aboutsummaryrefslogtreecommitdiffstatshomepage
path: root/OpenSim/Region/Physics/BulletSPlugin/BSDynamics.cs
diff options
context:
space:
mode:
Diffstat (limited to '')
-rw-r--r--OpenSim/Region/Physics/BulletSPlugin/BSDynamics.cs1169
1 files changed, 615 insertions, 554 deletions
diff --git a/OpenSim/Region/Physics/BulletSPlugin/BSDynamics.cs b/OpenSim/Region/Physics/BulletSPlugin/BSDynamics.cs
index 5a9f135..dbc9039 100644
--- a/OpenSim/Region/Physics/BulletSPlugin/BSDynamics.cs
+++ b/OpenSim/Region/Physics/BulletSPlugin/BSDynamics.cs
@@ -23,7 +23,7 @@
23 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 23 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 24 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
25 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 25 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26 */ 26 *
27 27
28/* RA: June 14, 2011. Copied from ODEDynamics.cs and converted to 28/* RA: June 14, 2011. Copied from ODEDynamics.cs and converted to
29 * call the BulletSim system. 29 * call the BulletSim system.
@@ -52,19 +52,20 @@ using OpenSim.Region.Physics.Manager;
52 52
53namespace OpenSim.Region.Physics.BulletSPlugin 53namespace OpenSim.Region.Physics.BulletSPlugin
54{ 54{
55 public class BSDynamics 55 public sealed class BSDynamics
56 { 56 {
57 private int frcount = 0; // Used to limit dynamics debug output to 57 private static string LogHeader = "[BULLETSIM VEHICLE]";
58 // every 100th frame 58
59 private BSScene PhysicsScene { get; set; }
60 // the prim this dynamic controller belongs to
61 private BSPrim Prim { get; set; }
59 62
60 private BSPrim m_prim; // the prim this dynamic controller belongs to 63 // mass of the vehicle fetched each time we're calles
64 private float m_vehicleMass;
61 65
62 // Vehicle properties 66 // Vehicle properties
63 private Vehicle m_type = Vehicle.TYPE_NONE; // If a 'VEHICLE', and what kind 67 public Vehicle Type { get; set; }
64 public Vehicle Type 68
65 {
66 get { return m_type; }
67 }
68 // private Quaternion m_referenceFrame = Quaternion.Identity; // Axis modifier 69 // private Quaternion m_referenceFrame = Quaternion.Identity; // Axis modifier
69 private VehicleFlag m_flags = (VehicleFlag) 0; // Boolean settings: 70 private VehicleFlag m_flags = (VehicleFlag) 0; // Boolean settings:
70 // HOVER_TERRAIN_ONLY 71 // HOVER_TERRAIN_ONLY
@@ -74,13 +75,15 @@ namespace OpenSim.Region.Physics.BulletSPlugin
74 // HOVER_UP_ONLY 75 // HOVER_UP_ONLY
75 // LIMIT_MOTOR_UP 76 // LIMIT_MOTOR_UP
76 // LIMIT_ROLL_ONLY 77 // LIMIT_ROLL_ONLY
77 private VehicleFlag m_Hoverflags = (VehicleFlag)0;
78 private Vector3 m_BlockingEndPoint = Vector3.Zero; 78 private Vector3 m_BlockingEndPoint = Vector3.Zero;
79 private Quaternion m_RollreferenceFrame = Quaternion.Identity; 79 private Quaternion m_RollreferenceFrame = Quaternion.Identity;
80 private Quaternion m_referenceFrame = Quaternion.Identity;
81
80 // Linear properties 82 // Linear properties
81 private Vector3 m_linearMotorDirection = Vector3.Zero; // velocity requested by LSL, decayed by time 83 private Vector3 m_linearMotorDirection = Vector3.Zero; // velocity requested by LSL, decayed by time
84 private Vector3 m_linearMotorOffset = Vector3.Zero; // the point of force can be offset from the center
82 private Vector3 m_linearMotorDirectionLASTSET = Vector3.Zero; // velocity requested by LSL 85 private Vector3 m_linearMotorDirectionLASTSET = Vector3.Zero; // velocity requested by LSL
83 private Vector3 m_dir = Vector3.Zero; // velocity applied to body 86 private Vector3 m_newVelocity = Vector3.Zero; // velocity computed to be applied to body
84 private Vector3 m_linearFrictionTimescale = Vector3.Zero; 87 private Vector3 m_linearFrictionTimescale = Vector3.Zero;
85 private float m_linearMotorDecayTimescale = 0; 88 private float m_linearMotorDecayTimescale = 0;
86 private float m_linearMotorTimescale = 0; 89 private float m_linearMotorTimescale = 0;
@@ -91,28 +94,28 @@ namespace OpenSim.Region.Physics.BulletSPlugin
91 94
92 //Angular properties 95 //Angular properties
93 private Vector3 m_angularMotorDirection = Vector3.Zero; // angular velocity requested by LSL motor 96 private Vector3 m_angularMotorDirection = Vector3.Zero; // angular velocity requested by LSL motor
94 private int m_angularMotorApply = 0; // application frame counter 97 // private int m_angularMotorApply = 0; // application frame counter
95 private Vector3 m_angularMotorVelocity = Vector3.Zero; // current angular motor velocity 98 private Vector3 m_angularMotorVelocity = Vector3.Zero; // current angular motor velocity
96 private float m_angularMotorTimescale = 0; // motor angular velocity ramp up rate 99 private float m_angularMotorTimescale = 0; // motor angular velocity ramp up rate
97 private float m_angularMotorDecayTimescale = 0; // motor angular velocity decay rate 100 private float m_angularMotorDecayTimescale = 0; // motor angular velocity decay rate
98 private Vector3 m_angularFrictionTimescale = Vector3.Zero; // body angular velocity decay rate 101 private Vector3 m_angularFrictionTimescale = Vector3.Zero; // body angular velocity decay rate
99 private Vector3 m_lastAngularVelocity = Vector3.Zero; // what was last applied to body 102 private Vector3 m_lastAngularVelocity = Vector3.Zero; // what was last applied to body
100 // private Vector3 m_lastVertAttractor = Vector3.Zero; // what VA was last applied to body 103 private Vector3 m_lastVertAttractor = Vector3.Zero; // what VA was last applied to body
101 104
102 //Deflection properties 105 //Deflection properties
103 // private float m_angularDeflectionEfficiency = 0; 106 private float m_angularDeflectionEfficiency = 0;
104 // private float m_angularDeflectionTimescale = 0; 107 private float m_angularDeflectionTimescale = 0;
105 // private float m_linearDeflectionEfficiency = 0; 108 private float m_linearDeflectionEfficiency = 0;
106 // private float m_linearDeflectionTimescale = 0; 109 private float m_linearDeflectionTimescale = 0;
107 110
108 //Banking properties 111 //Banking properties
109 // private float m_bankingEfficiency = 0; 112 private float m_bankingEfficiency = 0;
110 // private float m_bankingMix = 0; 113 private float m_bankingMix = 0;
111 // private float m_bankingTimescale = 0; 114 private float m_bankingTimescale = 0;
112 115
113 //Hover and Buoyancy properties 116 //Hover and Buoyancy properties
114 private float m_VhoverHeight = 0f; 117 private float m_VhoverHeight = 0f;
115// private float m_VhoverEfficiency = 0f; 118 private float m_VhoverEfficiency = 0f;
116 private float m_VhoverTimescale = 0f; 119 private float m_VhoverTimescale = 0f;
117 private float m_VhoverTargetHeight = -1.0f; // if <0 then no hover, else its the current target height 120 private float m_VhoverTargetHeight = -1.0f; // if <0 then no hover, else its the current target height
118 private float m_VehicleBuoyancy = 0f; //KF: m_VehicleBuoyancy is set by VEHICLE_BUOYANCY for a vehicle. 121 private float m_VehicleBuoyancy = 0f; //KF: m_VehicleBuoyancy is set by VEHICLE_BUOYANCY for a vehicle.
@@ -124,86 +127,74 @@ namespace OpenSim.Region.Physics.BulletSPlugin
124 private float m_verticalAttractionEfficiency = 1.0f; // damped 127 private float m_verticalAttractionEfficiency = 1.0f; // damped
125 private float m_verticalAttractionTimescale = 500f; // Timescale > 300 means no vert attractor. 128 private float m_verticalAttractionTimescale = 500f; // Timescale > 300 means no vert attractor.
126 129
127 public BSDynamics(BSPrim myPrim) 130 public BSDynamics(BSScene myScene, BSPrim myPrim)
131 {
132 PhysicsScene = myScene;
133 Prim = myPrim;
134 Type = Vehicle.TYPE_NONE;
135 }
136
137 // Return 'true' if this vehicle is doing vehicle things
138 public bool IsActive
128 { 139 {
129 m_prim = myPrim; 140 get { return Type != Vehicle.TYPE_NONE; }
130 m_type = Vehicle.TYPE_NONE;
131 } 141 }
132 142
133 internal void ProcessFloatVehicleParam(Vehicle pParam, float pValue, float timestep) 143 internal void ProcessFloatVehicleParam(Vehicle pParam, float pValue)
134 { 144 {
135 DetailLog("{0},ProcessFloatVehicleParam,param={1},val={2}", m_prim.LocalID, pParam, pValue); 145 VDetailLog("{0},ProcessFloatVehicleParam,param={1},val={2}", Prim.LocalID, pParam, pValue);
136 switch (pParam) 146 switch (pParam)
137 { 147 {
138 case Vehicle.ANGULAR_DEFLECTION_EFFICIENCY: 148 case Vehicle.ANGULAR_DEFLECTION_EFFICIENCY:
139 if (pValue < 0.01f) pValue = 0.01f; 149 m_angularDeflectionEfficiency = Math.Max(pValue, 0.01f);
140 // m_angularDeflectionEfficiency = pValue;
141 break; 150 break;
142 case Vehicle.ANGULAR_DEFLECTION_TIMESCALE: 151 case Vehicle.ANGULAR_DEFLECTION_TIMESCALE:
143 if (pValue < 0.01f) pValue = 0.01f; 152 m_angularDeflectionTimescale = Math.Max(pValue, 0.01f);
144 // m_angularDeflectionTimescale = pValue;
145 break; 153 break;
146 case Vehicle.ANGULAR_MOTOR_DECAY_TIMESCALE: 154 case Vehicle.ANGULAR_MOTOR_DECAY_TIMESCALE:
147 if (pValue < 0.01f) pValue = 0.01f; 155 m_angularMotorDecayTimescale = Math.Max(pValue, 0.01f);
148 m_angularMotorDecayTimescale = pValue;
149 break; 156 break;
150 case Vehicle.ANGULAR_MOTOR_TIMESCALE: 157 case Vehicle.ANGULAR_MOTOR_TIMESCALE:
151 if (pValue < 0.01f) pValue = 0.01f; 158 m_angularMotorTimescale = Math.Max(pValue, 0.01f);
152 m_angularMotorTimescale = pValue;
153 break; 159 break;
154 case Vehicle.BANKING_EFFICIENCY: 160 case Vehicle.BANKING_EFFICIENCY:
155 if (pValue < 0.01f) pValue = 0.01f; 161 m_bankingEfficiency = Math.Max(-1f, Math.Min(pValue, 1f));
156 // m_bankingEfficiency = pValue;
157 break; 162 break;
158 case Vehicle.BANKING_MIX: 163 case Vehicle.BANKING_MIX:
159 if (pValue < 0.01f) pValue = 0.01f; 164 m_bankingMix = Math.Max(pValue, 0.01f);
160 // m_bankingMix = pValue;
161 break; 165 break;
162 case Vehicle.BANKING_TIMESCALE: 166 case Vehicle.BANKING_TIMESCALE:
163 if (pValue < 0.01f) pValue = 0.01f; 167 m_bankingTimescale = Math.Max(pValue, 0.01f);
164 // m_bankingTimescale = pValue;
165 break; 168 break;
166 case Vehicle.BUOYANCY: 169 case Vehicle.BUOYANCY:
167 if (pValue < -1f) pValue = -1f; 170 m_VehicleBuoyancy = Math.Max(-1f, Math.Min(pValue, 1f));
168 if (pValue > 1f) pValue = 1f; 171 break;
169 m_VehicleBuoyancy = pValue; 172 case Vehicle.HOVER_EFFICIENCY:
170 break; 173 m_VhoverEfficiency = Math.Max(0f, Math.Min(pValue, 1f));
171// case Vehicle.HOVER_EFFICIENCY: 174 break;
172// if (pValue < 0f) pValue = 0f;
173// if (pValue > 1f) pValue = 1f;
174// m_VhoverEfficiency = pValue;
175// break;
176 case Vehicle.HOVER_HEIGHT: 175 case Vehicle.HOVER_HEIGHT:
177 m_VhoverHeight = pValue; 176 m_VhoverHeight = pValue;
178 break; 177 break;
179 case Vehicle.HOVER_TIMESCALE: 178 case Vehicle.HOVER_TIMESCALE:
180 if (pValue < 0.01f) pValue = 0.01f; 179 m_VhoverTimescale = Math.Max(pValue, 0.01f);
181 m_VhoverTimescale = pValue;
182 break; 180 break;
183 case Vehicle.LINEAR_DEFLECTION_EFFICIENCY: 181 case Vehicle.LINEAR_DEFLECTION_EFFICIENCY:
184 if (pValue < 0.01f) pValue = 0.01f; 182 m_linearDeflectionEfficiency = Math.Max(pValue, 0.01f);
185 // m_linearDeflectionEfficiency = pValue;
186 break; 183 break;
187 case Vehicle.LINEAR_DEFLECTION_TIMESCALE: 184 case Vehicle.LINEAR_DEFLECTION_TIMESCALE:
188 if (pValue < 0.01f) pValue = 0.01f; 185 m_linearDeflectionTimescale = Math.Max(pValue, 0.01f);
189 // m_linearDeflectionTimescale = pValue;
190 break; 186 break;
191 case Vehicle.LINEAR_MOTOR_DECAY_TIMESCALE: 187 case Vehicle.LINEAR_MOTOR_DECAY_TIMESCALE:
192 if (pValue < 0.01f) pValue = 0.01f; 188 m_linearMotorDecayTimescale = Math.Max(pValue, 0.01f);
193 m_linearMotorDecayTimescale = pValue;
194 break; 189 break;
195 case Vehicle.LINEAR_MOTOR_TIMESCALE: 190 case Vehicle.LINEAR_MOTOR_TIMESCALE:
196 if (pValue < 0.01f) pValue = 0.01f; 191 m_linearMotorTimescale = Math.Max(pValue, 0.01f);
197 m_linearMotorTimescale = pValue;
198 break; 192 break;
199 case Vehicle.VERTICAL_ATTRACTION_EFFICIENCY: 193 case Vehicle.VERTICAL_ATTRACTION_EFFICIENCY:
200 if (pValue < 0.1f) pValue = 0.1f; // Less goes unstable 194 m_verticalAttractionEfficiency = Math.Max(0.1f, Math.Min(pValue, 1f));
201 if (pValue > 1.0f) pValue = 1.0f;
202 m_verticalAttractionEfficiency = pValue;
203 break; 195 break;
204 case Vehicle.VERTICAL_ATTRACTION_TIMESCALE: 196 case Vehicle.VERTICAL_ATTRACTION_TIMESCALE:
205 if (pValue < 0.01f) pValue = 0.01f; 197 m_verticalAttractionTimescale = Math.Max(pValue, 0.01f);
206 m_verticalAttractionTimescale = pValue;
207 break; 198 break;
208 199
209 // These are vector properties but the engine lets you use a single float value to 200 // These are vector properties but the engine lets you use a single float value to
@@ -213,7 +204,7 @@ namespace OpenSim.Region.Physics.BulletSPlugin
213 break; 204 break;
214 case Vehicle.ANGULAR_MOTOR_DIRECTION: 205 case Vehicle.ANGULAR_MOTOR_DIRECTION:
215 m_angularMotorDirection = new Vector3(pValue, pValue, pValue); 206 m_angularMotorDirection = new Vector3(pValue, pValue, pValue);
216 m_angularMotorApply = 10; 207 // m_angularMotorApply = 100;
217 break; 208 break;
218 case Vehicle.LINEAR_FRICTION_TIMESCALE: 209 case Vehicle.LINEAR_FRICTION_TIMESCALE:
219 m_linearFrictionTimescale = new Vector3(pValue, pValue, pValue); 210 m_linearFrictionTimescale = new Vector3(pValue, pValue, pValue);
@@ -223,30 +214,27 @@ namespace OpenSim.Region.Physics.BulletSPlugin
223 m_linearMotorDirectionLASTSET = new Vector3(pValue, pValue, pValue); 214 m_linearMotorDirectionLASTSET = new Vector3(pValue, pValue, pValue);
224 break; 215 break;
225 case Vehicle.LINEAR_MOTOR_OFFSET: 216 case Vehicle.LINEAR_MOTOR_OFFSET:
226 // m_linearMotorOffset = new Vector3(pValue, pValue, pValue); 217 m_linearMotorOffset = new Vector3(pValue, pValue, pValue);
227 break; 218 break;
228 219
229 } 220 }
230 }//end ProcessFloatVehicleParam 221 }//end ProcessFloatVehicleParam
231 222
232 internal void ProcessVectorVehicleParam(Vehicle pParam, Vector3 pValue, float timestep) 223 internal void ProcessVectorVehicleParam(Vehicle pParam, Vector3 pValue)
233 { 224 {
234 DetailLog("{0},ProcessVectorVehicleParam,param={1},val={2}", m_prim.LocalID, pParam, pValue); 225 VDetailLog("{0},ProcessVectorVehicleParam,param={1},val={2}", Prim.LocalID, pParam, pValue);
235 switch (pParam) 226 switch (pParam)
236 { 227 {
237 case Vehicle.ANGULAR_FRICTION_TIMESCALE: 228 case Vehicle.ANGULAR_FRICTION_TIMESCALE:
238 m_angularFrictionTimescale = new Vector3(pValue.X, pValue.Y, pValue.Z); 229 m_angularFrictionTimescale = new Vector3(pValue.X, pValue.Y, pValue.Z);
239 break; 230 break;
240 case Vehicle.ANGULAR_MOTOR_DIRECTION: 231 case Vehicle.ANGULAR_MOTOR_DIRECTION:
241 m_angularMotorDirection = new Vector3(pValue.X, pValue.Y, pValue.Z);
242 // Limit requested angular speed to 2 rps= 4 pi rads/sec 232 // Limit requested angular speed to 2 rps= 4 pi rads/sec
243 if (m_angularMotorDirection.X > 12.56f) m_angularMotorDirection.X = 12.56f; 233 pValue.X = Math.Max(-12.56f, Math.Min(pValue.X, 12.56f));
244 if (m_angularMotorDirection.X < - 12.56f) m_angularMotorDirection.X = - 12.56f; 234 pValue.Y = Math.Max(-12.56f, Math.Min(pValue.Y, 12.56f));
245 if (m_angularMotorDirection.Y > 12.56f) m_angularMotorDirection.Y = 12.56f; 235 pValue.Z = Math.Max(-12.56f, Math.Min(pValue.Z, 12.56f));
246 if (m_angularMotorDirection.Y < - 12.56f) m_angularMotorDirection.Y = - 12.56f; 236 m_angularMotorDirection = new Vector3(pValue.X, pValue.Y, pValue.Z);
247 if (m_angularMotorDirection.Z > 12.56f) m_angularMotorDirection.Z = 12.56f; 237 // m_angularMotorApply = 100;
248 if (m_angularMotorDirection.Z < - 12.56f) m_angularMotorDirection.Z = - 12.56f;
249 m_angularMotorApply = 10;
250 break; 238 break;
251 case Vehicle.LINEAR_FRICTION_TIMESCALE: 239 case Vehicle.LINEAR_FRICTION_TIMESCALE:
252 m_linearFrictionTimescale = new Vector3(pValue.X, pValue.Y, pValue.Z); 240 m_linearFrictionTimescale = new Vector3(pValue.X, pValue.Y, pValue.Z);
@@ -256,7 +244,7 @@ namespace OpenSim.Region.Physics.BulletSPlugin
256 m_linearMotorDirectionLASTSET = new Vector3(pValue.X, pValue.Y, pValue.Z); 244 m_linearMotorDirectionLASTSET = new Vector3(pValue.X, pValue.Y, pValue.Z);
257 break; 245 break;
258 case Vehicle.LINEAR_MOTOR_OFFSET: 246 case Vehicle.LINEAR_MOTOR_OFFSET:
259 // m_linearMotorOffset = new Vector3(pValue.X, pValue.Y, pValue.Z); 247 m_linearMotorOffset = new Vector3(pValue.X, pValue.Y, pValue.Z);
260 break; 248 break;
261 case Vehicle.BLOCK_EXIT: 249 case Vehicle.BLOCK_EXIT:
262 m_BlockingEndPoint = new Vector3(pValue.X, pValue.Y, pValue.Z); 250 m_BlockingEndPoint = new Vector3(pValue.X, pValue.Y, pValue.Z);
@@ -266,11 +254,11 @@ namespace OpenSim.Region.Physics.BulletSPlugin
266 254
267 internal void ProcessRotationVehicleParam(Vehicle pParam, Quaternion pValue) 255 internal void ProcessRotationVehicleParam(Vehicle pParam, Quaternion pValue)
268 { 256 {
269 DetailLog("{0},ProcessRotationalVehicleParam,param={1},val={2}", m_prim.LocalID, pParam, pValue); 257 VDetailLog("{0},ProcessRotationalVehicleParam,param={1},val={2}", Prim.LocalID, pParam, pValue);
270 switch (pParam) 258 switch (pParam)
271 { 259 {
272 case Vehicle.REFERENCE_FRAME: 260 case Vehicle.REFERENCE_FRAME:
273 // m_referenceFrame = pValue; 261 m_referenceFrame = pValue;
274 break; 262 break;
275 case Vehicle.ROLL_FRAME: 263 case Vehicle.ROLL_FRAME:
276 m_RollreferenceFrame = pValue; 264 m_RollreferenceFrame = pValue;
@@ -280,575 +268,545 @@ namespace OpenSim.Region.Physics.BulletSPlugin
280 268
281 internal void ProcessVehicleFlags(int pParam, bool remove) 269 internal void ProcessVehicleFlags(int pParam, bool remove)
282 { 270 {
283 DetailLog("{0},ProcessVehicleFlags,param={1},remove={2}", m_prim.LocalID, pParam, remove); 271 VDetailLog("{0},ProcessVehicleFlags,param={1},remove={2}", Prim.LocalID, pParam, remove);
284 if (remove) 272 VehicleFlag parm = (VehicleFlag)pParam;
285 { 273 if (pParam == -1)
286 if (pParam == -1) 274 m_flags = (VehicleFlag)0;
287 {
288 m_flags = (VehicleFlag)0;
289 m_Hoverflags = (VehicleFlag)0;
290 return;
291 }
292 if ((pParam & (int)VehicleFlag.HOVER_GLOBAL_HEIGHT) == (int)VehicleFlag.HOVER_GLOBAL_HEIGHT)
293 {
294 if ((m_Hoverflags & VehicleFlag.HOVER_GLOBAL_HEIGHT) != (VehicleFlag)0)
295 m_Hoverflags &= ~(VehicleFlag.HOVER_GLOBAL_HEIGHT);
296 }
297 if ((pParam & (int)VehicleFlag.HOVER_TERRAIN_ONLY) == (int)VehicleFlag.HOVER_TERRAIN_ONLY)
298 {
299 if ((m_Hoverflags & VehicleFlag.HOVER_TERRAIN_ONLY) != (VehicleFlag)0)
300 m_Hoverflags &= ~(VehicleFlag.HOVER_TERRAIN_ONLY);
301 }
302 if ((pParam & (int)VehicleFlag.HOVER_UP_ONLY) == (int)VehicleFlag.HOVER_UP_ONLY)
303 {
304 if ((m_Hoverflags & VehicleFlag.HOVER_UP_ONLY) != (VehicleFlag)0)
305 m_Hoverflags &= ~(VehicleFlag.HOVER_UP_ONLY);
306 }
307 if ((pParam & (int)VehicleFlag.HOVER_WATER_ONLY) == (int)VehicleFlag.HOVER_WATER_ONLY)
308 {
309 if ((m_Hoverflags & VehicleFlag.HOVER_WATER_ONLY) != (VehicleFlag)0)
310 m_Hoverflags &= ~(VehicleFlag.HOVER_WATER_ONLY);
311 }
312 if ((pParam & (int)VehicleFlag.LIMIT_MOTOR_UP) == (int)VehicleFlag.LIMIT_MOTOR_UP)
313 {
314 if ((m_flags & VehicleFlag.LIMIT_MOTOR_UP) != (VehicleFlag)0)
315 m_flags &= ~(VehicleFlag.LIMIT_MOTOR_UP);
316 }
317 if ((pParam & (int)VehicleFlag.LIMIT_ROLL_ONLY) == (int)VehicleFlag.LIMIT_ROLL_ONLY)
318 {
319 if ((m_flags & VehicleFlag.LIMIT_ROLL_ONLY) != (VehicleFlag)0)
320 m_flags &= ~(VehicleFlag.LIMIT_ROLL_ONLY);
321 }
322 if ((pParam & (int)VehicleFlag.MOUSELOOK_BANK) == (int)VehicleFlag.MOUSELOOK_BANK)
323 {
324 if ((m_flags & VehicleFlag.MOUSELOOK_BANK) != (VehicleFlag)0)
325 m_flags &= ~(VehicleFlag.MOUSELOOK_BANK);
326 }
327 if ((pParam & (int)VehicleFlag.MOUSELOOK_STEER) == (int)VehicleFlag.MOUSELOOK_STEER)
328 {
329 if ((m_flags & VehicleFlag.MOUSELOOK_STEER) != (VehicleFlag)0)
330 m_flags &= ~(VehicleFlag.MOUSELOOK_STEER);
331 }
332 if ((pParam & (int)VehicleFlag.NO_DEFLECTION_UP) == (int)VehicleFlag.NO_DEFLECTION_UP)
333 {
334 if ((m_flags & VehicleFlag.NO_DEFLECTION_UP) != (VehicleFlag)0)
335 m_flags &= ~(VehicleFlag.NO_DEFLECTION_UP);
336 }
337 if ((pParam & (int)VehicleFlag.CAMERA_DECOUPLED) == (int)VehicleFlag.CAMERA_DECOUPLED)
338 {
339 if ((m_flags & VehicleFlag.CAMERA_DECOUPLED) != (VehicleFlag)0)
340 m_flags &= ~(VehicleFlag.CAMERA_DECOUPLED);
341 }
342 if ((pParam & (int)VehicleFlag.NO_X) == (int)VehicleFlag.NO_X)
343 {
344 if ((m_flags & VehicleFlag.NO_X) != (VehicleFlag)0)
345 m_flags &= ~(VehicleFlag.NO_X);
346 }
347 if ((pParam & (int)VehicleFlag.NO_Y) == (int)VehicleFlag.NO_Y)
348 {
349 if ((m_flags & VehicleFlag.NO_Y) != (VehicleFlag)0)
350 m_flags &= ~(VehicleFlag.NO_Y);
351 }
352 if ((pParam & (int)VehicleFlag.NO_Z) == (int)VehicleFlag.NO_Z)
353 {
354 if ((m_flags & VehicleFlag.NO_Z) != (VehicleFlag)0)
355 m_flags &= ~(VehicleFlag.NO_Z);
356 }
357 if ((pParam & (int)VehicleFlag.LOCK_HOVER_HEIGHT) == (int)VehicleFlag.LOCK_HOVER_HEIGHT)
358 {
359 if ((m_Hoverflags & VehicleFlag.LOCK_HOVER_HEIGHT) != (VehicleFlag)0)
360 m_Hoverflags &= ~(VehicleFlag.LOCK_HOVER_HEIGHT);
361 }
362 if ((pParam & (int)VehicleFlag.NO_DEFLECTION) == (int)VehicleFlag.NO_DEFLECTION)
363 {
364 if ((m_flags & VehicleFlag.NO_DEFLECTION) != (VehicleFlag)0)
365 m_flags &= ~(VehicleFlag.NO_DEFLECTION);
366 }
367 if ((pParam & (int)VehicleFlag.LOCK_ROTATION) == (int)VehicleFlag.LOCK_ROTATION)
368 {
369 if ((m_flags & VehicleFlag.LOCK_ROTATION) != (VehicleFlag)0)
370 m_flags &= ~(VehicleFlag.LOCK_ROTATION);
371 }
372 }
373 else 275 else
374 { 276 {
375 if ((pParam & (int)VehicleFlag.HOVER_GLOBAL_HEIGHT) == (int)VehicleFlag.HOVER_GLOBAL_HEIGHT) 277 if (remove)
376 { 278 m_flags &= ~parm;
377 m_Hoverflags |= (VehicleFlag.HOVER_GLOBAL_HEIGHT | m_flags); 279 else
378 } 280 m_flags |= parm;
379 if ((pParam & (int)VehicleFlag.HOVER_TERRAIN_ONLY) == (int)VehicleFlag.HOVER_TERRAIN_ONLY)
380 {
381 m_Hoverflags |= (VehicleFlag.HOVER_TERRAIN_ONLY | m_flags);
382 }
383 if ((pParam & (int)VehicleFlag.HOVER_UP_ONLY) == (int)VehicleFlag.HOVER_UP_ONLY)
384 {
385 m_Hoverflags |= (VehicleFlag.HOVER_UP_ONLY | m_flags);
386 }
387 if ((pParam & (int)VehicleFlag.HOVER_WATER_ONLY) == (int)VehicleFlag.HOVER_WATER_ONLY)
388 {
389 m_Hoverflags |= (VehicleFlag.HOVER_WATER_ONLY | m_flags);
390 }
391 if ((pParam & (int)VehicleFlag.LIMIT_MOTOR_UP) == (int)VehicleFlag.LIMIT_MOTOR_UP)
392 {
393 m_flags |= (VehicleFlag.LIMIT_MOTOR_UP | m_flags);
394 }
395 if ((pParam & (int)VehicleFlag.MOUSELOOK_BANK) == (int)VehicleFlag.MOUSELOOK_BANK)
396 {
397 m_flags |= (VehicleFlag.MOUSELOOK_BANK | m_flags);
398 }
399 if ((pParam & (int)VehicleFlag.MOUSELOOK_STEER) == (int)VehicleFlag.MOUSELOOK_STEER)
400 {
401 m_flags |= (VehicleFlag.MOUSELOOK_STEER | m_flags);
402 }
403 if ((pParam & (int)VehicleFlag.NO_DEFLECTION_UP) == (int)VehicleFlag.NO_DEFLECTION_UP)
404 {
405 m_flags |= (VehicleFlag.NO_DEFLECTION_UP | m_flags);
406 }
407 if ((pParam & (int)VehicleFlag.CAMERA_DECOUPLED) == (int)VehicleFlag.CAMERA_DECOUPLED)
408 {
409 m_flags |= (VehicleFlag.CAMERA_DECOUPLED | m_flags);
410 }
411 if ((pParam & (int)VehicleFlag.NO_X) == (int)VehicleFlag.NO_X)
412 {
413 m_flags |= (VehicleFlag.NO_X);
414 }
415 if ((pParam & (int)VehicleFlag.NO_Y) == (int)VehicleFlag.NO_Y)
416 {
417 m_flags |= (VehicleFlag.NO_Y);
418 }
419 if ((pParam & (int)VehicleFlag.NO_Z) == (int)VehicleFlag.NO_Z)
420 {
421 m_flags |= (VehicleFlag.NO_Z);
422 }
423 if ((pParam & (int)VehicleFlag.LOCK_HOVER_HEIGHT) == (int)VehicleFlag.LOCK_HOVER_HEIGHT)
424 {
425 m_Hoverflags |= (VehicleFlag.LOCK_HOVER_HEIGHT);
426 }
427 if ((pParam & (int)VehicleFlag.NO_DEFLECTION) == (int)VehicleFlag.NO_DEFLECTION)
428 {
429 m_flags |= (VehicleFlag.NO_DEFLECTION);
430 }
431 if ((pParam & (int)VehicleFlag.LOCK_ROTATION) == (int)VehicleFlag.LOCK_ROTATION)
432 {
433 m_flags |= (VehicleFlag.LOCK_ROTATION);
434 }
435 } 281 }
436 }//end ProcessVehicleFlags 282 }
437 283
438 internal void ProcessTypeChange(Vehicle pType) 284 internal void ProcessTypeChange(Vehicle pType)
439 { 285 {
440 DetailLog("{0},ProcessTypeChange,type={1}", m_prim.LocalID, pType); 286 VDetailLog("{0},ProcessTypeChange,type={1}", Prim.LocalID, pType);
441 // Set Defaults For Type 287 // Set Defaults For Type
442 m_type = pType; 288 Type = pType;
443 switch (pType) 289 switch (pType)
444 { 290 {
445 case Vehicle.TYPE_NONE: 291 case Vehicle.TYPE_NONE:
446 m_linearFrictionTimescale = new Vector3(0, 0, 0);
447 m_angularFrictionTimescale = new Vector3(0, 0, 0);
448 m_linearMotorDirection = Vector3.Zero; 292 m_linearMotorDirection = Vector3.Zero;
449 m_linearMotorTimescale = 0; 293 m_linearMotorTimescale = 0;
450 m_linearMotorDecayTimescale = 0; 294 m_linearMotorDecayTimescale = 0;
295 m_linearFrictionTimescale = new Vector3(0, 0, 0);
296
451 m_angularMotorDirection = Vector3.Zero; 297 m_angularMotorDirection = Vector3.Zero;
452 m_angularMotorTimescale = 0;
453 m_angularMotorDecayTimescale = 0; 298 m_angularMotorDecayTimescale = 0;
299 m_angularMotorTimescale = 0;
300 m_angularFrictionTimescale = new Vector3(0, 0, 0);
301
454 m_VhoverHeight = 0; 302 m_VhoverHeight = 0;
303 m_VhoverEfficiency = 0;
455 m_VhoverTimescale = 0; 304 m_VhoverTimescale = 0;
456 m_VehicleBuoyancy = 0; 305 m_VehicleBuoyancy = 0;
306
307 m_linearDeflectionEfficiency = 1;
308 m_linearDeflectionTimescale = 1;
309
310 m_angularDeflectionEfficiency = 0;
311 m_angularDeflectionTimescale = 1000;
312
313 m_verticalAttractionEfficiency = 0;
314 m_verticalAttractionTimescale = 0;
315
316 m_bankingEfficiency = 0;
317 m_bankingTimescale = 1000;
318 m_bankingMix = 1;
319
320 m_referenceFrame = Quaternion.Identity;
457 m_flags = (VehicleFlag)0; 321 m_flags = (VehicleFlag)0;
458 break; 322 break;
459 323
460 case Vehicle.TYPE_SLED: 324 case Vehicle.TYPE_SLED:
461 m_linearFrictionTimescale = new Vector3(30, 1, 1000);
462 m_angularFrictionTimescale = new Vector3(1000, 1000, 1000);
463 m_linearMotorDirection = Vector3.Zero; 325 m_linearMotorDirection = Vector3.Zero;
464 m_linearMotorTimescale = 1000; 326 m_linearMotorTimescale = 1000;
465 m_linearMotorDecayTimescale = 120; 327 m_linearMotorDecayTimescale = 120;
328 m_linearFrictionTimescale = new Vector3(30, 1, 1000);
329
466 m_angularMotorDirection = Vector3.Zero; 330 m_angularMotorDirection = Vector3.Zero;
467 m_angularMotorTimescale = 1000; 331 m_angularMotorTimescale = 1000;
468 m_angularMotorDecayTimescale = 120; 332 m_angularMotorDecayTimescale = 120;
333 m_angularFrictionTimescale = new Vector3(1000, 1000, 1000);
334
469 m_VhoverHeight = 0; 335 m_VhoverHeight = 0;
470// m_VhoverEfficiency = 1; 336 m_VhoverEfficiency = 10; // TODO: this looks wrong!!
471 m_VhoverTimescale = 10; 337 m_VhoverTimescale = 10;
472 m_VehicleBuoyancy = 0; 338 m_VehicleBuoyancy = 0;
473 // m_linearDeflectionEfficiency = 1; 339
474 // m_linearDeflectionTimescale = 1; 340 m_linearDeflectionEfficiency = 1;
475 // m_angularDeflectionEfficiency = 1; 341 m_linearDeflectionTimescale = 1;
476 // m_angularDeflectionTimescale = 1000; 342
477 // m_bankingEfficiency = 0; 343 m_angularDeflectionEfficiency = 1;
478 // m_bankingMix = 1; 344 m_angularDeflectionTimescale = 1000;
479 // m_bankingTimescale = 10; 345
480 // m_referenceFrame = Quaternion.Identity; 346 m_verticalAttractionEfficiency = 0;
481 m_Hoverflags &= 347 m_verticalAttractionTimescale = 0;
348
349 m_bankingEfficiency = 0;
350 m_bankingTimescale = 10;
351 m_bankingMix = 1;
352
353 m_referenceFrame = Quaternion.Identity;
354 m_flags |= (VehicleFlag.NO_DEFLECTION_UP | VehicleFlag.LIMIT_ROLL_ONLY | VehicleFlag.LIMIT_MOTOR_UP);
355 m_flags &=
482 ~(VehicleFlag.HOVER_WATER_ONLY | VehicleFlag.HOVER_TERRAIN_ONLY | 356 ~(VehicleFlag.HOVER_WATER_ONLY | VehicleFlag.HOVER_TERRAIN_ONLY |
483 VehicleFlag.HOVER_GLOBAL_HEIGHT | VehicleFlag.HOVER_UP_ONLY); 357 VehicleFlag.HOVER_GLOBAL_HEIGHT | VehicleFlag.HOVER_UP_ONLY);
484 m_flags |= (VehicleFlag.NO_DEFLECTION_UP | VehicleFlag.LIMIT_ROLL_ONLY | VehicleFlag.LIMIT_MOTOR_UP);
485 break; 358 break;
486 case Vehicle.TYPE_CAR: 359 case Vehicle.TYPE_CAR:
487 m_linearFrictionTimescale = new Vector3(100, 2, 1000);
488 m_angularFrictionTimescale = new Vector3(1000, 1000, 1000);
489 m_linearMotorDirection = Vector3.Zero; 360 m_linearMotorDirection = Vector3.Zero;
490 m_linearMotorTimescale = 1; 361 m_linearMotorTimescale = 1;
491 m_linearMotorDecayTimescale = 60; 362 m_linearMotorDecayTimescale = 60;
363 m_linearFrictionTimescale = new Vector3(100, 2, 1000);
364
492 m_angularMotorDirection = Vector3.Zero; 365 m_angularMotorDirection = Vector3.Zero;
493 m_angularMotorTimescale = 1; 366 m_angularMotorTimescale = 1;
494 m_angularMotorDecayTimescale = 0.8f; 367 m_angularMotorDecayTimescale = 0.8f;
368 m_angularFrictionTimescale = new Vector3(1000, 1000, 1000);
369
495 m_VhoverHeight = 0; 370 m_VhoverHeight = 0;
496// m_VhoverEfficiency = 0; 371 m_VhoverEfficiency = 0;
497 m_VhoverTimescale = 1000; 372 m_VhoverTimescale = 1000;
498 m_VehicleBuoyancy = 0; 373 m_VehicleBuoyancy = 0;
499 // // m_linearDeflectionEfficiency = 1; 374
500 // // m_linearDeflectionTimescale = 2; 375 m_linearDeflectionEfficiency = 1;
501 // // m_angularDeflectionEfficiency = 0; 376 m_linearDeflectionTimescale = 2;
502 // m_angularDeflectionTimescale = 10; 377
378 m_angularDeflectionEfficiency = 0;
379 m_angularDeflectionTimescale = 10;
380
503 m_verticalAttractionEfficiency = 1f; 381 m_verticalAttractionEfficiency = 1f;
504 m_verticalAttractionTimescale = 10f; 382 m_verticalAttractionTimescale = 10f;
505 // m_bankingEfficiency = -0.2f; 383
506 // m_bankingMix = 1; 384 m_bankingEfficiency = -0.2f;
507 // m_bankingTimescale = 1; 385 m_bankingMix = 1;
508 // m_referenceFrame = Quaternion.Identity; 386 m_bankingTimescale = 1;
509 m_Hoverflags &= ~(VehicleFlag.HOVER_WATER_ONLY | VehicleFlag.HOVER_TERRAIN_ONLY | VehicleFlag.HOVER_GLOBAL_HEIGHT); 387
510 m_flags |= (VehicleFlag.NO_DEFLECTION_UP | VehicleFlag.LIMIT_ROLL_ONLY | 388 m_referenceFrame = Quaternion.Identity;
511 VehicleFlag.LIMIT_MOTOR_UP); 389 m_flags &= ~(VehicleFlag.HOVER_WATER_ONLY
512 m_Hoverflags |= (VehicleFlag.HOVER_UP_ONLY); 390 | VehicleFlag.HOVER_TERRAIN_ONLY
391 | VehicleFlag.HOVER_GLOBAL_HEIGHT);
392 m_flags |= (VehicleFlag.NO_DEFLECTION_UP
393 | VehicleFlag.LIMIT_ROLL_ONLY
394 | VehicleFlag.LIMIT_MOTOR_UP
395 | VehicleFlag.HOVER_UP_ONLY);
513 break; 396 break;
514 case Vehicle.TYPE_BOAT: 397 case Vehicle.TYPE_BOAT:
515 m_linearFrictionTimescale = new Vector3(10, 3, 2);
516 m_angularFrictionTimescale = new Vector3(10,10,10);
517 m_linearMotorDirection = Vector3.Zero; 398 m_linearMotorDirection = Vector3.Zero;
518 m_linearMotorTimescale = 5; 399 m_linearMotorTimescale = 5;
519 m_linearMotorDecayTimescale = 60; 400 m_linearMotorDecayTimescale = 60;
401 m_linearFrictionTimescale = new Vector3(10, 3, 2);
402
520 m_angularMotorDirection = Vector3.Zero; 403 m_angularMotorDirection = Vector3.Zero;
521 m_angularMotorTimescale = 4; 404 m_angularMotorTimescale = 4;
522 m_angularMotorDecayTimescale = 4; 405 m_angularMotorDecayTimescale = 4;
406 m_angularFrictionTimescale = new Vector3(10,10,10);
407
523 m_VhoverHeight = 0; 408 m_VhoverHeight = 0;
524// m_VhoverEfficiency = 0.5f; 409 m_VhoverEfficiency = 0.5f;
525 m_VhoverTimescale = 2; 410 m_VhoverTimescale = 2;
526 m_VehicleBuoyancy = 1; 411 m_VehicleBuoyancy = 1;
527 // m_linearDeflectionEfficiency = 0.5f; 412
528 // m_linearDeflectionTimescale = 3; 413 m_linearDeflectionEfficiency = 0.5f;
529 // m_angularDeflectionEfficiency = 0.5f; 414 m_linearDeflectionTimescale = 3;
530 // m_angularDeflectionTimescale = 5; 415
416 m_angularDeflectionEfficiency = 0.5f;
417 m_angularDeflectionTimescale = 5;
418
531 m_verticalAttractionEfficiency = 0.5f; 419 m_verticalAttractionEfficiency = 0.5f;
532 m_verticalAttractionTimescale = 5f; 420 m_verticalAttractionTimescale = 5f;
533 // m_bankingEfficiency = -0.3f; 421
534 // m_bankingMix = 0.8f; 422 m_bankingEfficiency = -0.3f;
535 // m_bankingTimescale = 1; 423 m_bankingMix = 0.8f;
536 // m_referenceFrame = Quaternion.Identity; 424 m_bankingTimescale = 1;
537 m_Hoverflags &= ~(VehicleFlag.HOVER_TERRAIN_ONLY | 425
538 VehicleFlag.HOVER_GLOBAL_HEIGHT | VehicleFlag.HOVER_UP_ONLY); 426 m_referenceFrame = Quaternion.Identity;
539 m_flags &= ~(VehicleFlag.LIMIT_ROLL_ONLY); 427 m_flags &= ~(VehicleFlag.HOVER_TERRAIN_ONLY
540 m_flags |= (VehicleFlag.NO_DEFLECTION_UP | 428 | VehicleFlag.HOVER_GLOBAL_HEIGHT
541 VehicleFlag.LIMIT_MOTOR_UP); 429 | VehicleFlag.LIMIT_ROLL_ONLY
542 m_Hoverflags |= (VehicleFlag.HOVER_WATER_ONLY); 430 | VehicleFlag.HOVER_UP_ONLY);
431 m_flags |= (VehicleFlag.NO_DEFLECTION_UP
432 | VehicleFlag.LIMIT_MOTOR_UP
433 | VehicleFlag.HOVER_WATER_ONLY);
543 break; 434 break;
544 case Vehicle.TYPE_AIRPLANE: 435 case Vehicle.TYPE_AIRPLANE:
545 m_linearFrictionTimescale = new Vector3(200, 10, 5);
546 m_angularFrictionTimescale = new Vector3(20, 20, 20);
547 m_linearMotorDirection = Vector3.Zero; 436 m_linearMotorDirection = Vector3.Zero;
548 m_linearMotorTimescale = 2; 437 m_linearMotorTimescale = 2;
549 m_linearMotorDecayTimescale = 60; 438 m_linearMotorDecayTimescale = 60;
439 m_linearFrictionTimescale = new Vector3(200, 10, 5);
440
550 m_angularMotorDirection = Vector3.Zero; 441 m_angularMotorDirection = Vector3.Zero;
551 m_angularMotorTimescale = 4; 442 m_angularMotorTimescale = 4;
552 m_angularMotorDecayTimescale = 4; 443 m_angularMotorDecayTimescale = 4;
444 m_angularFrictionTimescale = new Vector3(20, 20, 20);
445
553 m_VhoverHeight = 0; 446 m_VhoverHeight = 0;
554// m_VhoverEfficiency = 0.5f; 447 m_VhoverEfficiency = 0.5f;
555 m_VhoverTimescale = 1000; 448 m_VhoverTimescale = 1000;
556 m_VehicleBuoyancy = 0; 449 m_VehicleBuoyancy = 0;
557 // m_linearDeflectionEfficiency = 0.5f; 450
558 // m_linearDeflectionTimescale = 3; 451 m_linearDeflectionEfficiency = 0.5f;
559 // m_angularDeflectionEfficiency = 1; 452 m_linearDeflectionTimescale = 3;
560 // m_angularDeflectionTimescale = 2; 453
454 m_angularDeflectionEfficiency = 1;
455 m_angularDeflectionTimescale = 2;
456
561 m_verticalAttractionEfficiency = 0.9f; 457 m_verticalAttractionEfficiency = 0.9f;
562 m_verticalAttractionTimescale = 2f; 458 m_verticalAttractionTimescale = 2f;
563 // m_bankingEfficiency = 1; 459
564 // m_bankingMix = 0.7f; 460 m_bankingEfficiency = 1;
565 // m_bankingTimescale = 2; 461 m_bankingMix = 0.7f;
566 // m_referenceFrame = Quaternion.Identity; 462 m_bankingTimescale = 2;
567 m_Hoverflags &= ~(VehicleFlag.HOVER_WATER_ONLY | VehicleFlag.HOVER_TERRAIN_ONLY | 463
568 VehicleFlag.HOVER_GLOBAL_HEIGHT | VehicleFlag.HOVER_UP_ONLY); 464 m_referenceFrame = Quaternion.Identity;
569 m_flags &= ~(VehicleFlag.NO_DEFLECTION_UP | VehicleFlag.LIMIT_MOTOR_UP); 465 m_flags &= ~(VehicleFlag.HOVER_WATER_ONLY
466 | VehicleFlag.HOVER_TERRAIN_ONLY
467 | VehicleFlag.HOVER_GLOBAL_HEIGHT
468 | VehicleFlag.HOVER_UP_ONLY
469 | VehicleFlag.NO_DEFLECTION_UP
470 | VehicleFlag.LIMIT_MOTOR_UP);
570 m_flags |= (VehicleFlag.LIMIT_ROLL_ONLY); 471 m_flags |= (VehicleFlag.LIMIT_ROLL_ONLY);
571 break; 472 break;
572 case Vehicle.TYPE_BALLOON: 473 case Vehicle.TYPE_BALLOON:
573 m_linearFrictionTimescale = new Vector3(5, 5, 5);
574 m_angularFrictionTimescale = new Vector3(10, 10, 10);
575 m_linearMotorDirection = Vector3.Zero; 474 m_linearMotorDirection = Vector3.Zero;
576 m_linearMotorTimescale = 5; 475 m_linearMotorTimescale = 5;
476 m_linearFrictionTimescale = new Vector3(5, 5, 5);
577 m_linearMotorDecayTimescale = 60; 477 m_linearMotorDecayTimescale = 60;
478
578 m_angularMotorDirection = Vector3.Zero; 479 m_angularMotorDirection = Vector3.Zero;
579 m_angularMotorTimescale = 6; 480 m_angularMotorTimescale = 6;
481 m_angularFrictionTimescale = new Vector3(10, 10, 10);
580 m_angularMotorDecayTimescale = 10; 482 m_angularMotorDecayTimescale = 10;
483
581 m_VhoverHeight = 5; 484 m_VhoverHeight = 5;
582// m_VhoverEfficiency = 0.8f; 485 m_VhoverEfficiency = 0.8f;
583 m_VhoverTimescale = 10; 486 m_VhoverTimescale = 10;
584 m_VehicleBuoyancy = 1; 487 m_VehicleBuoyancy = 1;
585 // m_linearDeflectionEfficiency = 0; 488
586 // m_linearDeflectionTimescale = 5; 489 m_linearDeflectionEfficiency = 0;
587 // m_angularDeflectionEfficiency = 0; 490 m_linearDeflectionTimescale = 5;
588 // m_angularDeflectionTimescale = 5; 491
492 m_angularDeflectionEfficiency = 0;
493 m_angularDeflectionTimescale = 5;
494
589 m_verticalAttractionEfficiency = 1f; 495 m_verticalAttractionEfficiency = 1f;
590 m_verticalAttractionTimescale = 100f; 496 m_verticalAttractionTimescale = 100f;
591 // m_bankingEfficiency = 0; 497
592 // m_bankingMix = 0.7f; 498 m_bankingEfficiency = 0;
593 // m_bankingTimescale = 5; 499 m_bankingMix = 0.7f;
594 // m_referenceFrame = Quaternion.Identity; 500 m_bankingTimescale = 5;
595 m_Hoverflags &= ~(VehicleFlag.HOVER_WATER_ONLY | VehicleFlag.HOVER_TERRAIN_ONLY | 501 m_referenceFrame = Quaternion.Identity;
596 VehicleFlag.HOVER_UP_ONLY); 502
597 m_flags &= ~(VehicleFlag.NO_DEFLECTION_UP | VehicleFlag.LIMIT_MOTOR_UP); 503 m_referenceFrame = Quaternion.Identity;
598 m_flags |= (VehicleFlag.LIMIT_ROLL_ONLY); 504 m_flags &= ~(VehicleFlag.HOVER_WATER_ONLY
599 m_Hoverflags |= (VehicleFlag.HOVER_GLOBAL_HEIGHT); 505 | VehicleFlag.HOVER_TERRAIN_ONLY
506 | VehicleFlag.HOVER_UP_ONLY
507 | VehicleFlag.NO_DEFLECTION_UP
508 | VehicleFlag.LIMIT_MOTOR_UP);
509 m_flags |= (VehicleFlag.LIMIT_ROLL_ONLY
510 | VehicleFlag.HOVER_GLOBAL_HEIGHT);
600 break; 511 break;
601 } 512 }
602 }//end SetDefaultsForType 513 }
514
515 // Some of the properties of this prim may have changed.
516 // Do any updating needed for a vehicle
517 public void Refresh()
518 {
519 if (IsActive)
520 {
521 // Friction effects are handled by this vehicle code
522 BulletSimAPI.SetFriction2(Prim.PhysBody.ptr, 0f);
523 BulletSimAPI.SetHitFraction2(Prim.PhysBody.ptr, 0f);
524
525 // BulletSimAPI.SetAngularDamping2(Prim.PhysBody.ptr, 0.8f);
526
527 VDetailLog("{0},BSDynamics.Refresh,zeroingFriction and adding damping", Prim.LocalID);
528 }
529 }
530
531 public bool RemoveBodyDependencies(BSPhysObject prim)
532 {
533 // If active, we need to add our properties back when the body is rebuilt.
534 return IsActive;
535 }
536
537 public void RestoreBodyDependencies(BSPhysObject prim)
538 {
539 if (Prim.LocalID != prim.LocalID)
540 {
541 // The call should be on us by our prim. Error if not.
542 PhysicsScene.Logger.ErrorFormat("{0} RestoreBodyDependencies: called by not my prim. passedLocalID={1}, vehiclePrimLocalID={2}",
543 LogHeader, prim.LocalID, Prim.LocalID);
544 return;
545 }
546 Refresh();
547 }
603 548
549 // One step of the vehicle properties for the next 'pTimestep' seconds.
604 internal void Step(float pTimestep) 550 internal void Step(float pTimestep)
605 { 551 {
606 if (m_type == Vehicle.TYPE_NONE) return; 552 if (!IsActive) return;
607 553
608 frcount++; // used to limit debug comment output 554 // DEBUG
609 if (frcount > 100) 555 // Because Bullet does apply forces to the vehicle, our last computed
610 frcount = 0; 556 // linear and angular velocities are not what is happening now.
557 // Vector3 externalAngularVelocity = Prim.ForceRotationalVelocity - m_lastAngularVelocity;
558 // m_lastAngularVelocity += (externalAngularVelocity * 0.5f) * pTimestep;
559 // m_lastAngularVelocity = Prim.ForceRotationalVelocity; // DEBUG: account for what Bullet did last time
560 // m_lastLinearVelocityVector = Prim.ForceVelocity * Quaternion.Inverse(Prim.ForceOrientation); // DEBUG:
561 // END DEBUG
562
563 m_vehicleMass = Prim.Linkset.LinksetMass;
611 564
612 MoveLinear(pTimestep); 565 MoveLinear(pTimestep);
566 // Commented out for debug
613 MoveAngular(pTimestep); 567 MoveAngular(pTimestep);
568 // Prim.ApplyTorqueImpulse(-Prim.RotationalVelocity * m_vehicleMass, false); // DEBUG DEBUG
569 // Prim.ForceRotationalVelocity = -Prim.RotationalVelocity; // DEBUG DEBUG
570
614 LimitRotation(pTimestep); 571 LimitRotation(pTimestep);
615 572
616 DetailLog("{0},BSDynamics.Step,done,pos={1},force={2},velocity={3},angvel={4}", 573 // remember the position so next step we can limit absolute movement effects
617 m_prim.LocalID, m_prim.Position, m_prim.Force, m_prim.Velocity, m_prim.RotationalVelocity); 574 m_lastPositionVector = Prim.ForcePosition;
575
576 VDetailLog("{0},BSDynamics.Step,frict={1},grav={2},inertia={3},mass={4}", // DEBUG DEBUG
577 Prim.LocalID,
578 BulletSimAPI.GetFriction2(Prim.PhysBody.ptr),
579 BulletSimAPI.GetGravity2(Prim.PhysBody.ptr),
580 Prim.Inertia,
581 m_vehicleMass
582 );
583 VDetailLog("{0},BSDynamics.Step,done,pos={1},force={2},velocity={3},angvel={4}",
584 Prim.LocalID, Prim.ForcePosition, Prim.Force, Prim.ForceVelocity, Prim.RotationalVelocity);
618 }// end Step 585 }// end Step
619 586
587 // Apply the effect of the linear motor.
588 // Also does hover and float.
620 private void MoveLinear(float pTimestep) 589 private void MoveLinear(float pTimestep)
621 { 590 {
622 // requested m_linearMotorDirection is significant 591 // m_linearMotorDirection is the target direction we are moving relative to the vehicle coordinates
623 // if (!m_linearMotorDirection.ApproxEquals(Vector3.Zero, 0.01f)) 592 // m_lastLinearVelocityVector is the current speed we are moving in that direction
624 if (m_linearMotorDirection.LengthSquared() > 0.0001f) 593 if (m_linearMotorDirection.LengthSquared() > 0.001f)
625 { 594 {
626 Vector3 origDir = m_linearMotorDirection; 595 Vector3 origDir = m_linearMotorDirection; // DEBUG
627 Vector3 origVel = m_lastLinearVelocityVector; 596 Vector3 origVel = m_lastLinearVelocityVector; // DEBUG
628 597 // DEBUG: the vehicle velocity rotated to be relative to vehicle coordinates for comparison
629 // add drive to body 598 Vector3 vehicleVelocity = Prim.ForceVelocity * Quaternion.Inverse(Prim.ForceOrientation); // DEBUG
630 // Vector3 addAmount = m_linearMotorDirection/(m_linearMotorTimescale/pTimestep); 599
631 Vector3 addAmount = m_linearMotorDirection/(m_linearMotorTimescale); 600 // Add (desiredVelocity - lastAppliedVelocity) / howLongItShouldTakeToComplete
632 // lastLinearVelocityVector is the current body velocity vector? 601 Vector3 addAmount = (m_linearMotorDirection - m_lastLinearVelocityVector)/(m_linearMotorTimescale) * pTimestep;
633 // RA: Not sure what the *10 is for. A correction for pTimestep?
634 // m_lastLinearVelocityVector += (addAmount*10);
635 m_lastLinearVelocityVector += addAmount;
636
637 // This will work temporarily, but we really need to compare speed on an axis
638 // KF: Limit body velocity to applied velocity?
639 // Limit the velocity vector to less than the last set linear motor direction
640 if (Math.Abs(m_lastLinearVelocityVector.X) > Math.Abs(m_linearMotorDirectionLASTSET.X))
641 m_lastLinearVelocityVector.X = m_linearMotorDirectionLASTSET.X;
642 if (Math.Abs(m_lastLinearVelocityVector.Y) > Math.Abs(m_linearMotorDirectionLASTSET.Y))
643 m_lastLinearVelocityVector.Y = m_linearMotorDirectionLASTSET.Y;
644 if (Math.Abs(m_lastLinearVelocityVector.Z) > Math.Abs(m_linearMotorDirectionLASTSET.Z))
645 m_lastLinearVelocityVector.Z = m_linearMotorDirectionLASTSET.Z;
646
647 // decay applied velocity
648 Vector3 decayfraction = ((Vector3.One/(m_linearMotorDecayTimescale/pTimestep)));
649 m_linearMotorDirection -= m_linearMotorDirection * decayfraction * 0.5f;
650
651 /*
652 Vector3 addAmount = (m_linearMotorDirection - m_lastLinearVelocityVector)/m_linearMotorTimescale;
653 m_lastLinearVelocityVector += addAmount; 602 m_lastLinearVelocityVector += addAmount;
654 603
655 float decayfraction = (1.0f - 1.0f / m_linearMotorDecayTimescale); 604 float decayFactor = (1.0f / m_linearMotorDecayTimescale) * pTimestep;
656 m_linearMotorDirection *= decayfraction; 605 m_linearMotorDirection *= (1f - decayFactor);
606
607 // Rotate new object velocity from vehicle relative to world coordinates
608 m_newVelocity = m_lastLinearVelocityVector * Prim.ForceOrientation;
657 609
658 */ 610 // Apply friction for next time
611 Vector3 frictionFactor = (Vector3.One / m_linearFrictionTimescale) * pTimestep;
612 m_lastLinearVelocityVector *= (Vector3.One - frictionFactor);
659 613
660 DetailLog("{0},MoveLinear,nonZero,origdir={1},origvel={2},add={3},decay={4},dir={5},vel={6}", 614 VDetailLog("{0},MoveLinear,nonZero,origlmDir={1},origlvVel={2},vehVel={3},add={4},decay={5},frict={6},lmDir={7},lvVec={8},newVel={9}",
661 m_prim.LocalID, origDir, origVel, addAmount, decayfraction, m_linearMotorDirection, m_lastLinearVelocityVector); 615 Prim.LocalID, origDir, origVel, vehicleVelocity, addAmount, decayFactor, frictionFactor,
616 m_linearMotorDirection, m_lastLinearVelocityVector, m_newVelocity);
662 } 617 }
663 else 618 else
664 { 619 {
665 // if what remains of applied is small, zero it. 620 // if what remains of direction is very small, zero it.
666 // if (m_lastLinearVelocityVector.ApproxEquals(Vector3.Zero, 0.01f))
667 // m_lastLinearVelocityVector = Vector3.Zero;
668 m_linearMotorDirection = Vector3.Zero; 621 m_linearMotorDirection = Vector3.Zero;
669 m_lastLinearVelocityVector = Vector3.Zero; 622 m_lastLinearVelocityVector = Vector3.Zero;
670 } 623 m_newVelocity = Vector3.Zero;
671 624
672 // convert requested object velocity to world-referenced vector 625 VDetailLog("{0},MoveLinear,zeroed", Prim.LocalID);
673 Quaternion rotq = m_prim.Orientation; 626 }
674 m_dir = m_lastLinearVelocityVector * rotq;
675 627
676 // Add the various forces into m_dir which will be our new direction vector (velocity) 628 // m_newVelocity is velocity computed from linear motor in world coordinates
677 629
678 // add Gravity and Buoyancy 630 // Gravity and Buoyancy
679 // KF: So far I have found no good method to combine a script-requested
680 // .Z velocity and gravity. Therefore only 0g will used script-requested
681 // .Z velocity. >0g (m_VehicleBuoyancy < 1) will used modified gravity only.
682 Vector3 grav = Vector3.Zero;
683 // There is some gravity, make a gravity force vector that is applied after object velocity. 631 // There is some gravity, make a gravity force vector that is applied after object velocity.
684 // m_VehicleBuoyancy: -1=2g; 0=1g; 1=0g; 632 // m_VehicleBuoyancy: -1=2g; 0=1g; 1=0g;
685 grav.Z = m_prim.Scene.DefaultGravity.Z * m_prim.Mass * (1f - m_VehicleBuoyancy); 633 Vector3 grav = Prim.PhysicsScene.DefaultGravity * (1f - m_VehicleBuoyancy);
634
635 /*
636 * RA: Not sure why one would do this unless we are hoping external forces are doing gravity, ...
686 // Preserve the current Z velocity 637 // Preserve the current Z velocity
687 Vector3 vel_now = m_prim.Velocity; 638 Vector3 vel_now = m_prim.Velocity;
688 m_dir.Z = vel_now.Z; // Preserve the accumulated falling velocity 639 m_dir.Z = vel_now.Z; // Preserve the accumulated falling velocity
640 */
689 641
690 Vector3 pos = m_prim.Position; 642 Vector3 pos = Prim.ForcePosition;
691 Vector3 posChange = pos;
692// Vector3 accel = new Vector3(-(m_dir.X - m_lastLinearVelocityVector.X / 0.1f), -(m_dir.Y - m_lastLinearVelocityVector.Y / 0.1f), m_dir.Z - m_lastLinearVelocityVector.Z / 0.1f); 643// Vector3 accel = new Vector3(-(m_dir.X - m_lastLinearVelocityVector.X / 0.1f), -(m_dir.Y - m_lastLinearVelocityVector.Y / 0.1f), m_dir.Z - m_lastLinearVelocityVector.Z / 0.1f);
693 double Zchange = Math.Abs(posChange.Z);
694 if (m_BlockingEndPoint != Vector3.Zero)
695 {
696 bool changed = false;
697 if (pos.X >= (m_BlockingEndPoint.X - (float)1))
698 {
699 pos.X -= posChange.X + 1;
700 changed = true;
701 }
702 if (pos.Y >= (m_BlockingEndPoint.Y - (float)1))
703 {
704 pos.Y -= posChange.Y + 1;
705 changed = true;
706 }
707 if (pos.Z >= (m_BlockingEndPoint.Z - (float)1))
708 {
709 pos.Z -= posChange.Z + 1;
710 changed = true;
711 }
712 if (pos.X <= 0)
713 {
714 pos.X += posChange.X + 1;
715 changed = true;
716 }
717 if (pos.Y <= 0)
718 {
719 pos.Y += posChange.Y + 1;
720 changed = true;
721 }
722 if (changed)
723 {
724 m_prim.Position = pos;
725 DetailLog("{0},MoveLinear,blockingEndPoint,block={1},origPos={2},pos={3}",
726 m_prim.LocalID, m_BlockingEndPoint, posChange, pos);
727 }
728 }
729 644
730 // If below the terrain, move us above the ground a little. 645 // If below the terrain, move us above the ground a little.
731 if (pos.Z < m_prim.Scene.GetTerrainHeightAtXYZ(pos)) 646 float terrainHeight = Prim.PhysicsScene.TerrainManager.GetTerrainHeightAtXYZ(pos);
647 // Taking the rotated size doesn't work here because m_prim.Size is the size of the root prim and not the linkset.
648 // TODO: Add a m_prim.LinkSet.Size similar to m_prim.LinkSet.Mass.
649 // Vector3 rotatedSize = m_prim.Size * m_prim.ForceOrientation;
650 // if (rotatedSize.Z < terrainHeight)
651 if (pos.Z < terrainHeight)
732 { 652 {
733 pos.Z = m_prim.Scene.GetTerrainHeightAtXYZ(pos) + 2; 653 pos.Z = terrainHeight + 2;
734 m_prim.Position = pos; 654 Prim.ForcePosition = pos;
735 DetailLog("{0},MoveLinear,terrainHeight,pos={1}", m_prim.LocalID, pos); 655 VDetailLog("{0},MoveLinear,terrainHeight,terrainHeight={1},pos={2}", Prim.LocalID, terrainHeight, pos);
736 } 656 }
737 657
738 // Check if hovering 658 // Check if hovering
739 if ((m_Hoverflags & (VehicleFlag.HOVER_WATER_ONLY | VehicleFlag.HOVER_TERRAIN_ONLY | VehicleFlag.HOVER_GLOBAL_HEIGHT)) != 0) 659 // m_VhoverEfficiency: 0=bouncy, 1=totally damped
660 // m_VhoverTimescale: time to achieve height
661 if ((m_flags & (VehicleFlag.HOVER_WATER_ONLY | VehicleFlag.HOVER_TERRAIN_ONLY | VehicleFlag.HOVER_GLOBAL_HEIGHT)) != 0)
740 { 662 {
741 // We should hover, get the target height 663 // We should hover, get the target height
742 if ((m_Hoverflags & VehicleFlag.HOVER_WATER_ONLY) != 0) 664 if ((m_flags & VehicleFlag.HOVER_WATER_ONLY) != 0)
743 { 665 {
744 m_VhoverTargetHeight = m_prim.Scene.GetWaterLevel() + m_VhoverHeight; 666 m_VhoverTargetHeight = Prim.PhysicsScene.GetWaterLevelAtXYZ(pos) + m_VhoverHeight;
745 } 667 }
746 if ((m_Hoverflags & VehicleFlag.HOVER_TERRAIN_ONLY) != 0) 668 if ((m_flags & VehicleFlag.HOVER_TERRAIN_ONLY) != 0)
747 { 669 {
748 m_VhoverTargetHeight = m_prim.Scene.GetTerrainHeightAtXY(pos.X, pos.Y) + m_VhoverHeight; 670 m_VhoverTargetHeight = terrainHeight + m_VhoverHeight;
749 } 671 }
750 if ((m_Hoverflags & VehicleFlag.HOVER_GLOBAL_HEIGHT) != 0) 672 if ((m_flags & VehicleFlag.HOVER_GLOBAL_HEIGHT) != 0)
751 { 673 {
752 m_VhoverTargetHeight = m_VhoverHeight; 674 m_VhoverTargetHeight = m_VhoverHeight;
753 } 675 }
754 676
755 if ((m_Hoverflags & VehicleFlag.HOVER_UP_ONLY) != 0) 677 if ((m_flags & VehicleFlag.HOVER_UP_ONLY) != 0)
756 { 678 {
757 // If body is aready heigher, use its height as target height 679 // If body is already heigher, use its height as target height
758 if (pos.Z > m_VhoverTargetHeight) m_VhoverTargetHeight = pos.Z; 680 if (pos.Z > m_VhoverTargetHeight)
681 m_VhoverTargetHeight = pos.Z;
759 } 682 }
760 if ((m_Hoverflags & VehicleFlag.LOCK_HOVER_HEIGHT) != 0) 683 if ((m_flags & VehicleFlag.LOCK_HOVER_HEIGHT) != 0)
761 { 684 {
762 if ((pos.Z - m_VhoverTargetHeight) > .2 || (pos.Z - m_VhoverTargetHeight) < -.2) 685 if (Math.Abs(pos.Z - m_VhoverTargetHeight) > 0.2f)
763 { 686 {
764 m_prim.Position = pos; 687 pos.Z = m_VhoverTargetHeight;
688 Prim.ForcePosition = pos;
765 } 689 }
766 } 690 }
767 else 691 else
768 { 692 {
769 float herr0 = pos.Z - m_VhoverTargetHeight; 693 float verticalError = pos.Z - m_VhoverTargetHeight;
694 // RA: where does the 50 come from?
695 float verticalCorrectionVelocity = pTimestep * ((verticalError * 50.0f) / m_VhoverTimescale);
770 // Replace Vertical speed with correction figure if significant 696 // Replace Vertical speed with correction figure if significant
771 if (Math.Abs(herr0) > 0.01f) 697 if (Math.Abs(verticalError) > 0.01f)
772 { 698 {
773 m_dir.Z = -((herr0 * pTimestep * 50.0f) / m_VhoverTimescale); 699 m_newVelocity.Z += verticalCorrectionVelocity;
774 //KF: m_VhoverEfficiency is not yet implemented 700 //KF: m_VhoverEfficiency is not yet implemented
775 } 701 }
702 else if (verticalError < -0.01)
703 {
704 m_newVelocity.Z -= verticalCorrectionVelocity;
705 }
776 else 706 else
777 { 707 {
778 m_dir.Z = 0f; 708 m_newVelocity.Z = 0f;
779 } 709 }
780 } 710 }
781 711
782 DetailLog("{0},MoveLinear,hover,pos={1},dir={2},height={3},target={4}", m_prim.LocalID, pos, m_dir, m_VhoverHeight, m_VhoverTargetHeight); 712 VDetailLog("{0},MoveLinear,hover,pos={1},dir={2},height={3},target={4}", Prim.LocalID, pos, m_newVelocity, m_VhoverHeight, m_VhoverTargetHeight);
783
784// m_VhoverEfficiency = 0f; // 0=boucy, 1=Crit.damped
785// m_VhoverTimescale = 0f; // time to acheive height
786// pTimestep is time since last frame,in secs
787 } 713 }
788 714
789 if ((m_flags & (VehicleFlag.LIMIT_MOTOR_UP)) != 0) 715 Vector3 posChange = pos - m_lastPositionVector;
716 if (m_BlockingEndPoint != Vector3.Zero)
790 { 717 {
791 //Start Experimental Values 718 bool changed = false;
792 if (Zchange > .3) 719 if (pos.X >= (m_BlockingEndPoint.X - (float)1))
793 { 720 {
794 grav.Z = (float)(grav.Z * 3); 721 pos.X -= posChange.X + 1;
722 changed = true;
795 } 723 }
796 if (Zchange > .15) 724 if (pos.Y >= (m_BlockingEndPoint.Y - (float)1))
797 { 725 {
798 grav.Z = (float)(grav.Z * 2); 726 pos.Y -= posChange.Y + 1;
727 changed = true;
799 } 728 }
800 if (Zchange > .75) 729 if (pos.Z >= (m_BlockingEndPoint.Z - (float)1))
801 { 730 {
802 grav.Z = (float)(grav.Z * 1.5); 731 pos.Z -= posChange.Z + 1;
732 changed = true;
803 } 733 }
804 if (Zchange > .05) 734 if (pos.X <= 0)
805 { 735 {
806 grav.Z = (float)(grav.Z * 1.25); 736 pos.X += posChange.X + 1;
737 changed = true;
807 } 738 }
808 if (Zchange > .025) 739 if (pos.Y <= 0)
809 { 740 {
810 grav.Z = (float)(grav.Z * 1.125); 741 pos.Y += posChange.Y + 1;
742 changed = true;
811 } 743 }
812 float terraintemp = m_prim.Scene.GetTerrainHeightAtXYZ(pos); 744 if (changed)
813 float postemp = (pos.Z - terraintemp);
814 if (postemp > 2.5f)
815 { 745 {
816 grav.Z = (float)(grav.Z * 1.037125); 746 Prim.ForcePosition = pos;
747 VDetailLog("{0},MoveLinear,blockingEndPoint,block={1},origPos={2},pos={3}",
748 Prim.LocalID, m_BlockingEndPoint, posChange, pos);
817 } 749 }
818 DetailLog("{0},MoveLinear,limitMotorUp,grav={1}", m_prim.LocalID, grav);
819 //End Experimental Values
820 } 750 }
821 if ((m_flags & (VehicleFlag.NO_X)) != 0) 751
752 #region downForce
753 Vector3 downForce = Vector3.Zero;
754
755 if ((m_flags & (VehicleFlag.LIMIT_MOTOR_UP)) != 0)
822 { 756 {
823 m_dir.X = 0; 757 // If the vehicle is motoring into the sky, get it going back down.
758 // Is this an angular force or both linear and angular??
759 float distanceAboveGround = pos.Z - terrainHeight;
760 if (distanceAboveGround > 2f)
761 {
762 // downForce = new Vector3(0, 0, (-distanceAboveGround / m_bankingTimescale) * pTimestep);
763 // downForce = new Vector3(0, 0, -distanceAboveGround / m_bankingTimescale);
764 downForce = new Vector3(0, 0, -distanceAboveGround);
765 }
766 // TODO: this calculation is all wrong. From the description at
767 // (http://wiki.secondlife.com/wiki/Category:LSL_Vehicle), the downForce
768 // has a decay factor. This says this force should
769 // be computed with a motor.
770 VDetailLog("{0},MoveLinear,limitMotorUp,distAbove={1},downForce={2}",
771 Prim.LocalID, distanceAboveGround, downForce);
824 } 772 }
773 #endregion // downForce
774
775 // If not changing some axis, reduce out velocity
776 if ((m_flags & (VehicleFlag.NO_X)) != 0)
777 m_newVelocity.X = 0;
825 if ((m_flags & (VehicleFlag.NO_Y)) != 0) 778 if ((m_flags & (VehicleFlag.NO_Y)) != 0)
826 { 779 m_newVelocity.Y = 0;
827 m_dir.Y = 0;
828 }
829 if ((m_flags & (VehicleFlag.NO_Z)) != 0) 780 if ((m_flags & (VehicleFlag.NO_Z)) != 0)
781 m_newVelocity.Z = 0;
782
783 // Clamp REALLY high or low velocities
784 if (m_newVelocity.LengthSquared() > 1e6f)
830 { 785 {
831 m_dir.Z = 0; 786 m_newVelocity /= m_newVelocity.Length();
787 m_newVelocity *= 1000f;
832 } 788 }
789 else if (m_newVelocity.LengthSquared() < 1e-6f)
790 m_newVelocity = Vector3.Zero;
833 791
834 m_lastPositionVector = m_prim.Position; 792 // Stuff new linear velocity into the vehicle
793 Prim.ForceVelocity = m_newVelocity;
794 // Prim.ApplyForceImpulse((m_newVelocity - Prim.Velocity) * m_vehicleMass, false); // DEBUG DEBUG
835 795
836 // Apply velocity 796 Vector3 totalDownForce = downForce + grav;
837 m_prim.Velocity = m_dir; 797 if (totalDownForce != Vector3.Zero)
838 // apply gravity force 798 {
839 // Why is this set here? The physics engine already does gravity. 799 Prim.AddForce(totalDownForce * m_vehicleMass, false);
840 // m_prim.AddForce(grav, false); 800 // Prim.ApplyForceImpulse(totalDownForce * m_vehicleMass, false);
841 // m_prim.Force = grav; 801 }
842
843 // Apply friction
844 Vector3 decayamount = Vector3.One / (m_linearFrictionTimescale / pTimestep);
845 m_lastLinearVelocityVector -= m_lastLinearVelocityVector * decayamount;
846 802
847 DetailLog("{0},MoveLinear,done,pos={1},vel={2},force={3},decay={4}", 803 VDetailLog("{0},MoveLinear,done,lmDir={1},lmVel={2},newVel={3},primVel={4},totalDown={5}",
848 m_prim.LocalID, m_lastPositionVector, m_dir, grav, decayamount); 804 Prim.LocalID, m_linearMotorDirection, m_lastLinearVelocityVector, m_newVelocity, Prim.Velocity, totalDownForce);
849 805
850 } // end MoveLinear() 806 } // end MoveLinear()
851 807
808 // =======================================================================
809 // Apply the effect of the angular motor.
852 private void MoveAngular(float pTimestep) 810 private void MoveAngular(float pTimestep)
853 { 811 {
854 // m_angularMotorDirection // angular velocity requested by LSL motor 812 // m_angularMotorDirection // angular velocity requested by LSL motor
@@ -859,160 +817,263 @@ namespace OpenSim.Region.Physics.BulletSPlugin
859 // m_angularFrictionTimescale // body angular velocity decay rate 817 // m_angularFrictionTimescale // body angular velocity decay rate
860 // m_lastAngularVelocity // what was last applied to body 818 // m_lastAngularVelocity // what was last applied to body
861 819
862 // Get what the body is doing, this includes 'external' influences 820 if (m_angularMotorDirection.LengthSquared() > 0.0001)
863 Vector3 angularVelocity = m_prim.RotationalVelocity;
864
865 if (m_angularMotorApply > 0)
866 { 821 {
867 // Rather than snapping the angular motor velocity from the old value to 822 Vector3 origVel = m_angularMotorVelocity;
868 // a newly set velocity, this routine steps the value from the previous 823 Vector3 origDir = m_angularMotorDirection;
869 // value (m_angularMotorVelocity) to the requested value (m_angularMotorDirection). 824
870 // There are m_angularMotorApply steps. 825 // new velocity += error / ( time to get there / step interval)
871 Vector3 origAngularVelocity = m_angularMotorVelocity; 826 // requested direction - current vehicle direction
872 // ramp up to new value 827 m_angularMotorVelocity += (m_angularMotorDirection - m_angularMotorVelocity) / (m_angularMotorTimescale / pTimestep);
873 // current velocity += error / (time to get there / step interval) 828 // decay requested direction
874 // requested speed - last motor speed 829 m_angularMotorDirection *= (1.0f - (pTimestep * 1.0f/m_angularMotorDecayTimescale));
875 m_angularMotorVelocity.X += (m_angularMotorDirection.X - m_angularMotorVelocity.X) / (m_angularMotorTimescale / pTimestep); 830
876 m_angularMotorVelocity.Y += (m_angularMotorDirection.Y - m_angularMotorVelocity.Y) / (m_angularMotorTimescale / pTimestep); 831 VDetailLog("{0},MoveAngular,angularMotorApply,angTScale={1},timeStep={2},origvel={3},origDir={4},vel={5}",
877 m_angularMotorVelocity.Z += (m_angularMotorDirection.Z - m_angularMotorVelocity.Z) / (m_angularMotorTimescale / pTimestep); 832 Prim.LocalID, m_angularMotorTimescale, pTimestep, origVel, origDir, m_angularMotorVelocity);
878
879 DetailLog("{0},MoveAngular,angularMotorApply,apply={1},origvel={2},dir={3},vel={4}",
880 m_prim.LocalID,m_angularMotorApply,origAngularVelocity, m_angularMotorDirection, m_angularMotorVelocity);
881
882 m_angularMotorApply--; // This is done so that if script request rate is less than phys frame rate the expected
883 // velocity may still be acheived.
884 } 833 }
885 else 834 else
886 { 835 {
887 // No motor recently applied, keep the body velocity 836 m_angularMotorVelocity = Vector3.Zero;
888 // and decay the velocity 837 }
889 m_angularMotorVelocity -= m_angularMotorVelocity / (m_angularMotorDecayTimescale / pTimestep); 838
890 } // end motor section 839 #region Vertical attactor
891 840
892 // Vertical attractor section
893 Vector3 vertattr = Vector3.Zero; 841 Vector3 vertattr = Vector3.Zero;
894 if (m_verticalAttractionTimescale < 300) 842 Vector3 deflection = Vector3.Zero;
843 Vector3 banking = Vector3.Zero;
844
845 // If vertical attaction timescale is reasonable and we applied an angular force last time...
846 if (m_verticalAttractionTimescale < 300 && m_lastAngularVelocity != Vector3.Zero)
895 { 847 {
896 float VAservo = 0.2f / (m_verticalAttractionTimescale * pTimestep); 848 float VAservo = pTimestep * 0.2f / m_verticalAttractionTimescale;
897 // get present body rotation 849 if (Prim.IsColliding)
898 Quaternion rotq = m_prim.Orientation; 850 VAservo = pTimestep * 0.05f / (m_verticalAttractionTimescale);
899 // make a vector pointing up 851
900 Vector3 verterr = Vector3.Zero; 852 VAservo *= (m_verticalAttractionEfficiency * m_verticalAttractionEfficiency);
901 verterr.Z = 1.0f; 853
902 // rotate it to Body Angle 854 // Create a vector of the vehicle "up" in world coordinates
903 verterr = verterr * rotq; 855 Vector3 verticalError = Vector3.UnitZ * Prim.ForceOrientation;
904 // verterr.X and .Y are the World error ammounts. They are 0 when there is no error (Vehicle Body is 'vertical'), and .Z will be 1. 856 // verticalError.X and .Y are the World error amounts. They are 0 when there is no
905 // As the body leans to its side |.X| will increase to 1 and .Z fall to 0. As body inverts |.X| will fall and .Z will go 857 // error (Vehicle Body is 'vertical'), and .Z will be 1. As the body leans to its
906 // negative. Similar for tilt and |.Y|. .X and .Y must be modulated to prevent a stable inverted body. 858 // side |.X| will increase to 1 and .Z fall to 0. As body inverts |.X| will fall
907 if (verterr.Z < 0.0f) 859 // and .Z will go // negative. Similar for tilt and |.Y|. .X and .Y must be
860 // modulated to prevent a stable inverted body.
861
862 // Error is 0 (no error) to +/- 2 (max error)
863 if (verticalError.Z < 0.0f)
908 { 864 {
909 verterr.X = 2.0f - verterr.X; 865 verticalError.X = 2.0f - verticalError.X;
910 verterr.Y = 2.0f - verterr.Y; 866 verticalError.Y = 2.0f - verticalError.Y;
911 } 867 }
912 // Error is 0 (no error) to +/- 2 (max error) 868 // scale it by VAservo (timestep and timescale)
913 // scale it by VAservo 869 verticalError = verticalError * VAservo;
914 verterr = verterr * VAservo; 870
915 871 // As the body rotates around the X axis, then verticalError.Y increases; Rotated around Y
916 // As the body rotates around the X axis, then verterr.Y increases; Rotated around Y then .X increases, so 872 // then .X increases, so change Body angular velocity X based on Y, and Y based on X.
917 // Change Body angular velocity X based on Y, and Y based on X. Z is not changed. 873 // Z is not changed.
918 vertattr.X = verterr.Y; 874 vertattr.X = verticalError.Y;
919 vertattr.Y = - verterr.X; 875 vertattr.Y = - verticalError.X;
920 vertattr.Z = 0f; 876 vertattr.Z = 0f;
921 877
922 // scaling appears better usingsquare-law 878 // scaling appears better usingsquare-law
879 Vector3 angularVelocity = Prim.ForceRotationalVelocity;
923 float bounce = 1.0f - (m_verticalAttractionEfficiency * m_verticalAttractionEfficiency); 880 float bounce = 1.0f - (m_verticalAttractionEfficiency * m_verticalAttractionEfficiency);
924 vertattr.X += bounce * angularVelocity.X; 881 vertattr.X += bounce * angularVelocity.X;
925 vertattr.Y += bounce * angularVelocity.Y; 882 vertattr.Y += bounce * angularVelocity.Y;
926 883
927 DetailLog("{0},MoveAngular,verticalAttraction,verterr={1},bounce={2},vertattr={3}", 884 VDetailLog("{0},MoveAngular,verticalAttraction,VAservo={1},effic={2},verticalError={3},bounce={4},vertattr={5}",
928 m_prim.LocalID, verterr, bounce, vertattr); 885 Prim.LocalID, VAservo, m_verticalAttractionEfficiency, verticalError, bounce, vertattr);
929 886
930 } // else vertical attractor is off 887 }
888 #endregion // Vertical attactor
889
890 #region Deflection
891
892 if (m_angularDeflectionEfficiency != 0)
893 {
894 // Compute a scaled vector that points in the preferred axis (X direction)
895 Vector3 scaledDefaultDirection =
896 new Vector3((pTimestep * 10 * (m_angularDeflectionEfficiency / m_angularDeflectionTimescale)), 0, 0);
897 // Adding the current vehicle orientation and reference frame displaces the orientation to the frame.
898 // Rotate the scaled default axix relative to the actual vehicle direction giving where it should point.
899 Vector3 preferredAxisOfMotion = scaledDefaultDirection * Quaternion.Add(Prim.ForceOrientation, m_referenceFrame);
900
901 // Scale by efficiency and timescale
902 deflection = (preferredAxisOfMotion * (m_angularDeflectionEfficiency) / m_angularDeflectionTimescale) * pTimestep;
903
904 VDetailLog("{0},MoveAngular,Deflection,perfAxis={1},deflection={2}",
905 Prim.LocalID, preferredAxisOfMotion, deflection);
906 // This deflection computation is not correct.
907 deflection = Vector3.Zero;
908 }
909
910 #endregion
911
912 #region Banking
913
914 if (m_bankingEfficiency != 0)
915 {
916 Vector3 dir = Vector3.One * Prim.ForceOrientation;
917 float mult = (m_bankingMix*m_bankingMix)*-1*(m_bankingMix < 0 ? -1 : 1);
918 //Changes which way it banks in and out of turns
931 919
932 // m_lastVertAttractor = vertattr; 920 //Use the square of the efficiency, as it looks much more how SL banking works
921 float effSquared = (m_bankingEfficiency*m_bankingEfficiency);
922 if (m_bankingEfficiency < 0)
923 effSquared *= -1; //Keep the negative!
933 924
934 // Bank section tba 925 float mix = Math.Abs(m_bankingMix);
926 if (m_angularMotorVelocity.X == 0)
927 {
928 /*if (!parent.Orientation.ApproxEquals(this.m_referenceFrame, 0.25f))
929 {
930 Vector3 axisAngle;
931 float angle;
932 parent.Orientation.GetAxisAngle(out axisAngle, out angle);
933 Vector3 rotatedVel = parent.Velocity * parent.Orientation;
934 if ((rotatedVel.X < 0 && axisAngle.Y > 0) || (rotatedVel.X > 0 && axisAngle.Y < 0))
935 m_angularMotorVelocity.X += (effSquared * (mult * mix)) * (1f) * 10;
936 else
937 m_angularMotorVelocity.X += (effSquared * (mult * mix)) * (-1f) * 10;
938 }*/
939 }
940 else
941 banking.Z += (effSquared*(mult*mix))*(m_angularMotorVelocity.X) * 4;
942 if (!Prim.IsColliding && Math.Abs(m_angularMotorVelocity.X) > mix)
943 //If they are colliding, we probably shouldn't shove the prim around... probably
944 {
945 float angVelZ = m_angularMotorVelocity.X*-1;
946 /*if(angVelZ > mix)
947 angVelZ = mix;
948 else if(angVelZ < -mix)
949 angVelZ = -mix;*/
950 //This controls how fast and how far the banking occurs
951 Vector3 bankingRot = new Vector3(angVelZ*(effSquared*mult), 0, 0);
952 if (bankingRot.X > 3)
953 bankingRot.X = 3;
954 else if (bankingRot.X < -3)
955 bankingRot.X = -3;
956 bankingRot *= Prim.ForceOrientation;
957 banking += bankingRot;
958 }
959 m_angularMotorVelocity.X *= m_bankingEfficiency == 1 ? 0.0f : 1 - m_bankingEfficiency;
960 VDetailLog("{0},MoveAngular,Banking,bEff={1},angMotVel={2},banking={3}",
961 Prim.LocalID, m_bankingEfficiency, m_angularMotorVelocity, banking);
962 }
935 963
936 // Deflection section tba 964 #endregion
965
966 m_lastVertAttractor = vertattr;
937 967
938 // Sum velocities 968 // Sum velocities
939 m_lastAngularVelocity = m_angularMotorVelocity + vertattr; // + bank + deflection 969 m_lastAngularVelocity = m_angularMotorVelocity + vertattr + banking + deflection;
940 970
971 #region Linear Motor Offset
972
973 //Offset section
974 if (m_linearMotorOffset != Vector3.Zero)
975 {
976 //Offset of linear velocity doesn't change the linear velocity,
977 // but causes a torque to be applied, for example...
978 //
979 // IIIII >>> IIIII
980 // IIIII >>> IIIII
981 // IIIII >>> IIIII
982 // ^
983 // | Applying a force at the arrow will cause the object to move forward, but also rotate
984 //
985 //
986 // The torque created is the linear velocity crossed with the offset
987
988 // NOTE: this computation does should be in the linear section
989 // because there we know the impulse being applied.
990 Vector3 torqueFromOffset = Vector3.Zero;
991 // torqueFromOffset = Vector3.Cross(m_linearMotorOffset, appliedImpulse);
992 if (float.IsNaN(torqueFromOffset.X))
993 torqueFromOffset.X = 0;
994 if (float.IsNaN(torqueFromOffset.Y))
995 torqueFromOffset.Y = 0;
996 if (float.IsNaN(torqueFromOffset.Z))
997 torqueFromOffset.Z = 0;
998 torqueFromOffset *= m_vehicleMass;
999 Prim.ApplyTorqueImpulse(torqueFromOffset, true);
1000 VDetailLog("{0},BSDynamic.MoveAngular,motorOffset,applyTorqueImpulse={1}", Prim.LocalID, torqueFromOffset);
1001 }
1002
1003 #endregion
1004
941 if ((m_flags & (VehicleFlag.NO_DEFLECTION_UP)) != 0) 1005 if ((m_flags & (VehicleFlag.NO_DEFLECTION_UP)) != 0)
942 { 1006 {
943 m_lastAngularVelocity.X = 0; 1007 m_lastAngularVelocity.X = 0;
944 m_lastAngularVelocity.Y = 0; 1008 m_lastAngularVelocity.Y = 0;
945 DetailLog("{0},MoveAngular,noDeflectionUp,lastAngular={1}", m_prim.LocalID, m_lastAngularVelocity); 1009 VDetailLog("{0},MoveAngular,noDeflectionUp,lastAngular={1}", Prim.LocalID, m_lastAngularVelocity);
946 } 1010 }
947 1011
948 if (m_lastAngularVelocity.ApproxEquals(Vector3.Zero, 0.01f)) 1012 if (m_lastAngularVelocity.ApproxEquals(Vector3.Zero, 0.01f))
949 { 1013 {
950 m_lastAngularVelocity = Vector3.Zero; // Reduce small value to zero. 1014 m_lastAngularVelocity = Vector3.Zero; // Reduce small value to zero.
951 DetailLog("{0},MoveAngular,zeroSmallValues,lastAngular={1}", m_prim.LocalID, m_lastAngularVelocity); 1015 Prim.ZeroAngularMotion(true);
1016 VDetailLog("{0},MoveAngular,zeroAngularMotion,lastAngular={1}", Prim.LocalID, m_lastAngularVelocity);
1017 }
1018 else
1019 {
1020 // Apply to the body.
1021 // The above calculates the absolute angular velocity needed. Angular velocity is massless.
1022 // Since we are stuffing the angular velocity directly into the object, the computed
1023 // velocity needs to be scaled by the timestep.
1024 Vector3 applyAngularForce = ((m_lastAngularVelocity * pTimestep) - Prim.ForceRotationalVelocity);
1025 Prim.ForceRotationalVelocity = applyAngularForce;
1026
1027 // Decay the angular movement for next time
1028 Vector3 decayamount = (Vector3.One / m_angularFrictionTimescale) * pTimestep;
1029 m_lastAngularVelocity *= Vector3.One - decayamount;
1030
1031 VDetailLog("{0},MoveAngular,done,newRotVel={1},decay={2},lastAngular={3}",
1032 Prim.LocalID, applyAngularForce, decayamount, m_lastAngularVelocity);
952 } 1033 }
953
954 // apply friction
955 Vector3 decayamount = Vector3.One / (m_angularFrictionTimescale / pTimestep);
956 m_lastAngularVelocity -= m_lastAngularVelocity * decayamount;
957
958 // Apply to the body
959 m_prim.RotationalVelocity = m_lastAngularVelocity;
960
961 DetailLog("{0},MoveAngular,done,decay={1},lastAngular={2}", m_prim.LocalID, decayamount, m_lastAngularVelocity);
962 } //end MoveAngular 1034 } //end MoveAngular
963 1035
964 internal void LimitRotation(float timestep) 1036 internal void LimitRotation(float timestep)
965 { 1037 {
966 Quaternion rotq = m_prim.Orientation; 1038 Quaternion rotq = Prim.ForceOrientation;
967 Quaternion m_rot = rotq; 1039 Quaternion m_rot = rotq;
968 bool changed = false;
969 if (m_RollreferenceFrame != Quaternion.Identity) 1040 if (m_RollreferenceFrame != Quaternion.Identity)
970 { 1041 {
971 if (rotq.X >= m_RollreferenceFrame.X) 1042 if (rotq.X >= m_RollreferenceFrame.X)
972 { 1043 {
973 m_rot.X = rotq.X - (m_RollreferenceFrame.X / 2); 1044 m_rot.X = rotq.X - (m_RollreferenceFrame.X / 2);
974 changed = true;
975 } 1045 }
976 if (rotq.Y >= m_RollreferenceFrame.Y) 1046 if (rotq.Y >= m_RollreferenceFrame.Y)
977 { 1047 {
978 m_rot.Y = rotq.Y - (m_RollreferenceFrame.Y / 2); 1048 m_rot.Y = rotq.Y - (m_RollreferenceFrame.Y / 2);
979 changed = true;
980 } 1049 }
981 if (rotq.X <= -m_RollreferenceFrame.X) 1050 if (rotq.X <= -m_RollreferenceFrame.X)
982 { 1051 {
983 m_rot.X = rotq.X + (m_RollreferenceFrame.X / 2); 1052 m_rot.X = rotq.X + (m_RollreferenceFrame.X / 2);
984 changed = true;
985 } 1053 }
986 if (rotq.Y <= -m_RollreferenceFrame.Y) 1054 if (rotq.Y <= -m_RollreferenceFrame.Y)
987 { 1055 {
988 m_rot.Y = rotq.Y + (m_RollreferenceFrame.Y / 2); 1056 m_rot.Y = rotq.Y + (m_RollreferenceFrame.Y / 2);
989 changed = true;
990 } 1057 }
991 changed = true;
992 } 1058 }
993 if ((m_flags & VehicleFlag.LOCK_ROTATION) != 0) 1059 if ((m_flags & VehicleFlag.LOCK_ROTATION) != 0)
994 { 1060 {
995 m_rot.X = 0; 1061 m_rot.X = 0;
996 m_rot.Y = 0; 1062 m_rot.Y = 0;
997 changed = true;
998 } 1063 }
999 if ((m_flags & VehicleFlag.LOCK_ROTATION) != 0) 1064 if (rotq != m_rot)
1000 { 1065 {
1001 m_rot.X = 0; 1066 Prim.ForceOrientation = m_rot;
1002 m_rot.Y = 0; 1067 VDetailLog("{0},LimitRotation,done,orig={1},new={2}", Prim.LocalID, rotq, m_rot);
1003 changed = true;
1004 } 1068 }
1005 if (changed)
1006 m_prim.Orientation = m_rot;
1007 1069
1008 DetailLog("{0},LimitRotation,done,changed={1},orig={2},new={3}", m_prim.LocalID, changed, rotq, m_rot);
1009 } 1070 }
1010 1071
1011 // Invoke the detailed logger and output something if it's enabled. 1072 // Invoke the detailed logger and output something if it's enabled.
1012 private void DetailLog(string msg, params Object[] args) 1073 private void VDetailLog(string msg, params Object[] args)
1013 { 1074 {
1014 if (m_prim.Scene.VehicleLoggingEnabled) 1075 if (Prim.PhysicsScene.VehicleLoggingEnabled)
1015 m_prim.Scene.PhysicsLogging.Write(msg, args); 1076 Prim.PhysicsScene.DetailLog(msg, args);
1016 } 1077 }
1017 } 1078 }
1018} 1079}