclePosition = pos;
747 VDetailLog("{0},MoveLinear,blockingEndPoint,block={1},origPos={2},pos={3}", 1114 VDetailLog("{0}, MoveLinear,blockingEndPoint,block={1},origPos={2},pos={3}",
748 Prim.LocalID, m_BlockingEndPoint, posChange, pos); 1115 Prim.LocalID, m_BlockingEndPoint, posChange, pos);
749 } 1116 }
750 } 1117 }
1118 return changed;
1119 }
751 1120
752 #region downForce 1121 // From http://wiki.secondlife.com/wiki/LlSetVehicleFlags :
753 Vector3 downForce = Vector3.Zero; 1122 // Prevent ground vehicles from motoring into the sky. This flag has a subtle effect when
754 1123 // used with conjunction with banking: the strength of the banking will decay when the
1124 // vehicle no longer experiences collisions. The decay timescale is the same as
1125 // VEHICLE_BANKING_TIMESCALE. This is to help prevent ground vehicles from steering
1126 // when they are in mid jump.
1127 // TODO: this code is wrong. Also, what should it do for boats (height from water)?
1128 // This is just using the ground and a general collision check. Should really be using
1129 // a downward raycast to find what is below.
1130 public void ComputeLinearMotorUp(float pTimestep)
1131 {
755 if ((m_flags & (VehicleFlag.LIMIT_MOTOR_UP)) != 0) 1132 if ((m_flags & (VehicleFlag.LIMIT_MOTOR_UP)) != 0)
756 { 1133 {
757 // If the vehicle is motoring into the sky, get it going back down. 1134 // This code tries to decide if the object is not on the ground and then pushing down
758 // Is this an angular force or both linear and angular?? 1135 /*
759 float distanceAboveGround = pos.Z - terrainHeight; 1136 float targetHeight = Type == Vehicle.TYPE_BOAT ? GetWaterLevel(VehiclePosition) : GetTerrainHeight(VehiclePosition);
760 if (distanceAboveGround > 2f) 1137 distanceAboveGround = VehiclePosition.Z - targetHeight;
1138 // Not colliding if the vehicle is off the ground
1139 if (!Prim.IsColliding)
761 { 1140 {
762 // downForce = new Vector3(0, 0, (-distanceAboveGround / m_bankingTimescale) * pTimestep);
763 // downForce = new Vector3(0, 0, -distanceAboveGround / m_bankingTimescale); 1141 // downForce = new Vector3(0, 0, -distanceAboveGround / m_bankingTimescale);
764 downForce = new Vector3(0, 0, -distanceAboveGround); 1142 VehicleVelocity += new Vector3(0, 0, -distanceAboveGround);
765 } 1143 }
766 // TODO: this calculation is all wrong. From the description at 1144 // TODO: this calculation is wrong. From the description at
767 // (http://wiki.secondlife.com/wiki/Category:LSL_Vehicle), the downForce 1145 // (http://wiki.secondlife.com/wiki/Category:LSL_Vehicle), the downForce
768 // has a decay factor. This says this force should 1146 // has a decay factor. This says this force should
769 // be computed with a motor. 1147 // be computed with a motor.
770 VDetailLog("{0},MoveLinear,limitMotorUp,distAbove={1},downForce={2}", 1148 // TODO: add interaction with banking.
771 Prim.LocalID, distanceAboveGround, downForce); 1149 VDetailLog("{0}, MoveLinear,limitMotorUp,distAbove={1},colliding={2},ret={3}",
1150 Prim.LocalID, distanceAboveGround, Prim.IsColliding, ret);
1151 */
1152
1153 // Another approach is to measure if we're going up. If going up and not colliding,
1154 // the vehicle is in the air. Fix that by pushing down.
1155 if (!Prim.IsColliding && VehicleVelocity.Z > 0.1)
1156 {
1157 // Get rid of any of the velocity vector that is pushing us up.
1158 float upVelocity = VehicleVelocity.Z;
1159 VehicleVelocity += new Vector3(0, 0, -upVelocity);
1160
1161 /*
1162 // If we're pointed up into the air, we should nose down
1163 Vector3 pointingDirection = Vector3.UnitX * VehicleOrientation;
1164 // The rotation around the Y axis is pitch up or down
1165 if (pointingDirection.Y > 0.01f)
1166 {
1167 float angularCorrectionForce = -(float)Math.Asin(pointingDirection.Y);
1168 Vector3 angularCorrectionVector = new Vector3(0f, angularCorrectionForce, 0f);
1169 // Rotate into world coordinates and apply to vehicle
1170 angularCorrectionVector *= VehicleOrientation;
1171 VehicleAddAngularForce(angularCorrectionVector);
1172 VDetailLog("{0}, MoveLinear,limitMotorUp,newVel={1},pntDir={2},corrFrc={3},aCorr={4}",
1173 Prim.LocalID, VehicleVelocity, pointingDirection, angularCorrectionForce, angularCorrectionVector);
1174 }
1175 */
1176 VDetailLog("{0}, MoveLinear,limitMotorUp,collide={1},upVel={2},newVel={3}",
1177 Prim.LocalID, Prim.IsColliding, upVelocity, VehicleVelocity);
1178 }
772 } 1179 }
773 #endregion // downForce 1180 }
774 1181
775 // If not changing some axis, reduce out velocity 1182 private void ApplyGravity(float pTimeStep)
776 if ((m_flags & (VehicleFlag.NO_X)) != 0) 1183 {
777 m_newVelocity.X = 0; 1184 Vector3 appliedGravity = m_VehicleGravity * m_vehicleMass;
778 if ((m_flags & (VehicleFlag.NO_Y)) != 0)
779 m_newVelocity.Y = 0;
780 if ((m_flags & (VehicleFlag.NO_Z)) != 0)
781 m_newVelocity.Z = 0;
782
783 // Clamp REALLY high or low velocities
784 if (m_newVelocity.LengthSquared() > 1e6f)
785 {
786 m_newVelocity /= m_newVelocity.Length();
787 m_newVelocity *= 1000f;
788 }
789 else if (m_newVelocity.LengthSquared() < 1e-6f)
790 m_newVelocity = Vector3.Zero;
791 1185
792 // Stuff new linear velocity into the vehicle 1186 // Hack to reduce downward force if the vehicle is probably sitting on the ground
793 Prim.ForceVelocity = m_newVelocity; 1187 if (Prim.IsColliding && IsGroundVehicle)
794 // Prim.ApplyForceImpulse((m_newVelocity - Prim.Velocity) * m_vehicleMass, false); // DEBUG DEBUG 1188 appliedGravity *= 0.2f;
795 1189
796 Vector3 totalDownForce = downForce + grav; 1190 VehicleAddForce(appliedGravity);
797 if (totalDownForce != Vector3.Zero)
798 {
799 Prim.AddForce(totalDownForce * m_vehicleMass, false);
800 // Prim.ApplyForceImpulse(totalDownForce * m_vehicleMass, false);
801 }
802 1191
803 VDetailLog("{0},MoveLinear,done,lmDir={1},lmVel={2},newVel={3},primVel={4},totalDown={5}", 1192 VDetailLog("{0}, MoveLinear,applyGravity,vehGrav={1},appliedForce-{2}",
804 Prim.LocalID, m_linearMotorDirection, m_lastLinearVelocityVector, m_newVelocity, Prim.Velocity, totalDownForce); 1193 Prim.LocalID, m_VehicleGravity, appliedGravity);
805 1194 }
806 } // end MoveLinear()
807 1195
808 // ======================================================================= 1196 // =======================================================================
1197 // =======================================================================
809 // Apply the effect of the angular motor. 1198 // Apply the effect of the angular motor.
1199 // The 'contribution' is how much angular correction velocity each function wants.
1200 // All the contributions are added together and the resulting velocity is
1201 // set directly on the vehicle.
810 private void MoveAngular(float pTimestep) 1202 private void MoveAngular(float pTimestep)
811 { 1203 {
812 // m_angularMotorDirection // angular velocity requested by LSL motor 1204 ComputeAngularTurning(pTimestep);
813 // m_angularMotorApply // application frame counter
814 // m_angularMotorVelocity // current angular motor velocity (ramps up and down)
815 // m_angularMotorTimescale // motor angular velocity ramp up rate
816 // m_angularMotorDecayTimescale // motor angular velocity decay rate
817 // m_angularFrictionTimescale // body angular velocity decay rate
818 // m_lastAngularVelocity // what was last applied to body
819
820 if (m_angularMotorDirection.LengthSquared() > 0.0001)
821 {
822 Vector3 origVel = m_angularMotorVelocity;
823 Vector3 origDir = m_angularMotorDirection;
824 1205
825 // new velocity += error / ( time to get there / step interval) 1206 ComputeAngularVerticalAttraction();
826 // requested direction - current vehicle direction
827 m_angularMotorVelocity += (m_angularMotorDirection - m_angularMotorVelocity) / (m_angularMotorTimescale / pTimestep);
828 // decay requested direction
829 m_angularMotorDirection *= (1.0f - (pTimestep * 1.0f/m_angularMotorDecayTimescale));
830 1207
831 VDetailLog("{0},MoveAngular,angularMotorApply,angTScale={1},timeStep={2},origvel={3},origDir={4},vel={5}", 1208 ComputeAngularDeflection();
832 Prim.LocalID, m_angularMotorTimescale, pTimestep, origVel, origDir, m_angularMotorVelocity);
833 }
834 else
835 {
836 m_angularMotorVelocity = Vector3.Zero;
837 }
838
839 #region Vertical attactor
840 1209
841 Vector3 vertattr = Vector3.Zero; 1210 ComputeAngularBanking();
842 Vector3 deflection = Vector3.Zero;
843 Vector3 banking = Vector3.Zero;
844 1211
845 // If vertical attaction timescale is reasonable and we applied an angular force last time... 1212 // ==================================================================
846 if (m_verticalAttractionTimescale < 300 && m_lastAngularVelocity != Vector3.Zero) 1213 if (VehicleRotationalVelocity.ApproxEquals(Vector3.Zero, 0.0001f))
847 { 1214 {
848 float VAservo = pTimestep * 0.2f / m_verticalAttractionTimescale; 1215 // The vehicle is not adding anything angular wise.
849 if (Prim.IsColliding) 1216 VehicleRotationalVelocity = Vector3.Zero;
850 VAservo = pTimestep * 0.05f / (m_verticalAttractionTimescale); 1217 VDetailLog("{0}, MoveAngular,done,zero", Prim.LocalID);
851
852 VAservo *= (m_verticalAttractionEfficiency * m_verticalAttractionEfficiency);
853
854 // Create a vector of the vehicle "up" in world coordinates
855 Vector3 verticalError = Vector3.UnitZ * Prim.ForceOrientation;
856 // verticalError.X and .Y are the World error amounts. They are 0 when there is no
857 // error (Vehicle Body is 'vertical'), and .Z will be 1. As the body leans to its
858 // side |.X| will increase to 1 and .Z fall to 0. As body inverts |.X| will fall
859 // and .Z will go // negative. Similar for tilt and |.Y|. .X and .Y must be
860 // modulated to prevent a stable inverted body.
861
862 // Error is 0 (no error) to +/- 2 (max error)
863 if (verticalError.Z < 0.0f)
864 {
865 verticalError.X = 2.0f - verticalError.X;
866 verticalError.Y = 2.0f - verticalError.Y;
867 }
868 // scale it by VAservo (timestep and timescale)
869 verticalError = verticalError * VAservo;
870
871 // As the body rotates around the X axis, then verticalError.Y increases; Rotated around Y
872 // then .X increases, so change Body angular velocity X based on Y, and Y based on X.
873 // Z is not changed.
874 vertattr.X = verticalError.Y;
875 vertattr.Y = - verticalError.X;
876 vertattr.Z = 0f;
877
878 // scaling appears better usingsquare-law
879 Vector3 angularVelocity = Prim.ForceRotationalVelocity;
880 float bounce = 1.0f - (m_verticalAttractionEfficiency * m_verticalAttractionEfficiency);
881 vertattr.X += bounce * angularVelocity.X;
882 vertattr.Y += bounce * angularVelocity.Y;
883
884 VDetailLog("{0},MoveAngular,verticalAttraction,VAservo={1},effic={2},verticalError={3},bounce={4},vertattr={5}",
885 Prim.LocalID, VAservo, m_verticalAttractionEfficiency, verticalError, bounce, vertattr);
886
887 } 1218 }
888 #endregion // Vertical attactor 1219 else
889
890 #region Deflection
891
892 if (m_angularDeflectionEfficiency != 0)
893 { 1220 {
894 // Compute a scaled vector that points in the preferred axis (X direction) 1221 VDetailLog("{0}, MoveAngular,done,nonZero,angVel={1}", Prim.LocalID, VehicleRotationalVelocity);
895 Vector3 scaledDefaultDirection =
896 new Vector3((pTimestep * 10 * (m_angularDeflectionEfficiency / m_angularDeflectionTimescale)), 0, 0);
897 // Adding the current vehicle orientation and reference frame displaces the orientation to the frame.
898 // Rotate the scaled default axix relative to the actual vehicle direction giving where it should point.
899 Vector3 preferredAxisOfMotion = scaledDefaultDirection * Quaternion.Add(Prim.ForceOrientation, m_referenceFrame);
900
901 // Scale by efficiency and timescale
902 deflection = (preferredAxisOfMotion * (m_angularDeflectionEfficiency) / m_angularDeflectionTimescale) * pTimestep;
903
904 VDetailLog("{0},MoveAngular,Deflection,perfAxis={1},deflection={2}",
905 Prim.LocalID, preferredAxisOfMotion, deflection);
906 // This deflection computation is not correct.
907 deflection = Vector3.Zero;
908 } 1222 }
909 1223
910 #endregion 1224 // ==================================================================
911
912 #region Banking
913
914 if (m_bankingEfficiency != 0)
915 {
916 Vector3 dir = Vector3.One * Prim.ForceOrientation;
917 float mult = (m_bankingMix*m_bankingMix)*-1*(m_bankingMix < 0 ? -1 : 1);
918 //Changes which way it banks in and out of turns
919
920 //Use the square of the efficiency, as it looks much more how SL banking works
921 float effSquared = (m_bankingEfficiency*m_bankingEfficiency);
922 if (m_bankingEfficiency < 0)
923 effSquared *= -1; //Keep the negative!
924
925 float mix = Math.Abs(m_bankingMix);
926 if (m_angularMotorVelocity.X == 0)
927 {
928 /*if (!parent.Orientation.ApproxEquals(this.m_referenceFrame, 0.25f))
929 {
930 Vector3 axisAngle;
931 float angle;
932 parent.Orientation.GetAxisAngle(out axisAngle, out angle);
933 Vector3 rotatedVel = parent.Velocity * parent.Orientation;
934 if ((rotatedVel.X < 0 && axisAngle.Y > 0) || (rotatedVel.X > 0 && axisAngle.Y < 0))
935 m_angularMotorVelocity.X += (effSquared * (mult * mix)) * (1f) * 10;
936 else
937 m_angularMotorVelocity.X += (effSquared * (mult * mix)) * (-1f) * 10;
938 }*/
939 }
940 else
941 banking.Z += (effSquared*(mult*mix))*(m_angularMotorVelocity.X) * 4;
942 if (!Prim.IsColliding && Math.Abs(m_angularMotorVelocity.X) > mix)
943 //If they are colliding, we probably shouldn't shove the prim around... probably
944 {
945 float angVelZ = m_angularMotorVelocity.X*-1;
946 /*if(angVelZ > mix)
947 angVelZ = mix;
948 else if(angVelZ < -mix)
949 angVelZ = -mix;*/
950 //This controls how fast and how far the banking occurs
951 Vector3 bankingRot = new Vector3(angVelZ*(effSquared*mult), 0, 0);
952 if (bankingRot.X > 3)
953 bankingRot.X = 3;
954 else if (bankingRot.X < -3)
955 bankingRot.X = -3;
956 bankingRot *= Prim.ForceOrientation;
957 banking += bankingRot;
958 }
959 m_angularMotorVelocity.X *= m_bankingEfficiency == 1 ? 0.0f : 1 - m_bankingEfficiency;
960 VDetailLog("{0},MoveAngular,Banking,bEff={1},angMotVel={2},banking={3}",
961 Prim.LocalID, m_bankingEfficiency, m_angularMotorVelocity, banking);
962 }
963
964 #endregion
965
966 m_lastVertAttractor = vertattr;
967
968 // Sum velocities
969 m_lastAngularVelocity = m_angularMotorVelocity + vertattr + banking + deflection;
970
971 #region Linear Motor Offset
972
973 //Offset section 1225 //Offset section
974 if (m_linearMotorOffset != Vector3.Zero) 1226 if (m_linearMotorOffset != Vector3.Zero)
975 { 1227 {
@@ -985,8 +1237,8 @@ namespace OpenSim.Region.Physics.BulletSPlugin
985 // 1237 //
986 // The torque created is the linear velocity crossed with the offset 1238 // The torque created is the linear velocity crossed with the offset
987 1239
988 // NOTE: this computation does should be in the linear section 1240 // TODO: this computation should be in the linear section
989 // because there we know the impulse being applied. 1241 // because that is where we know the impulse being applied.
990 Vector3 torqueFromOffset = Vector3.Zero; 1242 Vector3 torqueFromOffset = Vector3.Zero;
991 // torqueFromOffset = Vector3.Cross(m_linearMotorOffset, appliedImpulse); 1243 // torqueFromOffset = Vector3.Cross(m_linearMotorOffset, appliedImpulse);
992 if (float.IsNaN(torqueFromOffset.X)) 1244 if (float.IsNaN(torqueFromOffset.X))
@@ -995,47 +1247,213 @@ namespace OpenSim.Region.Physics.BulletSPlugin
995 torqueFromOffset.Y = 0; 1247 torqueFromOffset.Y = 0;
996 if (float.IsNaN(torqueFromOffset.Z)) 1248 if (float.IsNaN(torqueFromOffset.Z))
997 torqueFromOffset.Z = 0; 1249 torqueFromOffset.Z = 0;
998 torqueFromOffset *= m_vehicleMass; 1250
999 Prim.ApplyTorqueImpulse(torqueFromOffset, true); 1251 VehicleAddAngularForce(torqueFromOffset * m_vehicleMass);
1000 VDetailLog("{0},BSDynamic.MoveAngular,motorOffset,applyTorqueImpulse={1}", Prim.LocalID, torqueFromOffset); 1252 VDetailLog("{0}, BSDynamic.MoveAngular,motorOffset,applyTorqueImpulse={1}", Prim.LocalID, torqueFromOffset);
1001 } 1253 }
1002 1254
1003 #endregion 1255 }
1004 1256
1257 private void ComputeAngularTurning(float pTimestep)
1258 {
1259 // The user wants this many radians per second angular change?
1260 Vector3 currentAngularV = VehicleRotationalVelocity * Quaternion.Inverse(VehicleOrientation);
1261 Vector3 angularMotorContributionV = m_angularMotor.Step(pTimestep, currentAngularV);
1262
1263 // ==================================================================
1264 // From http://wiki.secondlife.com/wiki/LlSetVehicleFlags :
1265 // This flag prevents linear deflection parallel to world z-axis. This is useful
1266 // for preventing ground vehicles with large linear deflection, like bumper cars,
1267 // from climbing their linear deflection into the sky.
1268 // That is, NO_DEFLECTION_UP says angular motion should not add any pitch or roll movement
1269 // TODO: This is here because this is where ODE put it but documentation says it
1270 // is a linear effect. Where should this check go?
1005 if ((m_flags & (VehicleFlag.NO_DEFLECTION_UP)) != 0) 1271 if ((m_flags & (VehicleFlag.NO_DEFLECTION_UP)) != 0)
1006 { 1272 {
1007 m_lastAngularVelocity.X = 0; 1273 angularMotorContributionV.X = 0f;
1008 m_lastAngularVelocity.Y = 0; 1274 angularMotorContributionV.Y = 0f;
1009 VDetailLog("{0},MoveAngular,noDeflectionUp,lastAngular={1}", Prim.LocalID, m_lastAngularVelocity); 1275 }
1276
1277 VehicleRotationalVelocity += angularMotorContributionV * VehicleOrientation;
1278 VDetailLog("{0}, MoveAngular,angularTurning,angularMotorContrib={1}", Prim.LocalID, angularMotorContributionV);
1279 }
1280
1281 // From http://wiki.secondlife.com/wiki/Linden_Vehicle_Tutorial:
1282 // Some vehicles, like boats, should always keep their up-side up. This can be done by
1283 // enabling the "vertical attractor" behavior that springs the vehicle's local z-axis to
1284 // the world z-axis (a.k.a. "up"). To take advantage of this feature you would set the
1285 // VEHICLE_VERTICAL_ATTRACTION_TIMESCALE to control the period of the spring frequency,
1286 // and then set the VEHICLE_VERTICAL_ATTRACTION_EFFICIENCY to control the damping. An
1287 // efficiency of 0.0 will cause the spring to wobble around its equilibrium, while an
1288 // efficiency of 1.0 will cause the spring to reach its equilibrium with exponential decay.
1289 public void ComputeAngularVerticalAttraction()
1290 {
1291 // If vertical attaction timescale is reasonable
1292 if (enableAngularVerticalAttraction && m_verticalAttractionTimescale < m_verticalAttractionCutoff)
1293 {
1294 Vector3 vertContributionV = Vector3.Zero;
1295
1296 // Take a vector pointing up and convert it from world to vehicle relative coords.
1297 Vector3 verticalError = Vector3.UnitZ * VehicleOrientation;
1298
1299 // If vertical attraction correction is needed, the vector that was pointing up (UnitZ)
1300 // is now:
1301 // leaning to one side: rotated around the X axis with the Y value going
1302 // from zero (nearly straight up) to one (completely to the side)) or
1303 // leaning front-to-back: rotated around the Y axis with the value of X being between
1304 // zero and one.
1305 // The value of Z is how far the rotation is off with 1 meaning none and 0 being 90 degrees.
1306
1307 // Y error means needed rotation around X axis and visa versa.
1308 // Since the error goes from zero to one, the asin is the corresponding angle.
1309 vertContributionV.X = (float)Math.Asin(verticalError.Y);
1310 // (Tilt forward (positive X) needs to tilt back (rotate negative) around Y axis.)
1311 vertContributionV.Y = -(float)Math.Asin(verticalError.X);
1312
1313 // If verticalError.Z is negative, the vehicle is upside down. Add additional push.
1314 if (verticalError.Z < 0f)
1315 {
1316 vertContributionV.X += PIOverFour;
1317 // vertContribution.Y -= PIOverFour;
1318 }
1319
1320 // 'vertContrbution' is now the necessary angular correction to correct tilt in one second.
1321 // Correction happens over a number of seconds.
1322 Vector3 unscaledContrib = vertContributionV; // DEBUG DEBUG
1323 vertContributionV /= m_verticalAttractionTimescale;
1324
1325 VehicleRotationalVelocity += vertContributionV * VehicleOrientation;
1326
1327 VDetailLog("{0}, MoveAngular,verticalAttraction,,verticalError={1},unscaled={2},eff={3},ts={4},vertAttr={5}",
1328 Prim.LocalID, verticalError, unscaledContrib, m_verticalAttractionEfficiency, m_verticalAttractionTimescale, vertContributionV);
1010 } 1329 }
1330 }
1331
1332 // Angular correction to correct the direction the vehicle is pointing to be
1333 // the direction is should want to be pointing.
1334 // The vehicle is moving in some direction and correct its orientation to it is pointing
1335 // in that direction.
1336 // TODO: implement reference frame.
1337 public void ComputeAngularDeflection()
1338 {
1339 // Since angularMotorUp and angularDeflection are computed independently, they will calculate
1340 // approximately the same X or Y correction. When added together (when contributions are combined)
1341 // this creates an over-correction and then wabbling as the target is overshot.
1342 // TODO: rethink how the different correction computations inter-relate.
1011 1343
1012 if (m_lastAngularVelocity.ApproxEquals(Vector3.Zero, 0.01f)) 1344 if (enableAngularDeflection && m_angularDeflectionEfficiency != 0 && VehicleForwardSpeed > 0.2)
1013 { 1345 {
1014 m_lastAngularVelocity = Vector3.Zero; // Reduce small value to zero. 1346 Vector3 deflectContributionV = Vector3.Zero;
1015 Prim.ZeroAngularMotion(true); 1347
1016 VDetailLog("{0},MoveAngular,zeroAngularMotion,lastAngular={1}", Prim.LocalID, m_lastAngularVelocity); 1348 // The direction the vehicle is moving
1349 Vector3 movingDirection = VehicleVelocity;
1350 movingDirection.Normalize();
1351
1352 // If the vehicle is going backward, it is still pointing forward
1353 movingDirection *= Math.Sign(VehicleForwardSpeed);
1354
1355 // The direction the vehicle is pointing
1356 Vector3 pointingDirection = Vector3.UnitX * VehicleOrientation;
1357 pointingDirection.Normalize();
1358
1359 // The difference between what is and what should be.
1360 Vector3 deflectionError = movingDirection - pointingDirection;
1361
1362 // Don't try to correct very large errors (not our job)
1363 // if (Math.Abs(deflectionError.X) > PIOverFour) deflectionError.X = PIOverTwo * Math.Sign(deflectionError.X);
1364 // if (Math.Abs(deflectionError.Y) > PIOverFour) deflectionError.Y = PIOverTwo * Math.Sign(deflectionError.Y);
1365 // if (Math.Abs(deflectionError.Z) > PIOverFour) deflectionError.Z = PIOverTwo * Math.Sign(deflectionError.Z);
1366 if (Math.Abs(deflectionError.X) > PIOverFour) deflectionError.X = 0f;
1367 if (Math.Abs(deflectionError.Y) > PIOverFour) deflectionError.Y = 0f;
1368 if (Math.Abs(deflectionError.Z) > PIOverFour) deflectionError.Z = 0f;
1369
1370 // ret = m_angularDeflectionCorrectionMotor(1f, deflectionError);
1371
1372 // Scale the correction by recovery timescale and efficiency
1373 deflectContributionV = (-deflectionError) * m_angularDeflectionEfficiency;
1374 deflectContributionV /= m_angularDeflectionTimescale;
1375
1376 VehicleRotationalVelocity += deflectContributionV * VehicleOrientation;
1377
1378 VDetailLog("{0}, MoveAngular,Deflection,movingDir={1},pointingDir={2},deflectError={3},ret={4}",
1379 Prim.LocalID, movingDirection, pointingDirection, deflectionError, deflectContributionV);
1380 VDetailLog("{0}, MoveAngular,Deflection,fwdSpd={1},defEff={2},defTS={3}",
1381 Prim.LocalID, VehicleForwardSpeed, m_angularDeflectionEfficiency, m_angularDeflectionTimescale);
1017 } 1382 }
1018 else 1383 }
1384
1385 // Angular change to rotate the vehicle around the Z axis when the vehicle
1386 // is tipped around the X axis.
1387 // From http://wiki.secondlife.com/wiki/Linden_Vehicle_Tutorial:
1388 // The vertical attractor feature must be enabled in order for the banking behavior to
1389 // function. The way banking works is this: a rotation around the vehicle's roll-axis will
1390 // produce a angular velocity around the yaw-axis, causing the vehicle to turn. The magnitude
1391 // of the yaw effect will be proportional to the
1392 // VEHICLE_BANKING_EFFICIENCY, the angle of the roll rotation, and sometimes the vehicle's
1393 // velocity along its preferred axis of motion.
1394 // The VEHICLE_BANKING_EFFICIENCY can vary between -1 and +1. When it is positive then any
1395 // positive rotation (by the right-hand rule) about the roll-axis will effect a
1396 // (negative) torque around the yaw-axis, making it turn to the right--that is the
1397 // vehicle will lean into the turn, which is how real airplanes and motorcycle's work.
1398 // Negating the banking coefficient will make it so that the vehicle leans to the
1399 // outside of the turn (not very "physical" but might allow interesting vehicles so why not?).
1400 // The VEHICLE_BANKING_MIX is a fake (i.e. non-physical) parameter that is useful for making
1401 // banking vehicles do what you want rather than what the laws of physics allow.
1402 // For example, consider a real motorcycle...it must be moving forward in order for
1403 // it to turn while banking, however video-game motorcycles are often configured
1404 // to turn in place when at a dead stop--because they are often easier to control
1405 // that way using the limited interface of the keyboard or game controller. The
1406 // VEHICLE_BANKING_MIX enables combinations of both realistic and non-realistic
1407 // banking by functioning as a slider between a banking that is correspondingly
1408 // totally static (0.0) and totally dynamic (1.0). By "static" we mean that the
1409 // banking effect depends only on the vehicle's rotation about its roll-axis compared
1410 // to "dynamic" where the banking is also proportional to its velocity along its
1411 // roll-axis. Finding the best value of the "mixture" will probably require trial and error.
1412 // The time it takes for the banking behavior to defeat a preexisting angular velocity about the
1413 // world z-axis is determined by the VEHICLE_BANKING_TIMESCALE. So if you want the vehicle to
1414 // bank quickly then give it a banking timescale of about a second or less, otherwise you can
1415 // make a sluggish vehicle by giving it a timescale of several seconds.
1416 public void ComputeAngularBanking()
1417 {
1418 if (enableAngularBanking && m_bankingEfficiency != 0 && m_verticalAttractionTimescale < m_verticalAttractionCutoff)
1019 { 1419 {
1020 // Apply to the body. 1420 Vector3 bankingContributionV = Vector3.Zero;
1021 // The above calculates the absolute angular velocity needed. Angular velocity is massless. 1421
1022 // Since we are stuffing the angular velocity directly into the object, the computed 1422 // Rotate a UnitZ vector (pointing up) to how the vehicle is oriented.
1023 // velocity needs to be scaled by the timestep. 1423 // As the vehicle rolls to the right or left, the Y value will increase from
1024 Vector3 applyAngularForce = ((m_lastAngularVelocity * pTimestep) - Prim.ForceRotationalVelocity); 1424 // zero (straight up) to 1 or -1 (full tilt right or left)
1025 Prim.ForceRotationalVelocity = applyAngularForce; 1425 Vector3 rollComponents = Vector3.UnitZ * VehicleOrientation;
1026 1426
1027 // Decay the angular movement for next time 1427 // Figure out the yaw value for this much roll.
1028 Vector3 decayamount = (Vector3.One / m_angularFrictionTimescale) * pTimestep; 1428 // Squared because that seems to give a good value
1029 m_lastAngularVelocity *= Vector3.One - decayamount; 1429 float yawAngle = (float)Math.Asin(rollComponents.Y * rollComponents.Y) * m_bankingEfficiency;
1030 1430
1031 VDetailLog("{0},MoveAngular,done,newRotVel={1},decay={2},lastAngular={3}", 1431 // actual error = static turn error + dynamic turn error
1032 Prim.LocalID, applyAngularForce, decayamount, m_lastAngularVelocity); 1432 float mixedYawAngle = yawAngle * (1f - m_bankingMix) + yawAngle * m_bankingMix * VehicleForwardSpeed;
1433
1434 // TODO: the banking effect should not go to infinity but what to limit it to?
1435 mixedYawAngle = ClampInRange(-20f, mixedYawAngle, 20f);
1436
1437 // Build the force vector to change rotation from what it is to what it should be
1438 bankingContributionV.Z = -mixedYawAngle;
1439
1440 // Don't do it all at once.
1441 bankingContributionV /= m_bankingTimescale;
1442
1443 VehicleRotationalVelocity += bankingContributionV * VehicleOrientation;
1444
1445 VDetailLog("{0}, MoveAngular,Banking,rollComp={1},speed={2},rollComp={3},yAng={4},mYAng={5},ret={6}",
1446 Prim.LocalID, rollComponents, VehicleForwardSpeed, rollComponents, yawAngle, mixedYawAngle, bankingContributionV);
1033 } 1447 }
1034 } //end MoveAngular 1448 }
1035 1449
1450 // This is from previous instantiations of XXXDynamics.cs.
1451 // Applies roll reference frame.
1452 // TODO: is this the right way to separate the code to do this operation?
1453 // Should this be in MoveAngular()?
1036 internal void LimitRotation(float timestep) 1454 internal void LimitRotation(float timestep)
1037 { 1455 {
1038 Quaternion rotq = Prim.ForceOrientation; 1456 Quaternion rotq = VehicleOrientation;
1039 Quaternion m_rot = rotq; 1457 Quaternion m_rot = rotq;
1040 if (m_RollreferenceFrame != Quaternion.Identity) 1458 if (m_RollreferenceFrame != Quaternion.Identity)
1041 { 1459 {
@@ -1063,12 +1481,18 @@ namespace OpenSim.Region.Physics.BulletSPlugin
1063 } 1481 }
1064 if (rotq != m_rot) 1482 if (rotq != m_rot)
1065 { 1483 {
1066 Prim.ForceOrientation = m_rot; 1484 VehicleOrientation = m_rot;
1067 VDetailLog("{0},LimitRotation,done,orig={1},new={2}", Prim.LocalID, rotq, m_rot); 1485 VDetailLog("{0}, LimitRotation,done,orig={1},new={2}", Prim.LocalID, rotq, m_rot);
1068 } 1486 }
1069 1487
1070 } 1488 }
1071 1489
1490 private float ClampInRange(float low, float val, float high)
1491 {
1492 return Math.Max(low, Math.Min(val, high));
1493 // return Utils.Clamp(val, low, high);
1494 }
1495
1072 // Invoke the detailed logger and output something if it's enabled. 1496 // Invoke the detailed logger and output something if it's enabled.
1073 private void VDetailLog(string msg, params Object[] args) 1497 private void VDetailLog(string msg, params Object[] args)
1074 { 1498 {