aboutsummaryrefslogtreecommitdiffstatshomepage
path: root/OpenSim/Region/Physics/BulletSPlugin/BSDynamics.cs
diff options
context:
space:
mode:
Diffstat (limited to '')
-rw-r--r--OpenSim/Region/Physics/BulletSPlugin/BSDynamics.cs1177
1 files changed, 805 insertions, 372 deletions
diff --git a/OpenSim/Region/Physics/BulletSPlugin/BSDynamics.cs b/OpenSim/Region/Physics/BulletSPlugin/BSDynamics.cs
index dbc9039..e434412 100644
--- a/OpenSim/Region/Physics/BulletSPlugin/BSDynamics.cs
+++ b/OpenSim/Region/Physics/BulletSPlugin/BSDynamics.cs
@@ -24,30 +24,17 @@
24 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 24 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
25 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 25 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26 * 26 *
27 27 * The quotations from http://wiki.secondlife.com/wiki/Linden_Vehicle_Tutorial
28/* RA: June 14, 2011. Copied from ODEDynamics.cs and converted to 28 * are Copyright (c) 2009 Linden Research, Inc and are used under their license
29 * call the BulletSim system. 29 * of Creative Commons Attribution-Share Alike 3.0
30 */ 30 * (http://creativecommons.org/licenses/by-sa/3.0/).
31/* Revised Aug, Sept 2009 by Kitto Flora. ODEDynamics.cs replaces
32 * ODEVehicleSettings.cs. It and ODEPrim.cs are re-organised:
33 * ODEPrim.cs contains methods dealing with Prim editing, Prim
34 * characteristics and Kinetic motion.
35 * ODEDynamics.cs contains methods dealing with Prim Physical motion
36 * (dynamics) and the associated settings. Old Linear and angular
37 * motors for dynamic motion have been replace with MoveLinear()
38 * and MoveAngular(); 'Physical' is used only to switch ODE dynamic
39 * simualtion on/off; VEHICAL_TYPE_NONE/VEHICAL_TYPE_<other> is to
40 * switch between 'VEHICLE' parameter use and general dynamics
41 * settings use.
42 */ 31 */
43 32
44using System; 33using System;
45using System.Collections.Generic; 34using System.Collections.Generic;
46using System.Reflection; 35using System.Reflection;
47using System.Runtime.InteropServices; 36using System.Runtime.InteropServices;
48using log4net;
49using OpenMetaverse; 37using OpenMetaverse;
50using OpenSim.Framework;
51using OpenSim.Region.Physics.Manager; 38using OpenSim.Region.Physics.Manager;
52 39
53namespace OpenSim.Region.Physics.BulletSPlugin 40namespace OpenSim.Region.Physics.BulletSPlugin
@@ -80,10 +67,10 @@ namespace OpenSim.Region.Physics.BulletSPlugin
80 private Quaternion m_referenceFrame = Quaternion.Identity; 67 private Quaternion m_referenceFrame = Quaternion.Identity;
81 68
82 // Linear properties 69 // Linear properties
70 private BSVMotor m_linearMotor = new BSVMotor("LinearMotor");
83 private Vector3 m_linearMotorDirection = Vector3.Zero; // velocity requested by LSL, decayed by time 71 private Vector3 m_linearMotorDirection = Vector3.Zero; // velocity requested by LSL, decayed by time
84 private Vector3 m_linearMotorOffset = Vector3.Zero; // the point of force can be offset from the center 72 private Vector3 m_linearMotorOffset = Vector3.Zero; // the point of force can be offset from the center
85 private Vector3 m_linearMotorDirectionLASTSET = Vector3.Zero; // velocity requested by LSL 73 private Vector3 m_linearMotorDirectionLASTSET = Vector3.Zero; // velocity requested by LSL
86 private Vector3 m_newVelocity = Vector3.Zero; // velocity computed to be applied to body
87 private Vector3 m_linearFrictionTimescale = Vector3.Zero; 74 private Vector3 m_linearFrictionTimescale = Vector3.Zero;
88 private float m_linearMotorDecayTimescale = 0; 75 private float m_linearMotorDecayTimescale = 0;
89 private float m_linearMotorTimescale = 0; 76 private float m_linearMotorTimescale = 0;
@@ -93,16 +80,18 @@ namespace OpenSim.Region.Physics.BulletSPlugin
93 // private Vector3 m_linearMotorOffset = Vector3.Zero; 80 // private Vector3 m_linearMotorOffset = Vector3.Zero;
94 81
95 //Angular properties 82 //Angular properties
83 private BSVMotor m_angularMotor = new BSVMotor("AngularMotor");
96 private Vector3 m_angularMotorDirection = Vector3.Zero; // angular velocity requested by LSL motor 84 private Vector3 m_angularMotorDirection = Vector3.Zero; // angular velocity requested by LSL motor
97 // private int m_angularMotorApply = 0; // application frame counter 85 // private int m_angularMotorApply = 0; // application frame counter
98 private Vector3 m_angularMotorVelocity = Vector3.Zero; // current angular motor velocity 86 private Vector3 m_angularMotorVelocity = Vector3.Zero; // current angular motor velocity
99 private float m_angularMotorTimescale = 0; // motor angular velocity ramp up rate 87 private float m_angularMotorTimescale = 0; // motor angular velocity ramp up rate
100 private float m_angularMotorDecayTimescale = 0; // motor angular velocity decay rate 88 private float m_angularMotorDecayTimescale = 0; // motor angular velocity decay rate
101 private Vector3 m_angularFrictionTimescale = Vector3.Zero; // body angular velocity decay rate 89 private Vector3 m_angularFrictionTimescale = Vector3.Zero; // body angular velocity decay rate
102 private Vector3 m_lastAngularVelocity = Vector3.Zero; // what was last applied to body 90 private Vector3 m_lastAngularVelocity = Vector3.Zero;
103 private Vector3 m_lastVertAttractor = Vector3.Zero; // what VA was last applied to body 91 private Vector3 m_lastVertAttractor = Vector3.Zero; // what VA was last applied to body
104 92
105 //Deflection properties 93 //Deflection properties
94 private BSVMotor m_angularDeflectionMotor = new BSVMotor("AngularDeflection");
106 private float m_angularDeflectionEfficiency = 0; 95 private float m_angularDeflectionEfficiency = 0;
107 private float m_angularDeflectionTimescale = 0; 96 private float m_angularDeflectionTimescale = 0;
108 private float m_linearDeflectionEfficiency = 0; 97 private float m_linearDeflectionEfficiency = 0;
@@ -114,32 +103,61 @@ namespace OpenSim.Region.Physics.BulletSPlugin
114 private float m_bankingTimescale = 0; 103 private float m_bankingTimescale = 0;
115 104
116 //Hover and Buoyancy properties 105 //Hover and Buoyancy properties
106 private BSVMotor m_hoverMotor = new BSVMotor("Hover");
117 private float m_VhoverHeight = 0f; 107 private float m_VhoverHeight = 0f;
118 private float m_VhoverEfficiency = 0f; 108 private float m_VhoverEfficiency = 0f;
119 private float m_VhoverTimescale = 0f; 109 private float m_VhoverTimescale = 0f;
120 private float m_VhoverTargetHeight = -1.0f; // if <0 then no hover, else its the current target height 110 private float m_VhoverTargetHeight = -1.0f; // if <0 then no hover, else its the current target height
121 private float m_VehicleBuoyancy = 0f; //KF: m_VehicleBuoyancy is set by VEHICLE_BUOYANCY for a vehicle. 111 // Modifies gravity. Slider between -1 (double-gravity) and 1 (full anti-gravity)
122 // Modifies gravity. Slider between -1 (double-gravity) and 1 (full anti-gravity) 112 private float m_VehicleBuoyancy = 0f;
123 // KF: So far I have found no good method to combine a script-requested .Z velocity and gravity. 113 private Vector3 m_VehicleGravity = Vector3.Zero; // Gravity computed when buoyancy set
124 // Therefore only m_VehicleBuoyancy=1 (0g) will use the script-requested .Z velocity.
125 114
126 //Attractor properties 115 //Attractor properties
127 private float m_verticalAttractionEfficiency = 1.0f; // damped 116 private BSVMotor m_verticalAttractionMotor = new BSVMotor("VerticalAttraction");
128 private float m_verticalAttractionTimescale = 500f; // Timescale > 300 means no vert attractor. 117 private float m_verticalAttractionEfficiency = 1.0f; // damped
118 private float m_verticalAttractionCutoff = 500f; // per the documentation
119 // Timescale > cutoff means no vert attractor.
120 private float m_verticalAttractionTimescale = 510f;
121
122 // Just some recomputed constants:
123 static readonly float PIOverFour = ((float)Math.PI) / 4f;
124 static readonly float PIOverTwo = ((float)Math.PI) / 2f;
125
126 // For debugging, flags to turn on and off individual corrections.
127 private bool enableAngularVerticalAttraction;
128 private bool enableAngularDeflection;
129 private bool enableAngularBanking;
129 130
130 public BSDynamics(BSScene myScene, BSPrim myPrim) 131 public BSDynamics(BSScene myScene, BSPrim myPrim)
131 { 132 {
132 PhysicsScene = myScene; 133 PhysicsScene = myScene;
133 Prim = myPrim; 134 Prim = myPrim;
134 Type = Vehicle.TYPE_NONE; 135 Type = Vehicle.TYPE_NONE;
136 SetupVehicleDebugging();
137 }
138
139 // Stopgap debugging enablement. Allows source level debugging but still checking
140 // in changes by making enablement of debugging flags from INI file.
141 public void SetupVehicleDebugging()
142 {
143 enableAngularVerticalAttraction = true;
144 enableAngularDeflection = false;
145 enableAngularBanking = false;
146 if (BSParam.VehicleDebuggingEnabled != ConfigurationParameters.numericFalse)
147 {
148 enableAngularVerticalAttraction = false;
149 enableAngularDeflection = false;
150 enableAngularBanking = false;
151 }
135 } 152 }
136 153
137 // Return 'true' if this vehicle is doing vehicle things 154 // Return 'true' if this vehicle is doing vehicle things
138 public bool IsActive 155 public bool IsActive
139 { 156 {
140 get { return Type != Vehicle.TYPE_NONE; } 157 get { return (Type != Vehicle.TYPE_NONE && !Prim.IsStatic); }
141 } 158 }
142 159
160 #region Vehicle parameter setting
143 internal void ProcessFloatVehicleParam(Vehicle pParam, float pValue) 161 internal void ProcessFloatVehicleParam(Vehicle pParam, float pValue)
144 { 162 {
145 VDetailLog("{0},ProcessFloatVehicleParam,param={1},val={2}", Prim.LocalID, pParam, pValue); 163 VDetailLog("{0},ProcessFloatVehicleParam,param={1},val={2}", Prim.LocalID, pParam, pValue);
@@ -152,13 +170,15 @@ namespace OpenSim.Region.Physics.BulletSPlugin
152 m_angularDeflectionTimescale = Math.Max(pValue, 0.01f); 170 m_angularDeflectionTimescale = Math.Max(pValue, 0.01f);
153 break; 171 break;
154 case Vehicle.ANGULAR_MOTOR_DECAY_TIMESCALE: 172 case Vehicle.ANGULAR_MOTOR_DECAY_TIMESCALE:
155 m_angularMotorDecayTimescale = Math.Max(pValue, 0.01f); 173 m_angularMotorDecayTimescale = ClampInRange(0.01f, pValue, 120);
174 m_angularMotor.TargetValueDecayTimeScale = m_angularMotorDecayTimescale;
156 break; 175 break;
157 case Vehicle.ANGULAR_MOTOR_TIMESCALE: 176 case Vehicle.ANGULAR_MOTOR_TIMESCALE:
158 m_angularMotorTimescale = Math.Max(pValue, 0.01f); 177 m_angularMotorTimescale = Math.Max(pValue, 0.01f);
178 m_angularMotor.TimeScale = m_angularMotorTimescale;
159 break; 179 break;
160 case Vehicle.BANKING_EFFICIENCY: 180 case Vehicle.BANKING_EFFICIENCY:
161 m_bankingEfficiency = Math.Max(-1f, Math.Min(pValue, 1f)); 181 m_bankingEfficiency = ClampInRange(-1f, pValue, 1f);
162 break; 182 break;
163 case Vehicle.BANKING_MIX: 183 case Vehicle.BANKING_MIX:
164 m_bankingMix = Math.Max(pValue, 0.01f); 184 m_bankingMix = Math.Max(pValue, 0.01f);
@@ -167,10 +187,11 @@ namespace OpenSim.Region.Physics.BulletSPlugin
167 m_bankingTimescale = Math.Max(pValue, 0.01f); 187 m_bankingTimescale = Math.Max(pValue, 0.01f);
168 break; 188 break;
169 case Vehicle.BUOYANCY: 189 case Vehicle.BUOYANCY:
170 m_VehicleBuoyancy = Math.Max(-1f, Math.Min(pValue, 1f)); 190 m_VehicleBuoyancy = ClampInRange(-1f, pValue, 1f);
191 m_VehicleGravity = Prim.ComputeGravity(m_VehicleBuoyancy);
171 break; 192 break;
172 case Vehicle.HOVER_EFFICIENCY: 193 case Vehicle.HOVER_EFFICIENCY:
173 m_VhoverEfficiency = Math.Max(0f, Math.Min(pValue, 1f)); 194 m_VhoverEfficiency = ClampInRange(0f, pValue, 1f);
174 break; 195 break;
175 case Vehicle.HOVER_HEIGHT: 196 case Vehicle.HOVER_HEIGHT:
176 m_VhoverHeight = pValue; 197 m_VhoverHeight = pValue;
@@ -185,33 +206,40 @@ namespace OpenSim.Region.Physics.BulletSPlugin
185 m_linearDeflectionTimescale = Math.Max(pValue, 0.01f); 206 m_linearDeflectionTimescale = Math.Max(pValue, 0.01f);
186 break; 207 break;
187 case Vehicle.LINEAR_MOTOR_DECAY_TIMESCALE: 208 case Vehicle.LINEAR_MOTOR_DECAY_TIMESCALE:
188 m_linearMotorDecayTimescale = Math.Max(pValue, 0.01f); 209 m_linearMotorDecayTimescale = ClampInRange(0.01f, pValue, 120);
210 m_linearMotor.TargetValueDecayTimeScale = m_linearMotorDecayTimescale;
189 break; 211 break;
190 case Vehicle.LINEAR_MOTOR_TIMESCALE: 212 case Vehicle.LINEAR_MOTOR_TIMESCALE:
191 m_linearMotorTimescale = Math.Max(pValue, 0.01f); 213 m_linearMotorTimescale = Math.Max(pValue, 0.01f);
214 m_linearMotor.TimeScale = m_linearMotorTimescale;
192 break; 215 break;
193 case Vehicle.VERTICAL_ATTRACTION_EFFICIENCY: 216 case Vehicle.VERTICAL_ATTRACTION_EFFICIENCY:
194 m_verticalAttractionEfficiency = Math.Max(0.1f, Math.Min(pValue, 1f)); 217 m_verticalAttractionEfficiency = ClampInRange(0.1f, pValue, 1f);
218 m_verticalAttractionMotor.Efficiency = m_verticalAttractionEfficiency;
195 break; 219 break;
196 case Vehicle.VERTICAL_ATTRACTION_TIMESCALE: 220 case Vehicle.VERTICAL_ATTRACTION_TIMESCALE:
197 m_verticalAttractionTimescale = Math.Max(pValue, 0.01f); 221 m_verticalAttractionTimescale = Math.Max(pValue, 0.01f);
222 m_verticalAttractionMotor.TimeScale = m_verticalAttractionTimescale;
198 break; 223 break;
199 224
200 // These are vector properties but the engine lets you use a single float value to 225 // These are vector properties but the engine lets you use a single float value to
201 // set all of the components to the same value 226 // set all of the components to the same value
202 case Vehicle.ANGULAR_FRICTION_TIMESCALE: 227 case Vehicle.ANGULAR_FRICTION_TIMESCALE:
203 m_angularFrictionTimescale = new Vector3(pValue, pValue, pValue); 228 m_angularFrictionTimescale = new Vector3(pValue, pValue, pValue);
229 m_angularMotor.FrictionTimescale = m_angularFrictionTimescale;
204 break; 230 break;
205 case Vehicle.ANGULAR_MOTOR_DIRECTION: 231 case Vehicle.ANGULAR_MOTOR_DIRECTION:
206 m_angularMotorDirection = new Vector3(pValue, pValue, pValue); 232 m_angularMotorDirection = new Vector3(pValue, pValue, pValue);
207 // m_angularMotorApply = 100; 233 m_angularMotor.SetTarget(m_angularMotorDirection);
208 break; 234 break;
209 case Vehicle.LINEAR_FRICTION_TIMESCALE: 235 case Vehicle.LINEAR_FRICTION_TIMESCALE:
210 m_linearFrictionTimescale = new Vector3(pValue, pValue, pValue); 236 m_linearFrictionTimescale = new Vector3(pValue, pValue, pValue);
237 m_linearMotor.FrictionTimescale = m_linearFrictionTimescale;
211 break; 238 break;
212 case Vehicle.LINEAR_MOTOR_DIRECTION: 239 case Vehicle.LINEAR_MOTOR_DIRECTION:
213 m_linearMotorDirection = new Vector3(pValue, pValue, pValue); 240 m_linearMotorDirection = new Vector3(pValue, pValue, pValue);
214 m_linearMotorDirectionLASTSET = new Vector3(pValue, pValue, pValue); 241 m_linearMotorDirectionLASTSET = new Vector3(pValue, pValue, pValue);
242 m_linearMotor.SetTarget(m_linearMotorDirection);
215 break; 243 break;
216 case Vehicle.LINEAR_MOTOR_OFFSET: 244 case Vehicle.LINEAR_MOTOR_OFFSET:
217 m_linearMotorOffset = new Vector3(pValue, pValue, pValue); 245 m_linearMotorOffset = new Vector3(pValue, pValue, pValue);
@@ -227,21 +255,24 @@ namespace OpenSim.Region.Physics.BulletSPlugin
227 { 255 {
228 case Vehicle.ANGULAR_FRICTION_TIMESCALE: 256 case Vehicle.ANGULAR_FRICTION_TIMESCALE:
229 m_angularFrictionTimescale = new Vector3(pValue.X, pValue.Y, pValue.Z); 257 m_angularFrictionTimescale = new Vector3(pValue.X, pValue.Y, pValue.Z);
258 m_angularMotor.FrictionTimescale = m_angularFrictionTimescale;
230 break; 259 break;
231 case Vehicle.ANGULAR_MOTOR_DIRECTION: 260 case Vehicle.ANGULAR_MOTOR_DIRECTION:
232 // Limit requested angular speed to 2 rps= 4 pi rads/sec 261 // Limit requested angular speed to 2 rps= 4 pi rads/sec
233 pValue.X = Math.Max(-12.56f, Math.Min(pValue.X, 12.56f)); 262 pValue.X = ClampInRange(-12.56f, pValue.X, 12.56f);
234 pValue.Y = Math.Max(-12.56f, Math.Min(pValue.Y, 12.56f)); 263 pValue.Y = ClampInRange(-12.56f, pValue.Y, 12.56f);
235 pValue.Z = Math.Max(-12.56f, Math.Min(pValue.Z, 12.56f)); 264 pValue.Z = ClampInRange(-12.56f, pValue.Z, 12.56f);
236 m_angularMotorDirection = new Vector3(pValue.X, pValue.Y, pValue.Z); 265 m_angularMotorDirection = new Vector3(pValue.X, pValue.Y, pValue.Z);
237 // m_angularMotorApply = 100; 266 m_angularMotor.SetTarget(m_angularMotorDirection);
238 break; 267 break;
239 case Vehicle.LINEAR_FRICTION_TIMESCALE: 268 case Vehicle.LINEAR_FRICTION_TIMESCALE:
240 m_linearFrictionTimescale = new Vector3(pValue.X, pValue.Y, pValue.Z); 269 m_linearFrictionTimescale = new Vector3(pValue.X, pValue.Y, pValue.Z);
270 m_linearMotor.FrictionTimescale = m_linearFrictionTimescale;
241 break; 271 break;
242 case Vehicle.LINEAR_MOTOR_DIRECTION: 272 case Vehicle.LINEAR_MOTOR_DIRECTION:
243 m_linearMotorDirection = new Vector3(pValue.X, pValue.Y, pValue.Z); 273 m_linearMotorDirection = new Vector3(pValue.X, pValue.Y, pValue.Z);
244 m_linearMotorDirectionLASTSET = new Vector3(pValue.X, pValue.Y, pValue.Z); 274 m_linearMotorDirectionLASTSET = new Vector3(pValue.X, pValue.Y, pValue.Z);
275 m_linearMotor.SetTarget(m_linearMotorDirection);
245 break; 276 break;
246 case Vehicle.LINEAR_MOTOR_OFFSET: 277 case Vehicle.LINEAR_MOTOR_OFFSET:
247 m_linearMotorOffset = new Vector3(pValue.X, pValue.Y, pValue.Z); 278 m_linearMotorOffset = new Vector3(pValue.X, pValue.Y, pValue.Z);
@@ -303,7 +334,7 @@ namespace OpenSim.Region.Physics.BulletSPlugin
303 m_VhoverEfficiency = 0; 334 m_VhoverEfficiency = 0;
304 m_VhoverTimescale = 0; 335 m_VhoverTimescale = 0;
305 m_VehicleBuoyancy = 0; 336 m_VehicleBuoyancy = 0;
306 337
307 m_linearDeflectionEfficiency = 1; 338 m_linearDeflectionEfficiency = 1;
308 m_linearDeflectionTimescale = 1; 339 m_linearDeflectionTimescale = 1;
309 340
@@ -319,6 +350,7 @@ namespace OpenSim.Region.Physics.BulletSPlugin
319 350
320 m_referenceFrame = Quaternion.Identity; 351 m_referenceFrame = Quaternion.Identity;
321 m_flags = (VehicleFlag)0; 352 m_flags = (VehicleFlag)0;
353
322 break; 354 break;
323 355
324 case Vehicle.TYPE_SLED: 356 case Vehicle.TYPE_SLED:
@@ -351,10 +383,14 @@ namespace OpenSim.Region.Physics.BulletSPlugin
351 m_bankingMix = 1; 383 m_bankingMix = 1;
352 384
353 m_referenceFrame = Quaternion.Identity; 385 m_referenceFrame = Quaternion.Identity;
354 m_flags |= (VehicleFlag.NO_DEFLECTION_UP | VehicleFlag.LIMIT_ROLL_ONLY | VehicleFlag.LIMIT_MOTOR_UP); 386 m_flags &= ~(VehicleFlag.HOVER_WATER_ONLY
355 m_flags &= 387 | VehicleFlag.HOVER_TERRAIN_ONLY
356 ~(VehicleFlag.HOVER_WATER_ONLY | VehicleFlag.HOVER_TERRAIN_ONLY | 388 | VehicleFlag.HOVER_GLOBAL_HEIGHT
357 VehicleFlag.HOVER_GLOBAL_HEIGHT | VehicleFlag.HOVER_UP_ONLY); 389 | VehicleFlag.HOVER_UP_ONLY);
390 m_flags |= (VehicleFlag.NO_DEFLECTION_UP
391 | VehicleFlag.LIMIT_ROLL_ONLY
392 | VehicleFlag.LIMIT_MOTOR_UP);
393
358 break; 394 break;
359 case Vehicle.TYPE_CAR: 395 case Vehicle.TYPE_CAR:
360 m_linearMotorDirection = Vector3.Zero; 396 m_linearMotorDirection = Vector3.Zero;
@@ -498,6 +534,7 @@ namespace OpenSim.Region.Physics.BulletSPlugin
498 m_bankingEfficiency = 0; 534 m_bankingEfficiency = 0;
499 m_bankingMix = 0.7f; 535 m_bankingMix = 0.7f;
500 m_bankingTimescale = 5; 536 m_bankingTimescale = 5;
537
501 m_referenceFrame = Quaternion.Identity; 538 m_referenceFrame = Quaternion.Identity;
502 539
503 m_referenceFrame = Quaternion.Identity; 540 m_referenceFrame = Quaternion.Identity;
@@ -510,7 +547,30 @@ namespace OpenSim.Region.Physics.BulletSPlugin
510 | VehicleFlag.HOVER_GLOBAL_HEIGHT); 547 | VehicleFlag.HOVER_GLOBAL_HEIGHT);
511 break; 548 break;
512 } 549 }
550
551 // Update any physical parameters based on this type.
552 Refresh();
553
554 m_linearMotor = new BSVMotor("LinearMotor", m_linearMotorTimescale,
555 m_linearMotorDecayTimescale, m_linearFrictionTimescale,
556 1f);
557 m_linearMotor.PhysicsScene = PhysicsScene; // DEBUG DEBUG DEBUG (enables detail logging)
558
559 m_angularMotor = new BSVMotor("AngularMotor", m_angularMotorTimescale,
560 m_angularMotorDecayTimescale, m_angularFrictionTimescale,
561 1f);
562 m_angularMotor.PhysicsScene = PhysicsScene; // DEBUG DEBUG DEBUG (enables detail logging)
563
564 /* Not implemented
565 m_verticalAttractionMotor = new BSVMotor("VerticalAttraction", m_verticalAttractionTimescale,
566 BSMotor.Infinite, BSMotor.InfiniteVector,
567 m_verticalAttractionEfficiency);
568 // Z goes away and we keep X and Y
569 m_verticalAttractionMotor.FrictionTimescale = new Vector3(BSMotor.Infinite, BSMotor.Infinite, 0.1f);
570 m_verticalAttractionMotor.PhysicsScene = PhysicsScene; // DEBUG DEBUG DEBUG (enables detail logging)
571 */
513 } 572 }
573 #endregion // Vehicle parameter setting
514 574
515 // Some of the properties of this prim may have changed. 575 // Some of the properties of this prim may have changed.
516 // Do any updating needed for a vehicle 576 // Do any updating needed for a vehicle
@@ -518,13 +578,38 @@ namespace OpenSim.Region.Physics.BulletSPlugin
518 { 578 {
519 if (IsActive) 579 if (IsActive)
520 { 580 {
521 // Friction effects are handled by this vehicle code 581 // Remember the mass so we don't have to fetch it every step
522 BulletSimAPI.SetFriction2(Prim.PhysBody.ptr, 0f); 582 m_vehicleMass = Prim.Linkset.LinksetMass;
523 BulletSimAPI.SetHitFraction2(Prim.PhysBody.ptr, 0f); 583
524 584 // Friction affects are handled by this vehicle code
525 // BulletSimAPI.SetAngularDamping2(Prim.PhysBody.ptr, 0.8f); 585 float friction = 0f;
526 586 PhysicsScene.PE.SetFriction(Prim.PhysBody, friction);
527 VDetailLog("{0},BSDynamics.Refresh,zeroingFriction and adding damping", Prim.LocalID); 587
588 // Moderate angular movement introduced by Bullet.
589 // TODO: possibly set AngularFactor and LinearFactor for the type of vehicle.
590 // Maybe compute linear and angular factor and damping from params.
591 float angularDamping = BSParam.VehicleAngularDamping;
592 PhysicsScene.PE.SetAngularDamping(Prim.PhysBody, angularDamping);
593
594 // Vehicles report collision events so we know when it's on the ground
595 PhysicsScene.PE.AddToCollisionFlags(Prim.PhysBody, CollisionFlags.BS_VEHICLE_COLLISIONS);
596
597 Prim.Inertia = PhysicsScene.PE.CalculateLocalInertia(Prim.PhysShape, m_vehicleMass);
598 PhysicsScene.PE.SetMassProps(Prim.PhysBody, m_vehicleMass, Prim.Inertia);
599 PhysicsScene.PE.UpdateInertiaTensor(Prim.PhysBody);
600
601 // Set the gravity for the vehicle depending on the buoyancy
602 // TODO: what should be done if prim and vehicle buoyancy differ?
603 m_VehicleGravity = Prim.ComputeGravity(m_VehicleBuoyancy);
604 // The actual vehicle gravity is set to zero in Bullet so we can do all the application of same.
605 PhysicsScene.PE.SetGravity(Prim.PhysBody, Vector3.Zero);
606
607 VDetailLog("{0},BSDynamics.Refresh,mass={1},frict={2},inert={3},aDamp={4},grav={5}",
608 Prim.LocalID, m_vehicleMass, friction, Prim.Inertia, angularDamping, m_VehicleGravity);
609 }
610 else
611 {
612 PhysicsScene.PE.RemoveFromCollisionFlags(Prim.PhysBody, CollisionFlags.BS_VEHICLE_COLLISIONS);
528 } 613 }
529 } 614 }
530 615
@@ -546,116 +631,383 @@ namespace OpenSim.Region.Physics.BulletSPlugin
546 Refresh(); 631 Refresh();
547 } 632 }
548 633
634 #region Known vehicle value functions
635 // Vehicle physical parameters that we buffer from constant getting and setting.
636 // The "m_known*" values are unknown until they are fetched and the m_knownHas flag is set.
637 // Changing is remembered and the parameter is stored back into the physics engine only if updated.
638 // This does two things: 1) saves continuious calls into unmanaged code, and
639 // 2) signals when a physics property update must happen back to the simulator
640 // to update values modified for the vehicle.
641 private int m_knownChanged;
642 private int m_knownHas;
643 private float m_knownTerrainHeight;
644 private float m_knownWaterLevel;
645 private Vector3 m_knownPosition;
646 private Vector3 m_knownVelocity;
647 private Vector3 m_knownForce;
648 private Vector3 m_knownForceImpulse;
649 private Quaternion m_knownOrientation;
650 private Vector3 m_knownRotationalVelocity;
651 private Vector3 m_knownRotationalForce;
652 private Vector3 m_knownRotationalImpulse;
653 private Vector3 m_knownForwardVelocity; // vehicle relative forward speed
654
655 private const int m_knownChangedPosition = 1 << 0;
656 private const int m_knownChangedVelocity = 1 << 1;
657 private const int m_knownChangedForce = 1 << 2;
658 private const int m_knownChangedForceImpulse = 1 << 3;
659 private const int m_knownChangedOrientation = 1 << 4;
660 private const int m_knownChangedRotationalVelocity = 1 << 5;
661 private const int m_knownChangedRotationalForce = 1 << 6;
662 private const int m_knownChangedRotationalImpulse = 1 << 7;
663 private const int m_knownChangedTerrainHeight = 1 << 8;
664 private const int m_knownChangedWaterLevel = 1 << 9;
665 private const int m_knownChangedForwardVelocity = 1 <<10;
666
667 private void ForgetKnownVehicleProperties()
668 {
669 m_knownHas = 0;
670 m_knownChanged = 0;
671 }
672 // Push all the changed values back into the physics engine
673 private void PushKnownChanged()
674 {
675 if (m_knownChanged != 0)
676 {
677 if ((m_knownChanged & m_knownChangedPosition) != 0)
678 Prim.ForcePosition = m_knownPosition;
679
680 if ((m_knownChanged & m_knownChangedOrientation) != 0)
681 Prim.ForceOrientation = m_knownOrientation;
682
683 if ((m_knownChanged & m_knownChangedVelocity) != 0)
684 {
685 Prim.ForceVelocity = m_knownVelocity;
686 // Fake out Bullet by making it think the velocity is the same as last time.
687 // Bullet does a bunch of smoothing for changing parameters.
688 // Since the vehicle is demanding this setting, we override Bullet's smoothing
689 // by telling Bullet the value was the same last time.
690 PhysicsScene.PE.SetInterpolationLinearVelocity(Prim.PhysBody, m_knownVelocity);
691 }
692
693 if ((m_knownChanged & m_knownChangedForce) != 0)
694 Prim.AddForce((Vector3)m_knownForce, false /*pushForce*/, true /*inTaintTime*/);
695
696 if ((m_knownChanged & m_knownChangedForceImpulse) != 0)
697 Prim.AddForceImpulse((Vector3)m_knownForceImpulse, false /*pushforce*/, true /*inTaintTime*/);
698
699 if ((m_knownChanged & m_knownChangedRotationalVelocity) != 0)
700 {
701 Prim.ForceRotationalVelocity = m_knownRotationalVelocity;
702 PhysicsScene.PE.SetInterpolationAngularVelocity(Prim.PhysBody, m_knownRotationalVelocity);
703 }
704
705 if ((m_knownChanged & m_knownChangedRotationalImpulse) != 0)
706 Prim.ApplyTorqueImpulse((Vector3)m_knownRotationalImpulse, true /*inTaintTime*/);
707
708 if ((m_knownChanged & m_knownChangedRotationalForce) != 0)
709 {
710 Prim.AddAngularForce((Vector3)m_knownRotationalForce, false /*pushForce*/, true /*inTaintTime*/);
711 }
712
713 // If we set one of the values (ie, the physics engine didn't do it) we must force
714 // an UpdateProperties event to send the changes up to the simulator.
715 PhysicsScene.PE.PushUpdate(Prim.PhysBody);
716 }
717 m_knownChanged = 0;
718 }
719
720 // Since the computation of terrain height can be a little involved, this routine
721 // is used to fetch the height only once for each vehicle simulation step.
722 private float GetTerrainHeight(Vector3 pos)
723 {
724 if ((m_knownHas & m_knownChangedTerrainHeight) == 0)
725 {
726 m_knownTerrainHeight = Prim.PhysicsScene.TerrainManager.GetTerrainHeightAtXYZ(pos);
727 m_knownHas |= m_knownChangedTerrainHeight;
728 }
729 return m_knownTerrainHeight;
730 }
731
732 // Since the computation of water level can be a little involved, this routine
733 // is used ot fetch the level only once for each vehicle simulation step.
734 private float GetWaterLevel(Vector3 pos)
735 {
736 if ((m_knownHas & m_knownChangedWaterLevel) == 0)
737 {
738 m_knownWaterLevel = Prim.PhysicsScene.TerrainManager.GetWaterLevelAtXYZ(pos);
739 m_knownHas |= m_knownChangedWaterLevel;
740 }
741 return (float)m_knownWaterLevel;
742 }
743
744 private Vector3 VehiclePosition
745 {
746 get
747 {
748 if ((m_knownHas & m_knownChangedPosition) == 0)
749 {
750 m_knownPosition = Prim.ForcePosition;
751 m_knownHas |= m_knownChangedPosition;
752 }
753 return m_knownPosition;
754 }
755 set
756 {
757 m_knownPosition = value;
758 m_knownChanged |= m_knownChangedPosition;
759 m_knownHas |= m_knownChangedPosition;
760 }
761 }
762
763 private Quaternion VehicleOrientation
764 {
765 get
766 {
767 if ((m_knownHas & m_knownChangedOrientation) == 0)
768 {
769 m_knownOrientation = Prim.ForceOrientation;
770 m_knownHas |= m_knownChangedOrientation;
771 }
772 return m_knownOrientation;
773 }
774 set
775 {
776 m_knownOrientation = value;
777 m_knownChanged |= m_knownChangedOrientation;
778 m_knownHas |= m_knownChangedOrientation;
779 }
780 }
781
782 private Vector3 VehicleVelocity
783 {
784 get
785 {
786 if ((m_knownHas & m_knownChangedVelocity) == 0)
787 {
788 m_knownVelocity = Prim.ForceVelocity;
789 m_knownHas |= m_knownChangedVelocity;
790 }
791 return (Vector3)m_knownVelocity;
792 }
793 set
794 {
795 m_knownVelocity = value;
796 m_knownChanged |= m_knownChangedVelocity;
797 m_knownHas |= m_knownChangedVelocity;
798 }
799 }
800
801 private void VehicleAddForce(Vector3 pForce)
802 {
803 if ((m_knownHas & m_knownChangedForce) == 0)
804 {
805 m_knownForce = Vector3.Zero;
806 m_knownHas |= m_knownChangedForce;
807 }
808 m_knownForce += pForce;
809 m_knownChanged |= m_knownChangedForce;
810 }
811
812 private void VehicleAddForceImpulse(Vector3 pImpulse)
813 {
814 if ((m_knownHas & m_knownChangedForceImpulse) == 0)
815 {
816 m_knownForceImpulse = Vector3.Zero;
817 m_knownHas |= m_knownChangedForceImpulse;
818 }
819 m_knownForceImpulse += pImpulse;
820 m_knownChanged |= m_knownChangedForceImpulse;
821 }
822
823 private Vector3 VehicleRotationalVelocity
824 {
825 get
826 {
827 if ((m_knownHas & m_knownChangedRotationalVelocity) == 0)
828 {
829 m_knownRotationalVelocity = Prim.ForceRotationalVelocity;
830 m_knownHas |= m_knownChangedRotationalVelocity;
831 }
832 return (Vector3)m_knownRotationalVelocity;
833 }
834 set
835 {
836 m_knownRotationalVelocity = value;
837 m_knownChanged |= m_knownChangedRotationalVelocity;
838 m_knownHas |= m_knownChangedRotationalVelocity;
839 }
840 }
841 private void VehicleAddAngularForce(Vector3 aForce)
842 {
843 if ((m_knownHas & m_knownChangedRotationalForce) == 0)
844 {
845 m_knownRotationalForce = Vector3.Zero;
846 }
847 m_knownRotationalForce += aForce;
848 m_knownChanged |= m_knownChangedRotationalForce;
849 m_knownHas |= m_knownChangedRotationalForce;
850 }
851 private void VehicleAddRotationalImpulse(Vector3 pImpulse)
852 {
853 if ((m_knownHas & m_knownChangedRotationalImpulse) == 0)
854 {
855 m_knownRotationalImpulse = Vector3.Zero;
856 m_knownHas |= m_knownChangedRotationalImpulse;
857 }
858 m_knownRotationalImpulse += pImpulse;
859 m_knownChanged |= m_knownChangedRotationalImpulse;
860 }
861
862 // Vehicle relative forward velocity
863 private Vector3 VehicleForwardVelocity
864 {
865 get
866 {
867 if ((m_knownHas & m_knownChangedForwardVelocity) == 0)
868 {
869 m_knownForwardVelocity = VehicleVelocity * Quaternion.Inverse(Quaternion.Normalize(VehicleOrientation));
870 m_knownHas |= m_knownChangedForwardVelocity;
871 }
872 return m_knownForwardVelocity;
873 }
874 }
875 private float VehicleForwardSpeed
876 {
877 get
878 {
879 return VehicleForwardVelocity.X;
880 }
881 }
882
883 #endregion // Known vehicle value functions
884
549 // One step of the vehicle properties for the next 'pTimestep' seconds. 885 // One step of the vehicle properties for the next 'pTimestep' seconds.
550 internal void Step(float pTimestep) 886 internal void Step(float pTimestep)
551 { 887 {
552 if (!IsActive) return; 888 if (!IsActive) return;
553 889
554 // DEBUG 890 if (PhysicsScene.VehiclePhysicalLoggingEnabled)
555 // Because Bullet does apply forces to the vehicle, our last computed 891 PhysicsScene.PE.DumpRigidBody(PhysicsScene.World, Prim.PhysBody);
556 // linear and angular velocities are not what is happening now.
557 // Vector3 externalAngularVelocity = Prim.ForceRotationalVelocity - m_lastAngularVelocity;
558 // m_lastAngularVelocity += (externalAngularVelocity * 0.5f) * pTimestep;
559 // m_lastAngularVelocity = Prim.ForceRotationalVelocity; // DEBUG: account for what Bullet did last time
560 // m_lastLinearVelocityVector = Prim.ForceVelocity * Quaternion.Inverse(Prim.ForceOrientation); // DEBUG:
561 // END DEBUG
562 892
563 m_vehicleMass = Prim.Linkset.LinksetMass; 893 ForgetKnownVehicleProperties();
564 894
565 MoveLinear(pTimestep); 895 MoveLinear(pTimestep);
566 // Commented out for debug
567 MoveAngular(pTimestep); 896 MoveAngular(pTimestep);
568 // Prim.ApplyTorqueImpulse(-Prim.RotationalVelocity * m_vehicleMass, false); // DEBUG DEBUG
569 // Prim.ForceRotationalVelocity = -Prim.RotationalVelocity; // DEBUG DEBUG
570 897
571 LimitRotation(pTimestep); 898 LimitRotation(pTimestep);
572 899
573 // remember the position so next step we can limit absolute movement effects 900 // remember the position so next step we can limit absolute movement effects
574 m_lastPositionVector = Prim.ForcePosition; 901 m_lastPositionVector = VehiclePosition;
575 902
576 VDetailLog("{0},BSDynamics.Step,frict={1},grav={2},inertia={3},mass={4}", // DEBUG DEBUG 903 // If we forced the changing of some vehicle parameters, update the values and
577 Prim.LocalID, 904 // for the physics engine to note the changes so an UpdateProperties event will happen.
578 BulletSimAPI.GetFriction2(Prim.PhysBody.ptr), 905 PushKnownChanged();
579 BulletSimAPI.GetGravity2(Prim.PhysBody.ptr),
580 Prim.Inertia,
581 m_vehicleMass
582 );
583 VDetailLog("{0},BSDynamics.Step,done,pos={1},force={2},velocity={3},angvel={4}",
584 Prim.LocalID, Prim.ForcePosition, Prim.Force, Prim.ForceVelocity, Prim.RotationalVelocity);
585 }// end Step
586 906
587 // Apply the effect of the linear motor. 907 if (PhysicsScene.VehiclePhysicalLoggingEnabled)
588 // Also does hover and float. 908 PhysicsScene.PE.DumpRigidBody(PhysicsScene.World, Prim.PhysBody);
909
910 VDetailLog("{0},BSDynamics.Step,done,pos={1}, force={2},velocity={3},angvel={4}",
911 Prim.LocalID, VehiclePosition, m_knownForce, VehicleVelocity, VehicleRotationalVelocity);
912 }
913
914 // Apply the effect of the linear motor and other linear motions (like hover and float).
589 private void MoveLinear(float pTimestep) 915 private void MoveLinear(float pTimestep)
590 { 916 {
591 // m_linearMotorDirection is the target direction we are moving relative to the vehicle coordinates 917 ComputeLinearVelocity(pTimestep);
592 // m_lastLinearVelocityVector is the current speed we are moving in that direction 918
593 if (m_linearMotorDirection.LengthSquared() > 0.001f) 919 ComputeLinearTerrainHeightCorrection(pTimestep);
920
921 ComputeLinearHover(pTimestep);
922
923 ComputeLinearBlockingEndPoint(pTimestep);
924
925 ComputeLinearMotorUp(pTimestep);
926
927 ApplyGravity(pTimestep);
928
929 // If not changing some axis, reduce out velocity
930 if ((m_flags & (VehicleFlag.NO_X | VehicleFlag.NO_Y | VehicleFlag.NO_Z)) != 0)
931 {
932 Vector3 vel = VehicleVelocity;
933 if ((m_flags & (VehicleFlag.NO_X)) != 0)
934 vel.X = 0;
935 if ((m_flags & (VehicleFlag.NO_Y)) != 0)
936 vel.Y = 0;
937 if ((m_flags & (VehicleFlag.NO_Z)) != 0)
938 vel.Z = 0;
939 VehicleVelocity = vel;
940 }
941
942 // ==================================================================
943 // Clamp high or low velocities
944 float newVelocityLengthSq = VehicleVelocity.LengthSquared();
945 if (newVelocityLengthSq > 1000f)
594 { 946 {
595 Vector3 origDir = m_linearMotorDirection; // DEBUG 947 VehicleVelocity /= VehicleVelocity.Length();
596 Vector3 origVel = m_lastLinearVelocityVector; // DEBUG 948 VehicleVelocity *= 1000f;
597 // DEBUG: the vehicle velocity rotated to be relative to vehicle coordinates for comparison 949 }
598 Vector3 vehicleVelocity = Prim.ForceVelocity * Quaternion.Inverse(Prim.ForceOrientation); // DEBUG 950 else if (newVelocityLengthSq < 0.001f)
951 VehicleVelocity = Vector3.Zero;
599 952
600 // Add (desiredVelocity - lastAppliedVelocity) / howLongItShouldTakeToComplete 953 VDetailLog("{0}, MoveLinear,done,isColl={1},newVel={2}", Prim.LocalID, Prim.IsColliding, VehicleVelocity );
601 Vector3 addAmount = (m_linearMotorDirection - m_lastLinearVelocityVector)/(m_linearMotorTimescale) * pTimestep;
602 m_lastLinearVelocityVector += addAmount;
603 954
604 float decayFactor = (1.0f / m_linearMotorDecayTimescale) * pTimestep; 955 } // end MoveLinear()
605 m_linearMotorDirection *= (1f - decayFactor);
606 956
607 // Rotate new object velocity from vehicle relative to world coordinates 957 public void ComputeLinearVelocity(float pTimestep)
608 m_newVelocity = m_lastLinearVelocityVector * Prim.ForceOrientation; 958 {
959 Vector3 linearMotorStep = m_linearMotor.Step(pTimestep);
609 960
610 // Apply friction for next time 961 // The movement computed in the linear motor is relative to the vehicle
611 Vector3 frictionFactor = (Vector3.One / m_linearFrictionTimescale) * pTimestep; 962 // coordinates. Rotate the movement to world coordinates.
612 m_lastLinearVelocityVector *= (Vector3.One - frictionFactor); 963 Vector3 linearMotorVelocity = linearMotorStep * VehicleOrientation;
613 964
614 VDetailLog("{0},MoveLinear,nonZero,origlmDir={1},origlvVel={2},vehVel={3},add={4},decay={5},frict={6},lmDir={7},lvVec={8},newVel={9}", 965 // If we're a ground vehicle, don't loose any Z action (like gravity acceleration).
615 Prim.LocalID, origDir, origVel, vehicleVelocity, addAmount, decayFactor, frictionFactor, 966 float mixFactor = 1f; // 1 means use all linear motor Z value, 0 means use all existing Z
616 m_linearMotorDirection, m_lastLinearVelocityVector, m_newVelocity); 967 if ((m_flags & VehicleFlag.LIMIT_MOTOR_UP) != 0)
968 {
969 if (!Prim.IsColliding)
970 {
971 // If a ground vehicle and not on the ground, I want gravity effect
972 mixFactor = 0.2f;
973 }
617 } 974 }
618 else 975 else
619 { 976 {
620 // if what remains of direction is very small, zero it. 977 // I'm not a ground vehicle but don't totally loose the effect of the environment
621 m_linearMotorDirection = Vector3.Zero; 978 mixFactor = 0.8f;
622 m_lastLinearVelocityVector = Vector3.Zero;
623 m_newVelocity = Vector3.Zero;
624
625 VDetailLog("{0},MoveLinear,zeroed", Prim.LocalID);
626 } 979 }
980 linearMotorVelocity.Z = mixFactor * linearMotorVelocity.Z + (1f - mixFactor) * VehicleVelocity.Z;
627 981
628 // m_newVelocity is velocity computed from linear motor in world coordinates 982 // What we want to contribute to the vehicle's existing velocity
983 Vector3 linearMotorForce = linearMotorVelocity - VehicleVelocity;
629 984
630 // Gravity and Buoyancy 985 // Act against the inertia of the vehicle
631 // There is some gravity, make a gravity force vector that is applied after object velocity. 986 linearMotorForce *= m_vehicleMass;
632 // m_VehicleBuoyancy: -1=2g; 0=1g; 1=0g;
633 Vector3 grav = Prim.PhysicsScene.DefaultGravity * (1f - m_VehicleBuoyancy);
634 987
635 /* 988 VehicleAddForceImpulse(linearMotorForce * pTimestep);
636 * RA: Not sure why one would do this unless we are hoping external forces are doing gravity, ...
637 // Preserve the current Z velocity
638 Vector3 vel_now = m_prim.Velocity;
639 m_dir.Z = vel_now.Z; // Preserve the accumulated falling velocity
640 */
641 989
642 Vector3 pos = Prim.ForcePosition; 990 VDetailLog("{0}, MoveLinear,velocity,vehVel={1},step={2},stepVel={3},mix={4},force={5}",
643// Vector3 accel = new Vector3(-(m_dir.X - m_lastLinearVelocityVector.X / 0.1f), -(m_dir.Y - m_lastLinearVelocityVector.Y / 0.1f), m_dir.Z - m_lastLinearVelocityVector.Z / 0.1f); 991 Prim.LocalID, VehicleVelocity, linearMotorStep, linearMotorVelocity, mixFactor, linearMotorForce);
992 }
644 993
994 public void ComputeLinearTerrainHeightCorrection(float pTimestep)
995 {
645 // If below the terrain, move us above the ground a little. 996 // If below the terrain, move us above the ground a little.
646 float terrainHeight = Prim.PhysicsScene.TerrainManager.GetTerrainHeightAtXYZ(pos); 997 // TODO: Consider taking the rotated size of the object or possibly casting a ray.
647 // Taking the rotated size doesn't work here because m_prim.Size is the size of the root prim and not the linkset. 998 if (VehiclePosition.Z < GetTerrainHeight(VehiclePosition))
648 // TODO: Add a m_prim.LinkSet.Size similar to m_prim.LinkSet.Mass.
649 // Vector3 rotatedSize = m_prim.Size * m_prim.ForceOrientation;
650 // if (rotatedSize.Z < terrainHeight)
651 if (pos.Z < terrainHeight)
652 { 999 {
653 pos.Z = terrainHeight + 2; 1000 // Force position because applying force won't get the vehicle through the terrain
654 Prim.ForcePosition = pos; 1001 Vector3 newPosition = VehiclePosition;
655 VDetailLog("{0},MoveLinear,terrainHeight,terrainHeight={1},pos={2}", Prim.LocalID, terrainHeight, pos); 1002 newPosition.Z = GetTerrainHeight(VehiclePosition) + 1f;
1003 VehiclePosition = newPosition;
1004 VDetailLog("{0}, MoveLinear,terrainHeight,terrainHeight={1},pos={2}",
1005 Prim.LocalID, GetTerrainHeight(VehiclePosition), VehiclePosition);
656 } 1006 }
1007 }
657 1008
658 // Check if hovering 1009 public void ComputeLinearHover(float pTimestep)
1010 {
659 // m_VhoverEfficiency: 0=bouncy, 1=totally damped 1011 // m_VhoverEfficiency: 0=bouncy, 1=totally damped
660 // m_VhoverTimescale: time to achieve height 1012 // m_VhoverTimescale: time to achieve height
661 if ((m_flags & (VehicleFlag.HOVER_WATER_ONLY | VehicleFlag.HOVER_TERRAIN_ONLY | VehicleFlag.HOVER_GLOBAL_HEIGHT)) != 0) 1013 if ((m_flags & (VehicleFlag.HOVER_WATER_ONLY | VehicleFlag.HOVER_TERRAIN_ONLY | VehicleFlag.HOVER_GLOBAL_HEIGHT)) != 0)
@@ -663,11 +1015,11 @@ namespace OpenSim.Region.Physics.BulletSPlugin
663 // We should hover, get the target height 1015 // We should hover, get the target height
664 if ((m_flags & VehicleFlag.HOVER_WATER_ONLY) != 0) 1016 if ((m_flags & VehicleFlag.HOVER_WATER_ONLY) != 0)
665 { 1017 {
666 m_VhoverTargetHeight = Prim.PhysicsScene.GetWaterLevelAtXYZ(pos) + m_VhoverHeight; 1018 m_VhoverTargetHeight = GetWaterLevel(VehiclePosition) + m_VhoverHeight;
667 } 1019 }
668 if ((m_flags & VehicleFlag.HOVER_TERRAIN_ONLY) != 0) 1020 if ((m_flags & VehicleFlag.HOVER_TERRAIN_ONLY) != 0)
669 { 1021 {
670 m_VhoverTargetHeight = terrainHeight + m_VhoverHeight; 1022 m_VhoverTargetHeight = GetTerrainHeight(VehiclePosition) + m_VhoverHeight;
671 } 1023 }
672 if ((m_flags & VehicleFlag.HOVER_GLOBAL_HEIGHT) != 0) 1024 if ((m_flags & VehicleFlag.HOVER_GLOBAL_HEIGHT) != 0)
673 { 1025 {
@@ -677,45 +1029,63 @@ namespace OpenSim.Region.Physics.BulletSPlugin
677 if ((m_flags & VehicleFlag.HOVER_UP_ONLY) != 0) 1029 if ((m_flags & VehicleFlag.HOVER_UP_ONLY) != 0)
678 { 1030 {
679 // If body is already heigher, use its height as target height 1031 // If body is already heigher, use its height as target height
680 if (pos.Z > m_VhoverTargetHeight) 1032 if (VehiclePosition.Z > m_VhoverTargetHeight)
681 m_VhoverTargetHeight = pos.Z; 1033 m_VhoverTargetHeight = VehiclePosition.Z;
682 } 1034 }
1035
683 if ((m_flags & VehicleFlag.LOCK_HOVER_HEIGHT) != 0) 1036 if ((m_flags & VehicleFlag.LOCK_HOVER_HEIGHT) != 0)
684 { 1037 {
685 if (Math.Abs(pos.Z - m_VhoverTargetHeight) > 0.2f) 1038 if (Math.Abs(VehiclePosition.Z - m_VhoverTargetHeight) > 0.2f)
686 { 1039 {
1040 Vector3 pos = VehiclePosition;
687 pos.Z = m_VhoverTargetHeight; 1041 pos.Z = m_VhoverTargetHeight;
688 Prim.ForcePosition = pos; 1042 VehiclePosition = pos;
1043
1044 VDetailLog("{0}, MoveLinear,hover,pos={1},lockHoverHeight", Prim.LocalID, pos);
689 } 1045 }
690 } 1046 }
691 else 1047 else
692 { 1048 {
693 float verticalError = pos.Z - m_VhoverTargetHeight; 1049 // Error is positive if below the target and negative if above.
694 // RA: where does the 50 come from? 1050 Vector3 hpos = VehiclePosition;
695 float verticalCorrectionVelocity = pTimestep * ((verticalError * 50.0f) / m_VhoverTimescale); 1051 float verticalError = m_VhoverTargetHeight - hpos.Z;
696 // Replace Vertical speed with correction figure if significant 1052 float verticalCorrection = verticalError / m_VhoverTimescale;
697 if (Math.Abs(verticalError) > 0.01f) 1053 verticalCorrection *= m_VhoverEfficiency;
698 { 1054
699 m_newVelocity.Z += verticalCorrectionVelocity; 1055 hpos.Z += verticalCorrection;
700 //KF: m_VhoverEfficiency is not yet implemented 1056 VehiclePosition = hpos;
701 } 1057
702 else if (verticalError < -0.01) 1058 // Since we are hovering, we need to do the opposite of falling -- get rid of world Z
703 { 1059 Vector3 vel = VehicleVelocity;
704 m_newVelocity.Z -= verticalCorrectionVelocity; 1060 vel.Z = 0f;
705 } 1061 VehicleVelocity = vel;
706 else 1062
707 { 1063 /*
708 m_newVelocity.Z = 0f; 1064 float verticalCorrectionVelocity = verticalError / m_VhoverTimescale;
709 } 1065 Vector3 verticalCorrection = new Vector3(0f, 0f, verticalCorrectionVelocity);
1066 verticalCorrection *= m_vehicleMass;
1067
1068 // TODO: implement m_VhoverEfficiency correctly
1069 VehicleAddForceImpulse(verticalCorrection);
1070 */
1071
1072 VDetailLog("{0}, MoveLinear,hover,pos={1},eff={2},hoverTS={3},height={4},target={5},err={6},corr={7}",
1073 Prim.LocalID, VehiclePosition, m_VhoverEfficiency,
1074 m_VhoverTimescale, m_VhoverHeight, m_VhoverTargetHeight,
1075 verticalError, verticalCorrection);
710 } 1076 }
711 1077
712 VDetailLog("{0},MoveLinear,hover,pos={1},dir={2},height={3},target={4}", Prim.LocalID, pos, m_newVelocity, m_VhoverHeight, m_VhoverTargetHeight);
713 } 1078 }
1079 }
1080
1081 public bool ComputeLinearBlockingEndPoint(float pTimestep)
1082 {
1083 bool changed = false;
714 1084
1085 Vector3 pos = VehiclePosition;
715 Vector3 posChange = pos - m_lastPositionVector; 1086 Vector3 posChange = pos - m_lastPositionVector;
716 if (m_BlockingEndPoint != Vector3.Zero) 1087 if (m_BlockingEndPoint != Vector3.Zero)
717 { 1088 {
718 bool changed = false;
719 if (pos.X >= (m_BlockingEndPoint.X - (float)1)) 1089 if (pos.X >= (m_BlockingEndPoint.X - (float)1))
720 { 1090 {
721 pos.X -= posChange.X + 1; 1091 pos.X -= posChange.X + 1;
@@ -743,233 +1113,152 @@ namespace OpenSim.Region.Physics.BulletSPlugin
743 } 1113 }
744 if (changed) 1114 if (changed)
745 { 1115 {
746 Prim.ForcePosition = pos; 1116 VehiclePosition = pos;
747 VDetailLog("{0},MoveLinear,blockingEndPoint,block={1},origPos={2},pos={3}", 1117 VDetailLog("{0}, MoveLinear,blockingEndPoint,block={1},origPos={2},pos={3}",
748 Prim.LocalID, m_BlockingEndPoint, posChange, pos); 1118 Prim.LocalID, m_BlockingEndPoint, posChange, pos);
749 } 1119 }
750 } 1120 }
1121 return changed;
1122 }
751 1123
752 #region downForce 1124 // From http://wiki.secondlife.com/wiki/LlSetVehicleFlags :
753 Vector3 downForce = Vector3.Zero; 1125 // Prevent ground vehicles from motoring into the sky. This flag has a subtle effect when
1126 // used with conjunction with banking: the strength of the banking will decay when the
1127 // vehicle no longer experiences collisions. The decay timescale is the same as
1128 // VEHICLE_BANKING_TIMESCALE. This is to help prevent ground vehicles from steering
1129 // when they are in mid jump.
1130 // TODO: this code is wrong. Also, what should it do for boats (height from water)?
1131 // This is just using the ground and a general collision check. Should really be using
1132 // a downward raycast to find what is below.
1133 public void ComputeLinearMotorUp(float pTimestep)
1134 {
1135 Vector3 ret = Vector3.Zero;
754 1136
755 if ((m_flags & (VehicleFlag.LIMIT_MOTOR_UP)) != 0) 1137 if ((m_flags & (VehicleFlag.LIMIT_MOTOR_UP)) != 0)
756 { 1138 {
757 // If the vehicle is motoring into the sky, get it going back down. 1139 // This code tries to decide if the object is not on the ground and then pushing down
758 // Is this an angular force or both linear and angular?? 1140 /*
759 float distanceAboveGround = pos.Z - terrainHeight; 1141 float targetHeight = Type == Vehicle.TYPE_BOAT ? GetWaterLevel(VehiclePosition) : GetTerrainHeight(VehiclePosition);
760 if (distanceAboveGround > 2f) 1142 distanceAboveGround = VehiclePosition.Z - targetHeight;
1143 // Not colliding if the vehicle is off the ground
1144 if (!Prim.IsColliding)
761 { 1145 {
762 // downForce = new Vector3(0, 0, (-distanceAboveGround / m_bankingTimescale) * pTimestep);
763 // downForce = new Vector3(0, 0, -distanceAboveGround / m_bankingTimescale); 1146 // downForce = new Vector3(0, 0, -distanceAboveGround / m_bankingTimescale);
764 downForce = new Vector3(0, 0, -distanceAboveGround); 1147 VehicleVelocity += new Vector3(0, 0, -distanceAboveGround);
765 } 1148 }
766 // TODO: this calculation is all wrong. From the description at 1149 // TODO: this calculation is wrong. From the description at
767 // (http://wiki.secondlife.com/wiki/Category:LSL_Vehicle), the downForce 1150 // (http://wiki.secondlife.com/wiki/Category:LSL_Vehicle), the downForce
768 // has a decay factor. This says this force should 1151 // has a decay factor. This says this force should
769 // be computed with a motor. 1152 // be computed with a motor.
770 VDetailLog("{0},MoveLinear,limitMotorUp,distAbove={1},downForce={2}", 1153 // TODO: add interaction with banking.
771 Prim.LocalID, distanceAboveGround, downForce); 1154 VDetailLog("{0}, MoveLinear,limitMotorUp,distAbove={1},colliding={2},ret={3}",
772 } 1155 Prim.LocalID, distanceAboveGround, Prim.IsColliding, ret);
773 #endregion // downForce 1156 */
774 1157
775 // If not changing some axis, reduce out velocity 1158 // Another approach is to measure if we're going up. If going up and not colliding,
776 if ((m_flags & (VehicleFlag.NO_X)) != 0) 1159 // the vehicle is in the air. Fix that by pushing down.
777 m_newVelocity.X = 0; 1160 if (!Prim.IsColliding && VehicleVelocity.Z > 0.1)
778 if ((m_flags & (VehicleFlag.NO_Y)) != 0) 1161 {
779 m_newVelocity.Y = 0; 1162 // Get rid of any of the velocity vector that is pushing us up.
780 if ((m_flags & (VehicleFlag.NO_Z)) != 0) 1163 VehicleVelocity += new Vector3(0, 0, -VehicleVelocity.Z);
781 m_newVelocity.Z = 0;
782
783 // Clamp REALLY high or low velocities
784 if (m_newVelocity.LengthSquared() > 1e6f)
785 {
786 m_newVelocity /= m_newVelocity.Length();
787 m_newVelocity *= 1000f;
788 }
789 else if (m_newVelocity.LengthSquared() < 1e-6f)
790 m_newVelocity = Vector3.Zero;
791
792 // Stuff new linear velocity into the vehicle
793 Prim.ForceVelocity = m_newVelocity;
794 // Prim.ApplyForceImpulse((m_newVelocity - Prim.Velocity) * m_vehicleMass, false); // DEBUG DEBUG
795 1164
796 Vector3 totalDownForce = downForce + grav; 1165 // If we're pointed up into the air, we should nose down
797 if (totalDownForce != Vector3.Zero) 1166 Vector3 pointingDirection = Vector3.UnitX * VehicleOrientation;
798 { 1167 // The rotation around the Y axis is pitch up or down
799 Prim.AddForce(totalDownForce * m_vehicleMass, false); 1168 if (pointingDirection.Y > 0.01f)
800 // Prim.ApplyForceImpulse(totalDownForce * m_vehicleMass, false); 1169 {
1170 float angularCorrectionForce = -(float)Math.Asin(pointingDirection.Y);
1171 Vector3 angularCorrectionVector = new Vector3(0f, angularCorrectionForce, 0f);
1172 // Rotate into world coordinates and apply to vehicle
1173 angularCorrectionVector *= VehicleOrientation;
1174 VehicleAddAngularForce(angularCorrectionVector);
1175 VDetailLog("{0}, MoveLinear,limitMotorUp,newVel={1},pntDir={2},corrFrc={3},aCorr={4}",
1176 Prim.LocalID, VehicleVelocity, pointingDirection, angularCorrectionForce, angularCorrectionVector);
1177 }
1178 else
1179 {
1180 VDetailLog("{0}, MoveLinear,limitMotorUp,newVel={1},pntDir={2}",
1181 Prim.LocalID, VehicleVelocity, pointingDirection);
1182 }
1183 }
801 } 1184 }
1185 }
802 1186
803 VDetailLog("{0},MoveLinear,done,lmDir={1},lmVel={2},newVel={3},primVel={4},totalDown={5}", 1187 private void ApplyGravity(float pTimeStep)
804 Prim.LocalID, m_linearMotorDirection, m_lastLinearVelocityVector, m_newVelocity, Prim.Velocity, totalDownForce); 1188 {
1189 Vector3 appliedGravity = m_VehicleGravity * m_vehicleMass;
1190 VehicleAddForce(appliedGravity);
805 1191
806 } // end MoveLinear() 1192 VDetailLog("{0}, MoveLinear,applyGravity,vehGrav={1},appliedForce-{2}",
1193 Prim.LocalID, m_VehicleGravity, appliedGravity);
1194 }
807 1195
808 // ======================================================================= 1196 // =======================================================================
1197 // =======================================================================
809 // Apply the effect of the angular motor. 1198 // Apply the effect of the angular motor.
1199 // The 'contribution' is how much angular correction velocity each function wants.
1200 // All the contributions are added together and the resulting velocity is
1201 // set directly on the vehicle.
810 private void MoveAngular(float pTimestep) 1202 private void MoveAngular(float pTimestep)
811 { 1203 {
812 // m_angularMotorDirection // angular velocity requested by LSL motor 1204 // The user wants this many radians per second angular change?
813 // m_angularMotorApply // application frame counter 1205 Vector3 angularMotorContribution = m_angularMotor.Step(pTimestep);
814 // m_angularMotorVelocity // current angular motor velocity (ramps up and down) 1206
815 // m_angularMotorTimescale // motor angular velocity ramp up rate 1207 // ==================================================================
816 // m_angularMotorDecayTimescale // motor angular velocity decay rate 1208 // From http://wiki.secondlife.com/wiki/LlSetVehicleFlags :
817 // m_angularFrictionTimescale // body angular velocity decay rate 1209 // This flag prevents linear deflection parallel to world z-axis. This is useful
818 // m_lastAngularVelocity // what was last applied to body 1210 // for preventing ground vehicles with large linear deflection, like bumper cars,
819 1211 // from climbing their linear deflection into the sky.
820 if (m_angularMotorDirection.LengthSquared() > 0.0001) 1212 // That is, NO_DEFLECTION_UP says angular motion should not add any pitch or roll movement
821 { 1213 // TODO: This is here because this is where ODE put it but documentation says it
822 Vector3 origVel = m_angularMotorVelocity; 1214 // is a linear effect. Where should this check go?
823 Vector3 origDir = m_angularMotorDirection; 1215 if ((m_flags & (VehicleFlag.NO_DEFLECTION_UP)) != 0)
824
825 // new velocity += error / ( time to get there / step interval)
826 // requested direction - current vehicle direction
827 m_angularMotorVelocity += (m_angularMotorDirection - m_angularMotorVelocity) / (m_angularMotorTimescale / pTimestep);
828 // decay requested direction
829 m_angularMotorDirection *= (1.0f - (pTimestep * 1.0f/m_angularMotorDecayTimescale));
830
831 VDetailLog("{0},MoveAngular,angularMotorApply,angTScale={1},timeStep={2},origvel={3},origDir={4},vel={5}",
832 Prim.LocalID, m_angularMotorTimescale, pTimestep, origVel, origDir, m_angularMotorVelocity);
833 }
834 else
835 { 1216 {
836 m_angularMotorVelocity = Vector3.Zero; 1217 angularMotorContribution.X = 0f;
1218 angularMotorContribution.Y = 0f;
1219 VDetailLog("{0}, MoveAngular,noDeflectionUp,angularMotorContrib={1}", Prim.LocalID, angularMotorContribution);
837 } 1220 }
838 1221
839 #region Vertical attactor 1222 Vector3 verticalAttractionContribution = ComputeAngularVerticalAttraction();
840 1223
841 Vector3 vertattr = Vector3.Zero; 1224 Vector3 deflectionContribution = ComputeAngularDeflection();
842 Vector3 deflection = Vector3.Zero;
843 Vector3 banking = Vector3.Zero;
844 1225
845 // If vertical attaction timescale is reasonable and we applied an angular force last time... 1226 Vector3 bankingContribution = ComputeAngularBanking();
846 if (m_verticalAttractionTimescale < 300 && m_lastAngularVelocity != Vector3.Zero)
847 {
848 float VAservo = pTimestep * 0.2f / m_verticalAttractionTimescale;
849 if (Prim.IsColliding)
850 VAservo = pTimestep * 0.05f / (m_verticalAttractionTimescale);
851
852 VAservo *= (m_verticalAttractionEfficiency * m_verticalAttractionEfficiency);
853
854 // Create a vector of the vehicle "up" in world coordinates
855 Vector3 verticalError = Vector3.UnitZ * Prim.ForceOrientation;
856 // verticalError.X and .Y are the World error amounts. They are 0 when there is no
857 // error (Vehicle Body is 'vertical'), and .Z will be 1. As the body leans to its
858 // side |.X| will increase to 1 and .Z fall to 0. As body inverts |.X| will fall
859 // and .Z will go // negative. Similar for tilt and |.Y|. .X and .Y must be
860 // modulated to prevent a stable inverted body.
861
862 // Error is 0 (no error) to +/- 2 (max error)
863 if (verticalError.Z < 0.0f)
864 {
865 verticalError.X = 2.0f - verticalError.X;
866 verticalError.Y = 2.0f - verticalError.Y;
867 }
868 // scale it by VAservo (timestep and timescale)
869 verticalError = verticalError * VAservo;
870 1227
871 // As the body rotates around the X axis, then verticalError.Y increases; Rotated around Y 1228 // ==================================================================
872 // then .X increases, so change Body angular velocity X based on Y, and Y based on X. 1229 m_lastVertAttractor = verticalAttractionContribution;
873 // Z is not changed.
874 vertattr.X = verticalError.Y;
875 vertattr.Y = - verticalError.X;
876 vertattr.Z = 0f;
877 1230
878 // scaling appears better usingsquare-law 1231 m_lastAngularVelocity = angularMotorContribution
879 Vector3 angularVelocity = Prim.ForceRotationalVelocity; 1232 + verticalAttractionContribution
880 float bounce = 1.0f - (m_verticalAttractionEfficiency * m_verticalAttractionEfficiency); 1233 + deflectionContribution
881 vertattr.X += bounce * angularVelocity.X; 1234 + bankingContribution;
882 vertattr.Y += bounce * angularVelocity.Y;
883
884 VDetailLog("{0},MoveAngular,verticalAttraction,VAservo={1},effic={2},verticalError={3},bounce={4},vertattr={5}",
885 Prim.LocalID, VAservo, m_verticalAttractionEfficiency, verticalError, bounce, vertattr);
886
887 }
888 #endregion // Vertical attactor
889 1235
890 #region Deflection 1236 // Add of the above computation are made relative to vehicle coordinates.
1237 // Convert to world coordinates.
1238 m_lastAngularVelocity *= VehicleOrientation;
891 1239
892 if (m_angularDeflectionEfficiency != 0) 1240 // ==================================================================
1241 // Apply the correction velocity.
1242 // TODO: Should this be applied as an angular force (torque)?
1243 if (!m_lastAngularVelocity.ApproxEquals(Vector3.Zero, 0.01f))
893 { 1244 {
894 // Compute a scaled vector that points in the preferred axis (X direction) 1245 VehicleRotationalVelocity = m_lastAngularVelocity;
895 Vector3 scaledDefaultDirection =
896 new Vector3((pTimestep * 10 * (m_angularDeflectionEfficiency / m_angularDeflectionTimescale)), 0, 0);
897 // Adding the current vehicle orientation and reference frame displaces the orientation to the frame.
898 // Rotate the scaled default axix relative to the actual vehicle direction giving where it should point.
899 Vector3 preferredAxisOfMotion = scaledDefaultDirection * Quaternion.Add(Prim.ForceOrientation, m_referenceFrame);
900
901 // Scale by efficiency and timescale
902 deflection = (preferredAxisOfMotion * (m_angularDeflectionEfficiency) / m_angularDeflectionTimescale) * pTimestep;
903
904 VDetailLog("{0},MoveAngular,Deflection,perfAxis={1},deflection={2}",
905 Prim.LocalID, preferredAxisOfMotion, deflection);
906 // This deflection computation is not correct.
907 deflection = Vector3.Zero;
908 }
909
910 #endregion
911 1246
912 #region Banking 1247 VDetailLog("{0}, MoveAngular,done,nonZero,angMotorContrib={1},vertAttrContrib={2},bankContrib={3},deflectContrib={4},totalContrib={5}",
913 1248 Prim.LocalID,
914 if (m_bankingEfficiency != 0) 1249 angularMotorContribution, verticalAttractionContribution,
1250 bankingContribution, deflectionContribution,
1251 m_lastAngularVelocity
1252 );
1253 }
1254 else
915 { 1255 {
916 Vector3 dir = Vector3.One * Prim.ForceOrientation; 1256 // The vehicle is not adding anything angular wise.
917 float mult = (m_bankingMix*m_bankingMix)*-1*(m_bankingMix < 0 ? -1 : 1); 1257 VehicleRotationalVelocity = Vector3.Zero;
918 //Changes which way it banks in and out of turns 1258 VDetailLog("{0}, MoveAngular,done,zero", Prim.LocalID);
919
920 //Use the square of the efficiency, as it looks much more how SL banking works
921 float effSquared = (m_bankingEfficiency*m_bankingEfficiency);
922 if (m_bankingEfficiency < 0)
923 effSquared *= -1; //Keep the negative!
924
925 float mix = Math.Abs(m_bankingMix);
926 if (m_angularMotorVelocity.X == 0)
927 {
928 /*if (!parent.Orientation.ApproxEquals(this.m_referenceFrame, 0.25f))
929 {
930 Vector3 axisAngle;
931 float angle;
932 parent.Orientation.GetAxisAngle(out axisAngle, out angle);
933 Vector3 rotatedVel = parent.Velocity * parent.Orientation;
934 if ((rotatedVel.X < 0 && axisAngle.Y > 0) || (rotatedVel.X > 0 && axisAngle.Y < 0))
935 m_angularMotorVelocity.X += (effSquared * (mult * mix)) * (1f) * 10;
936 else
937 m_angularMotorVelocity.X += (effSquared * (mult * mix)) * (-1f) * 10;
938 }*/
939 }
940 else
941 banking.Z += (effSquared*(mult*mix))*(m_angularMotorVelocity.X) * 4;
942 if (!Prim.IsColliding && Math.Abs(m_angularMotorVelocity.X) > mix)
943 //If they are colliding, we probably shouldn't shove the prim around... probably
944 {
945 float angVelZ = m_angularMotorVelocity.X*-1;
946 /*if(angVelZ > mix)
947 angVelZ = mix;
948 else if(angVelZ < -mix)
949 angVelZ = -mix;*/
950 //This controls how fast and how far the banking occurs
951 Vector3 bankingRot = new Vector3(angVelZ*(effSquared*mult), 0, 0);
952 if (bankingRot.X > 3)
953 bankingRot.X = 3;
954 else if (bankingRot.X < -3)
955 bankingRot.X = -3;
956 bankingRot *= Prim.ForceOrientation;
957 banking += bankingRot;
958 }
959 m_angularMotorVelocity.X *= m_bankingEfficiency == 1 ? 0.0f : 1 - m_bankingEfficiency;
960 VDetailLog("{0},MoveAngular,Banking,bEff={1},angMotVel={2},banking={3}",
961 Prim.LocalID, m_bankingEfficiency, m_angularMotorVelocity, banking);
962 } 1259 }
963 1260
964 #endregion 1261 // ==================================================================
965
966 m_lastVertAttractor = vertattr;
967
968 // Sum velocities
969 m_lastAngularVelocity = m_angularMotorVelocity + vertattr + banking + deflection;
970
971 #region Linear Motor Offset
972
973 //Offset section 1262 //Offset section
974 if (m_linearMotorOffset != Vector3.Zero) 1263 if (m_linearMotorOffset != Vector3.Zero)
975 { 1264 {
@@ -985,8 +1274,8 @@ namespace OpenSim.Region.Physics.BulletSPlugin
985 // 1274 //
986 // The torque created is the linear velocity crossed with the offset 1275 // The torque created is the linear velocity crossed with the offset
987 1276
988 // NOTE: this computation does should be in the linear section 1277 // TODO: this computation should be in the linear section
989 // because there we know the impulse being applied. 1278 // because that is where we know the impulse being applied.
990 Vector3 torqueFromOffset = Vector3.Zero; 1279 Vector3 torqueFromOffset = Vector3.Zero;
991 // torqueFromOffset = Vector3.Cross(m_linearMotorOffset, appliedImpulse); 1280 // torqueFromOffset = Vector3.Cross(m_linearMotorOffset, appliedImpulse);
992 if (float.IsNaN(torqueFromOffset.X)) 1281 if (float.IsNaN(torqueFromOffset.X))
@@ -995,47 +1284,185 @@ namespace OpenSim.Region.Physics.BulletSPlugin
995 torqueFromOffset.Y = 0; 1284 torqueFromOffset.Y = 0;
996 if (float.IsNaN(torqueFromOffset.Z)) 1285 if (float.IsNaN(torqueFromOffset.Z))
997 torqueFromOffset.Z = 0; 1286 torqueFromOffset.Z = 0;
998 torqueFromOffset *= m_vehicleMass; 1287
999 Prim.ApplyTorqueImpulse(torqueFromOffset, true); 1288 VehicleAddAngularForce(torqueFromOffset * m_vehicleMass);
1000 VDetailLog("{0},BSDynamic.MoveAngular,motorOffset,applyTorqueImpulse={1}", Prim.LocalID, torqueFromOffset); 1289 VDetailLog("{0}, BSDynamic.MoveAngular,motorOffset,applyTorqueImpulse={1}", Prim.LocalID, torqueFromOffset);
1001 } 1290 }
1002 1291
1003 #endregion 1292 }
1293 // From http://wiki.secondlife.com/wiki/Linden_Vehicle_Tutorial:
1294 // Some vehicles, like boats, should always keep their up-side up. This can be done by
1295 // enabling the "vertical attractor" behavior that springs the vehicle's local z-axis to
1296 // the world z-axis (a.k.a. "up"). To take advantage of this feature you would set the
1297 // VEHICLE_VERTICAL_ATTRACTION_TIMESCALE to control the period of the spring frequency,
1298 // and then set the VEHICLE_VERTICAL_ATTRACTION_EFFICIENCY to control the damping. An
1299 // efficiency of 0.0 will cause the spring to wobble around its equilibrium, while an
1300 // efficiency of 1.0 will cause the spring to reach its equilibrium with exponential decay.
1301 public Vector3 ComputeAngularVerticalAttraction()
1302 {
1303 Vector3 ret = Vector3.Zero;
1004 1304
1005 if ((m_flags & (VehicleFlag.NO_DEFLECTION_UP)) != 0) 1305 // If vertical attaction timescale is reasonable
1306 if (enableAngularVerticalAttraction && m_verticalAttractionTimescale < m_verticalAttractionCutoff)
1006 { 1307 {
1007 m_lastAngularVelocity.X = 0; 1308 // Take a vector pointing up and convert it from world to vehicle relative coords.
1008 m_lastAngularVelocity.Y = 0; 1309 Vector3 verticalError = Vector3.UnitZ * VehicleOrientation;
1009 VDetailLog("{0},MoveAngular,noDeflectionUp,lastAngular={1}", Prim.LocalID, m_lastAngularVelocity); 1310
1311 // If vertical attraction correction is needed, the vector that was pointing up (UnitZ)
1312 // is now:
1313 // leaning to one side: rotated around the X axis with the Y value going
1314 // from zero (nearly straight up) to one (completely to the side)) or
1315 // leaning front-to-back: rotated around the Y axis with the value of X being between
1316 // zero and one.
1317 // The value of Z is how far the rotation is off with 1 meaning none and 0 being 90 degrees.
1318
1319 // Y error means needed rotation around X axis and visa versa.
1320 // Since the error goes from zero to one, the asin is the corresponding angle.
1321 ret.X = (float)Math.Asin(verticalError.Y);
1322 // (Tilt forward (positive X) needs to tilt back (rotate negative) around Y axis.)
1323 ret.Y = -(float)Math.Asin(verticalError.X);
1324
1325 // If verticalError.Z is negative, the vehicle is upside down. Add additional push.
1326 if (verticalError.Z < 0f)
1327 {
1328 ret.X += PIOverFour;
1329 ret.Y += PIOverFour;
1330 }
1331
1332 // 'ret' is now the necessary velocity to correct tilt in one second.
1333 // Correction happens over a number of seconds.
1334 Vector3 unscaledContrib = ret;
1335 ret /= m_verticalAttractionTimescale;
1336
1337 VDetailLog("{0}, MoveAngular,verticalAttraction,,verticalError={1},unscaled={2},eff={3},ts={4},vertAttr={5}",
1338 Prim.LocalID, verticalError, unscaledContrib, m_verticalAttractionEfficiency, m_verticalAttractionTimescale, ret);
1010 } 1339 }
1340 return ret;
1341 }
1342
1343 // Return the angular correction to correct the direction the vehicle is pointing to be
1344 // the direction is should want to be pointing.
1345 // The vehicle is moving in some direction and correct its orientation to it is pointing
1346 // in that direction.
1347 // TODO: implement reference frame.
1348 public Vector3 ComputeAngularDeflection()
1349 {
1350 Vector3 ret = Vector3.Zero;
1351
1352 // Since angularMotorUp and angularDeflection are computed independently, they will calculate
1353 // approximately the same X or Y correction. When added together (when contributions are combined)
1354 // this creates an over-correction and then wabbling as the target is overshot.
1355 // TODO: rethink how the different correction computations inter-relate.
1011 1356
1012 if (m_lastAngularVelocity.ApproxEquals(Vector3.Zero, 0.01f)) 1357 if (enableAngularDeflection && m_angularDeflectionEfficiency != 0 && VehicleForwardSpeed > 0.2)
1013 { 1358 {
1014 m_lastAngularVelocity = Vector3.Zero; // Reduce small value to zero. 1359 // The direction the vehicle is moving
1015 Prim.ZeroAngularMotion(true); 1360 Vector3 movingDirection = VehicleVelocity;
1016 VDetailLog("{0},MoveAngular,zeroAngularMotion,lastAngular={1}", Prim.LocalID, m_lastAngularVelocity); 1361 movingDirection.Normalize();
1362
1363 // If the vehicle is going backward, it is still pointing forward
1364 movingDirection *= Math.Sign(VehicleForwardSpeed);
1365
1366 // The direction the vehicle is pointing
1367 Vector3 pointingDirection = Vector3.UnitX * VehicleOrientation;
1368 pointingDirection.Normalize();
1369
1370 // The difference between what is and what should be.
1371 Vector3 deflectionError = movingDirection - pointingDirection;
1372
1373 // Don't try to correct very large errors (not our job)
1374 // if (Math.Abs(deflectionError.X) > PIOverFour) deflectionError.X = PIOverTwo * Math.Sign(deflectionError.X);
1375 // if (Math.Abs(deflectionError.Y) > PIOverFour) deflectionError.Y = PIOverTwo * Math.Sign(deflectionError.Y);
1376 // if (Math.Abs(deflectionError.Z) > PIOverFour) deflectionError.Z = PIOverTwo * Math.Sign(deflectionError.Z);
1377 if (Math.Abs(deflectionError.X) > PIOverFour) deflectionError.X = 0f;
1378 if (Math.Abs(deflectionError.Y) > PIOverFour) deflectionError.Y = 0f;
1379 if (Math.Abs(deflectionError.Z) > PIOverFour) deflectionError.Z = 0f;
1380
1381 // ret = m_angularDeflectionCorrectionMotor(1f, deflectionError);
1382
1383 // Scale the correction by recovery timescale and efficiency
1384 ret = (-deflectionError) * m_angularDeflectionEfficiency;
1385 ret /= m_angularDeflectionTimescale;
1386
1387 VDetailLog("{0}, MoveAngular,Deflection,movingDir={1},pointingDir={2},deflectError={3},ret={4}",
1388 Prim.LocalID, movingDirection, pointingDirection, deflectionError, ret);
1389 VDetailLog("{0}, MoveAngular,Deflection,fwdSpd={1},defEff={2},defTS={3}",
1390 Prim.LocalID, VehicleForwardSpeed, m_angularDeflectionEfficiency, m_angularDeflectionTimescale);
1017 } 1391 }
1018 else 1392 return ret;
1393 }
1394
1395 // Return an angular change to rotate the vehicle around the Z axis when the vehicle
1396 // is tipped around the X axis.
1397 // From http://wiki.secondlife.com/wiki/Linden_Vehicle_Tutorial:
1398 // The vertical attractor feature must be enabled in order for the banking behavior to
1399 // function. The way banking works is this: a rotation around the vehicle's roll-axis will
1400 // produce a angular velocity around the yaw-axis, causing the vehicle to turn. The magnitude
1401 // of the yaw effect will be proportional to the
1402 // VEHICLE_BANKING_EFFICIENCY, the angle of the roll rotation, and sometimes the vehicle's
1403 // velocity along its preferred axis of motion.
1404 // The VEHICLE_BANKING_EFFICIENCY can vary between -1 and +1. When it is positive then any
1405 // positive rotation (by the right-hand rule) about the roll-axis will effect a
1406 // (negative) torque around the yaw-axis, making it turn to the right--that is the
1407 // vehicle will lean into the turn, which is how real airplanes and motorcycle's work.
1408 // Negating the banking coefficient will make it so that the vehicle leans to the
1409 // outside of the turn (not very "physical" but might allow interesting vehicles so why not?).
1410 // The VEHICLE_BANKING_MIX is a fake (i.e. non-physical) parameter that is useful for making
1411 // banking vehicles do what you want rather than what the laws of physics allow.
1412 // For example, consider a real motorcycle...it must be moving forward in order for
1413 // it to turn while banking, however video-game motorcycles are often configured
1414 // to turn in place when at a dead stop--because they are often easier to control
1415 // that way using the limited interface of the keyboard or game controller. The
1416 // VEHICLE_BANKING_MIX enables combinations of both realistic and non-realistic
1417 // banking by functioning as a slider between a banking that is correspondingly
1418 // totally static (0.0) and totally dynamic (1.0). By "static" we mean that the
1419 // banking effect depends only on the vehicle's rotation about its roll-axis compared
1420 // to "dynamic" where the banking is also proportional to its velocity along its
1421 // roll-axis. Finding the best value of the "mixture" will probably require trial and error.
1422 // The time it takes for the banking behavior to defeat a preexisting angular velocity about the
1423 // world z-axis is determined by the VEHICLE_BANKING_TIMESCALE. So if you want the vehicle to
1424 // bank quickly then give it a banking timescale of about a second or less, otherwise you can
1425 // make a sluggish vehicle by giving it a timescale of several seconds.
1426 public Vector3 ComputeAngularBanking()
1427 {
1428 Vector3 ret = Vector3.Zero;
1429
1430 if (enableAngularBanking && m_bankingEfficiency != 0 && m_verticalAttractionTimescale < m_verticalAttractionCutoff)
1019 { 1431 {
1020 // Apply to the body. 1432 // Rotate a UnitZ vector (pointing up) to how the vehicle is oriented.
1021 // The above calculates the absolute angular velocity needed. Angular velocity is massless. 1433 // As the vehicle rolls to the right or left, the Y value will increase from
1022 // Since we are stuffing the angular velocity directly into the object, the computed 1434 // zero (straight up) to 1 or -1 (full tilt right or left)
1023 // velocity needs to be scaled by the timestep. 1435 Vector3 rollComponents = Vector3.UnitZ * VehicleOrientation;
1024 Vector3 applyAngularForce = ((m_lastAngularVelocity * pTimestep) - Prim.ForceRotationalVelocity); 1436
1025 Prim.ForceRotationalVelocity = applyAngularForce; 1437 // Figure out the yaw value for this much roll.
1026 1438 // Squared because that seems to give a good value
1027 // Decay the angular movement for next time 1439 float yawAngle = (float)Math.Asin(rollComponents.Y * rollComponents.Y) * m_bankingEfficiency;
1028 Vector3 decayamount = (Vector3.One / m_angularFrictionTimescale) * pTimestep; 1440
1029 m_lastAngularVelocity *= Vector3.One - decayamount; 1441 // actual error = static turn error + dynamic turn error
1030 1442 float mixedYawAngle = yawAngle * (1f - m_bankingMix) + yawAngle * m_bankingMix * VehicleForwardSpeed;
1031 VDetailLog("{0},MoveAngular,done,newRotVel={1},decay={2},lastAngular={3}", 1443
1032 Prim.LocalID, applyAngularForce, decayamount, m_lastAngularVelocity); 1444 // TODO: the banking effect should not go to infinity but what to limit it to?
1445 mixedYawAngle = ClampInRange(-20f, mixedYawAngle, 20f);
1446
1447 // Build the force vector to change rotation from what it is to what it should be
1448 ret.Z = -mixedYawAngle;
1449
1450 // Don't do it all at once.
1451 ret /= m_bankingTimescale;
1452
1453 VDetailLog("{0}, MoveAngular,Banking,rollComp={1},speed={2},rollComp={3},yAng={4},mYAng={5},ret={6}",
1454 Prim.LocalID, rollComponents, VehicleForwardSpeed, rollComponents, yawAngle, mixedYawAngle, ret);
1033 } 1455 }
1034 } //end MoveAngular 1456 return ret;
1457 }
1035 1458
1459 // This is from previous instantiations of XXXDynamics.cs.
1460 // Applies roll reference frame.
1461 // TODO: is this the right way to separate the code to do this operation?
1462 // Should this be in MoveAngular()?
1036 internal void LimitRotation(float timestep) 1463 internal void LimitRotation(float timestep)
1037 { 1464 {
1038 Quaternion rotq = Prim.ForceOrientation; 1465 Quaternion rotq = VehicleOrientation;
1039 Quaternion m_rot = rotq; 1466 Quaternion m_rot = rotq;
1040 if (m_RollreferenceFrame != Quaternion.Identity) 1467 if (m_RollreferenceFrame != Quaternion.Identity)
1041 { 1468 {
@@ -1063,12 +1490,18 @@ namespace OpenSim.Region.Physics.BulletSPlugin
1063 } 1490 }
1064 if (rotq != m_rot) 1491 if (rotq != m_rot)
1065 { 1492 {
1066 Prim.ForceOrientation = m_rot; 1493 VehicleOrientation = m_rot;
1067 VDetailLog("{0},LimitRotation,done,orig={1},new={2}", Prim.LocalID, rotq, m_rot); 1494 VDetailLog("{0}, LimitRotation,done,orig={1},new={2}", Prim.LocalID, rotq, m_rot);
1068 } 1495 }
1069 1496
1070 } 1497 }
1071 1498
1499 private float ClampInRange(float low, float val, float high)
1500 {
1501 return Math.Max(low, Math.Min(val, high));
1502 // return Utils.Clamp(val, low, high);
1503 }
1504
1072 // Invoke the detailed logger and output something if it's enabled. 1505 // Invoke the detailed logger and output something if it's enabled.
1073 private void VDetailLog(string msg, params Object[] args) 1506 private void VDetailLog(string msg, params Object[] args)
1074 { 1507 {