diff options
author | dan miller | 2007-10-19 05:15:33 +0000 |
---|---|---|
committer | dan miller | 2007-10-19 05:15:33 +0000 |
commit | 79eca25c945a535a7a0325999034bae17da92412 (patch) | |
tree | 40ff433d94859d629aac933d5ec73b382f62ba1a /libraries/ode-0.9/ode/src/mass.cpp | |
parent | adding ode source to /libraries (diff) | |
download | opensim-SC-79eca25c945a535a7a0325999034bae17da92412.zip opensim-SC-79eca25c945a535a7a0325999034bae17da92412.tar.gz opensim-SC-79eca25c945a535a7a0325999034bae17da92412.tar.bz2 opensim-SC-79eca25c945a535a7a0325999034bae17da92412.tar.xz |
resubmitting ode
Diffstat (limited to '')
-rw-r--r-- | libraries/ode-0.9/ode/src/mass.cpp | 529 |
1 files changed, 529 insertions, 0 deletions
diff --git a/libraries/ode-0.9/ode/src/mass.cpp b/libraries/ode-0.9/ode/src/mass.cpp new file mode 100644 index 0000000..7d0b1c2 --- /dev/null +++ b/libraries/ode-0.9/ode/src/mass.cpp | |||
@@ -0,0 +1,529 @@ | |||
1 | /************************************************************************* | ||
2 | * * | ||
3 | * Open Dynamics Engine, Copyright (C) 2001,2002 Russell L. Smith. * | ||
4 | * All rights reserved. Email: russ@q12.org Web: www.q12.org * | ||
5 | * * | ||
6 | * This library is free software; you can redistribute it and/or * | ||
7 | * modify it under the terms of EITHER: * | ||
8 | * (1) The GNU Lesser General Public License as published by the Free * | ||
9 | * Software Foundation; either version 2.1 of the License, or (at * | ||
10 | * your option) any later version. The text of the GNU Lesser * | ||
11 | * General Public License is included with this library in the * | ||
12 | * file LICENSE.TXT. * | ||
13 | * (2) The BSD-style license that is included with this library in * | ||
14 | * the file LICENSE-BSD.TXT. * | ||
15 | * * | ||
16 | * This library is distributed in the hope that it will be useful, * | ||
17 | * but WITHOUT ANY WARRANTY; without even the implied warranty of * | ||
18 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the files * | ||
19 | * LICENSE.TXT and LICENSE-BSD.TXT for more details. * | ||
20 | * * | ||
21 | *************************************************************************/ | ||
22 | |||
23 | #include <ode/config.h> | ||
24 | #include <ode/mass.h> | ||
25 | #include <ode/odemath.h> | ||
26 | #include <ode/matrix.h> | ||
27 | |||
28 | // Local dependencies | ||
29 | #include "collision_kernel.h" | ||
30 | |||
31 | #define SQR(x) ((x)*(x)) //!< Returns x square | ||
32 | #define CUBE(x) ((x)*(x)*(x)) //!< Returns x cube | ||
33 | |||
34 | #define _I(i,j) I[(i)*4+(j)] | ||
35 | |||
36 | |||
37 | // return 1 if ok, 0 if bad | ||
38 | |||
39 | int dMassCheck (const dMass *m) | ||
40 | { | ||
41 | int i; | ||
42 | |||
43 | if (m->mass <= 0) { | ||
44 | dDEBUGMSG ("mass must be > 0"); | ||
45 | return 0; | ||
46 | } | ||
47 | if (!dIsPositiveDefinite (m->I,3)) { | ||
48 | dDEBUGMSG ("inertia must be positive definite"); | ||
49 | return 0; | ||
50 | } | ||
51 | |||
52 | // verify that the center of mass position is consistent with the mass | ||
53 | // and inertia matrix. this is done by checking that the inertia around | ||
54 | // the center of mass is also positive definite. from the comment in | ||
55 | // dMassTranslate(), if the body is translated so that its center of mass | ||
56 | // is at the point of reference, then the new inertia is: | ||
57 | // I + mass*crossmat(c)^2 | ||
58 | // note that requiring this to be positive definite is exactly equivalent | ||
59 | // to requiring that the spatial inertia matrix | ||
60 | // [ mass*eye(3,3) M*crossmat(c)^T ] | ||
61 | // [ M*crossmat(c) I ] | ||
62 | // is positive definite, given that I is PD and mass>0. see the theorem | ||
63 | // about partitioned PD matrices for proof. | ||
64 | |||
65 | dMatrix3 I2,chat; | ||
66 | dSetZero (chat,12); | ||
67 | dCROSSMAT (chat,m->c,4,+,-); | ||
68 | dMULTIPLY0_333 (I2,chat,chat); | ||
69 | for (i=0; i<3; i++) I2[i] = m->I[i] + m->mass*I2[i]; | ||
70 | for (i=4; i<7; i++) I2[i] = m->I[i] + m->mass*I2[i]; | ||
71 | for (i=8; i<11; i++) I2[i] = m->I[i] + m->mass*I2[i]; | ||
72 | if (!dIsPositiveDefinite (I2,3)) { | ||
73 | dDEBUGMSG ("center of mass inconsistent with mass parameters"); | ||
74 | return 0; | ||
75 | } | ||
76 | return 1; | ||
77 | } | ||
78 | |||
79 | |||
80 | void dMassSetZero (dMass *m) | ||
81 | { | ||
82 | dAASSERT (m); | ||
83 | m->mass = REAL(0.0); | ||
84 | dSetZero (m->c,sizeof(m->c) / sizeof(dReal)); | ||
85 | dSetZero (m->I,sizeof(m->I) / sizeof(dReal)); | ||
86 | } | ||
87 | |||
88 | |||
89 | void dMassSetParameters (dMass *m, dReal themass, | ||
90 | dReal cgx, dReal cgy, dReal cgz, | ||
91 | dReal I11, dReal I22, dReal I33, | ||
92 | dReal I12, dReal I13, dReal I23) | ||
93 | { | ||
94 | dAASSERT (m); | ||
95 | dMassSetZero (m); | ||
96 | m->mass = themass; | ||
97 | m->c[0] = cgx; | ||
98 | m->c[1] = cgy; | ||
99 | m->c[2] = cgz; | ||
100 | m->_I(0,0) = I11; | ||
101 | m->_I(1,1) = I22; | ||
102 | m->_I(2,2) = I33; | ||
103 | m->_I(0,1) = I12; | ||
104 | m->_I(0,2) = I13; | ||
105 | m->_I(1,2) = I23; | ||
106 | m->_I(1,0) = I12; | ||
107 | m->_I(2,0) = I13; | ||
108 | m->_I(2,1) = I23; | ||
109 | dMassCheck (m); | ||
110 | } | ||
111 | |||
112 | |||
113 | void dMassSetSphere (dMass *m, dReal density, dReal radius) | ||
114 | { | ||
115 | dMassSetSphereTotal (m, (REAL(4.0)/REAL(3.0)) * M_PI * | ||
116 | radius*radius*radius * density, radius); | ||
117 | } | ||
118 | |||
119 | |||
120 | void dMassSetSphereTotal (dMass *m, dReal total_mass, dReal radius) | ||
121 | { | ||
122 | dAASSERT (m); | ||
123 | dMassSetZero (m); | ||
124 | m->mass = total_mass; | ||
125 | dReal II = REAL(0.4) * total_mass * radius*radius; | ||
126 | m->_I(0,0) = II; | ||
127 | m->_I(1,1) = II; | ||
128 | m->_I(2,2) = II; | ||
129 | |||
130 | # ifndef dNODEBUG | ||
131 | dMassCheck (m); | ||
132 | # endif | ||
133 | } | ||
134 | |||
135 | |||
136 | void dMassSetCapsule (dMass *m, dReal density, int direction, | ||
137 | dReal radius, dReal length) | ||
138 | { | ||
139 | dReal M1,M2,Ia,Ib; | ||
140 | dAASSERT (m); | ||
141 | dUASSERT (direction >= 1 && direction <= 3,"bad direction number"); | ||
142 | dMassSetZero (m); | ||
143 | M1 = M_PI*radius*radius*length*density; // cylinder mass | ||
144 | M2 = (REAL(4.0)/REAL(3.0))*M_PI*radius*radius*radius*density; // total cap mass | ||
145 | m->mass = M1+M2; | ||
146 | Ia = M1*(REAL(0.25)*radius*radius + (REAL(1.0)/REAL(12.0))*length*length) + | ||
147 | M2*(REAL(0.4)*radius*radius + REAL(0.375)*radius*length + REAL(0.25)*length*length); | ||
148 | Ib = (M1*REAL(0.5) + M2*REAL(0.4))*radius*radius; | ||
149 | m->_I(0,0) = Ia; | ||
150 | m->_I(1,1) = Ia; | ||
151 | m->_I(2,2) = Ia; | ||
152 | m->_I(direction-1,direction-1) = Ib; | ||
153 | |||
154 | # ifndef dNODEBUG | ||
155 | dMassCheck (m); | ||
156 | # endif | ||
157 | } | ||
158 | |||
159 | |||
160 | void dMassSetCapsuleTotal (dMass *m, dReal total_mass, int direction, | ||
161 | dReal a, dReal b) | ||
162 | { | ||
163 | dMassSetCapsule (m, 1.0, direction, a, b); | ||
164 | dMassAdjust (m, total_mass); | ||
165 | } | ||
166 | |||
167 | |||
168 | void dMassSetCylinder (dMass *m, dReal density, int direction, | ||
169 | dReal radius, dReal length) | ||
170 | { | ||
171 | dMassSetCylinderTotal (m, M_PI*radius*radius*length*density, | ||
172 | direction, radius, length); | ||
173 | } | ||
174 | |||
175 | void dMassSetCylinderTotal (dMass *m, dReal total_mass, int direction, | ||
176 | dReal radius, dReal length) | ||
177 | { | ||
178 | dReal r2,I; | ||
179 | dAASSERT (m); | ||
180 | dUASSERT (direction >= 1 && direction <= 3,"bad direction number"); | ||
181 | dMassSetZero (m); | ||
182 | r2 = radius*radius; | ||
183 | m->mass = total_mass; | ||
184 | I = total_mass*(REAL(0.25)*r2 + (REAL(1.0)/REAL(12.0))*length*length); | ||
185 | m->_I(0,0) = I; | ||
186 | m->_I(1,1) = I; | ||
187 | m->_I(2,2) = I; | ||
188 | m->_I(direction-1,direction-1) = total_mass*REAL(0.5)*r2; | ||
189 | |||
190 | # ifndef dNODEBUG | ||
191 | dMassCheck (m); | ||
192 | # endif | ||
193 | } | ||
194 | |||
195 | |||
196 | void dMassSetBox (dMass *m, dReal density, | ||
197 | dReal lx, dReal ly, dReal lz) | ||
198 | { | ||
199 | dMassSetBoxTotal (m, lx*ly*lz*density, lx, ly, lz); | ||
200 | } | ||
201 | |||
202 | |||
203 | void dMassSetBoxTotal (dMass *m, dReal total_mass, | ||
204 | dReal lx, dReal ly, dReal lz) | ||
205 | { | ||
206 | dAASSERT (m); | ||
207 | dMassSetZero (m); | ||
208 | m->mass = total_mass; | ||
209 | m->_I(0,0) = total_mass/REAL(12.0) * (ly*ly + lz*lz); | ||
210 | m->_I(1,1) = total_mass/REAL(12.0) * (lx*lx + lz*lz); | ||
211 | m->_I(2,2) = total_mass/REAL(12.0) * (lx*lx + ly*ly); | ||
212 | |||
213 | # ifndef dNODEBUG | ||
214 | dMassCheck (m); | ||
215 | # endif | ||
216 | } | ||
217 | |||
218 | |||
219 | |||
220 | |||
221 | |||
222 | |||
223 | #if dTRIMESH_ENABLED | ||
224 | |||
225 | /* | ||
226 | * dMassSetTrimesh, implementation by Gero Mueller. | ||
227 | * Based on Brian Mirtich, "Fast and Accurate Computation of | ||
228 | * Polyhedral Mass Properties," journal of graphics tools, volume 1, | ||
229 | * number 2, 1996. | ||
230 | */ | ||
231 | void dMassSetTrimesh( dMass *m, dReal density, dGeomID g ) | ||
232 | { | ||
233 | dAASSERT (m); | ||
234 | dUASSERT(g && g->type == dTriMeshClass, "argument not a trimesh"); | ||
235 | |||
236 | dMassSetZero (m); | ||
237 | |||
238 | unsigned int triangles = dGeomTriMeshGetTriangleCount( g ); | ||
239 | |||
240 | dReal nx, ny, nz; | ||
241 | unsigned int i, A, B, C; | ||
242 | // face integrals | ||
243 | dReal Fa, Fb, Fc, Faa, Fbb, Fcc, Faaa, Fbbb, Fccc, Faab, Fbbc, Fcca; | ||
244 | |||
245 | // projection integrals | ||
246 | dReal P1, Pa, Pb, Paa, Pab, Pbb, Paaa, Paab, Pabb, Pbbb; | ||
247 | |||
248 | dReal T0 = 0; | ||
249 | dReal T1[3] = {0., 0., 0.}; | ||
250 | dReal T2[3] = {0., 0., 0.}; | ||
251 | dReal TP[3] = {0., 0., 0.}; | ||
252 | |||
253 | for( i = 0; i < triangles; i++ ) | ||
254 | { | ||
255 | dVector3 v0, v1, v2; | ||
256 | dGeomTriMeshGetTriangle( g, i, &v0, &v1, &v2); | ||
257 | |||
258 | dVector3 n, a, b; | ||
259 | dOP( a, -, v1, v0 ); | ||
260 | dOP( b, -, v2, v0 ); | ||
261 | dCROSS( n, =, b, a ); | ||
262 | nx = fabs(n[0]); | ||
263 | ny = fabs(n[1]); | ||
264 | nz = fabs(n[2]); | ||
265 | |||
266 | if( nx > ny && nx > nz ) | ||
267 | C = 0; | ||
268 | else | ||
269 | C = (ny > nz) ? 1 : 2; | ||
270 | |||
271 | A = (C + 1) % 3; | ||
272 | B = (A + 1) % 3; | ||
273 | |||
274 | // calculate face integrals | ||
275 | { | ||
276 | dReal w; | ||
277 | dReal k1, k2, k3, k4; | ||
278 | |||
279 | //compProjectionIntegrals(f); | ||
280 | { | ||
281 | dReal a0, a1, da; | ||
282 | dReal b0, b1, db; | ||
283 | dReal a0_2, a0_3, a0_4, b0_2, b0_3, b0_4; | ||
284 | dReal a1_2, a1_3, b1_2, b1_3; | ||
285 | dReal C1, Ca, Caa, Caaa, Cb, Cbb, Cbbb; | ||
286 | dReal Cab, Kab, Caab, Kaab, Cabb, Kabb; | ||
287 | |||
288 | P1 = Pa = Pb = Paa = Pab = Pbb = Paaa = Paab = Pabb = Pbbb = 0.0; | ||
289 | |||
290 | for( int j = 0; j < 3; j++) | ||
291 | { | ||
292 | switch(j) | ||
293 | { | ||
294 | case 0: | ||
295 | a0 = v0[A]; | ||
296 | b0 = v0[B]; | ||
297 | a1 = v1[A]; | ||
298 | b1 = v1[B]; | ||
299 | break; | ||
300 | case 1: | ||
301 | a0 = v1[A]; | ||
302 | b0 = v1[B]; | ||
303 | a1 = v2[A]; | ||
304 | b1 = v2[B]; | ||
305 | break; | ||
306 | case 2: | ||
307 | a0 = v2[A]; | ||
308 | b0 = v2[B]; | ||
309 | a1 = v0[A]; | ||
310 | b1 = v0[B]; | ||
311 | break; | ||
312 | } | ||
313 | da = a1 - a0; | ||
314 | db = b1 - b0; | ||
315 | a0_2 = a0 * a0; a0_3 = a0_2 * a0; a0_4 = a0_3 * a0; | ||
316 | b0_2 = b0 * b0; b0_3 = b0_2 * b0; b0_4 = b0_3 * b0; | ||
317 | a1_2 = a1 * a1; a1_3 = a1_2 * a1; | ||
318 | b1_2 = b1 * b1; b1_3 = b1_2 * b1; | ||
319 | |||
320 | C1 = a1 + a0; | ||
321 | Ca = a1*C1 + a0_2; Caa = a1*Ca + a0_3; Caaa = a1*Caa + a0_4; | ||
322 | Cb = b1*(b1 + b0) + b0_2; Cbb = b1*Cb + b0_3; Cbbb = b1*Cbb + b0_4; | ||
323 | Cab = 3*a1_2 + 2*a1*a0 + a0_2; Kab = a1_2 + 2*a1*a0 + 3*a0_2; | ||
324 | Caab = a0*Cab + 4*a1_3; Kaab = a1*Kab + 4*a0_3; | ||
325 | Cabb = 4*b1_3 + 3*b1_2*b0 + 2*b1*b0_2 + b0_3; | ||
326 | Kabb = b1_3 + 2*b1_2*b0 + 3*b1*b0_2 + 4*b0_3; | ||
327 | |||
328 | P1 += db*C1; | ||
329 | Pa += db*Ca; | ||
330 | Paa += db*Caa; | ||
331 | Paaa += db*Caaa; | ||
332 | Pb += da*Cb; | ||
333 | Pbb += da*Cbb; | ||
334 | Pbbb += da*Cbbb; | ||
335 | Pab += db*(b1*Cab + b0*Kab); | ||
336 | Paab += db*(b1*Caab + b0*Kaab); | ||
337 | Pabb += da*(a1*Cabb + a0*Kabb); | ||
338 | } | ||
339 | |||
340 | P1 /= 2.0; | ||
341 | Pa /= 6.0; | ||
342 | Paa /= 12.0; | ||
343 | Paaa /= 20.0; | ||
344 | Pb /= -6.0; | ||
345 | Pbb /= -12.0; | ||
346 | Pbbb /= -20.0; | ||
347 | Pab /= 24.0; | ||
348 | Paab /= 60.0; | ||
349 | Pabb /= -60.0; | ||
350 | } | ||
351 | |||
352 | w = - dDOT(n, v0); | ||
353 | |||
354 | k1 = 1 / n[C]; k2 = k1 * k1; k3 = k2 * k1; k4 = k3 * k1; | ||
355 | |||
356 | Fa = k1 * Pa; | ||
357 | Fb = k1 * Pb; | ||
358 | Fc = -k2 * (n[A]*Pa + n[B]*Pb + w*P1); | ||
359 | |||
360 | Faa = k1 * Paa; | ||
361 | Fbb = k1 * Pbb; | ||
362 | Fcc = k3 * (SQR(n[A])*Paa + 2*n[A]*n[B]*Pab + SQR(n[B])*Pbb + | ||
363 | w*(2*(n[A]*Pa + n[B]*Pb) + w*P1)); | ||
364 | |||
365 | Faaa = k1 * Paaa; | ||
366 | Fbbb = k1 * Pbbb; | ||
367 | Fccc = -k4 * (CUBE(n[A])*Paaa + 3*SQR(n[A])*n[B]*Paab | ||
368 | + 3*n[A]*SQR(n[B])*Pabb + CUBE(n[B])*Pbbb | ||
369 | + 3*w*(SQR(n[A])*Paa + 2*n[A]*n[B]*Pab + SQR(n[B])*Pbb) | ||
370 | + w*w*(3*(n[A]*Pa + n[B]*Pb) + w*P1)); | ||
371 | |||
372 | Faab = k1 * Paab; | ||
373 | Fbbc = -k2 * (n[A]*Pabb + n[B]*Pbbb + w*Pbb); | ||
374 | Fcca = k3 * (SQR(n[A])*Paaa + 2*n[A]*n[B]*Paab + SQR(n[B])*Pabb | ||
375 | + w*(2*(n[A]*Paa + n[B]*Pab) + w*Pa)); | ||
376 | } | ||
377 | |||
378 | |||
379 | T0 += n[0] * ((A == 0) ? Fa : ((B == 0) ? Fb : Fc)); | ||
380 | |||
381 | T1[A] += n[A] * Faa; | ||
382 | T1[B] += n[B] * Fbb; | ||
383 | T1[C] += n[C] * Fcc; | ||
384 | T2[A] += n[A] * Faaa; | ||
385 | T2[B] += n[B] * Fbbb; | ||
386 | T2[C] += n[C] * Fccc; | ||
387 | TP[A] += n[A] * Faab; | ||
388 | TP[B] += n[B] * Fbbc; | ||
389 | TP[C] += n[C] * Fcca; | ||
390 | } | ||
391 | |||
392 | T1[0] /= 2; T1[1] /= 2; T1[2] /= 2; | ||
393 | T2[0] /= 3; T2[1] /= 3; T2[2] /= 3; | ||
394 | TP[0] /= 2; TP[1] /= 2; TP[2] /= 2; | ||
395 | |||
396 | m->mass = density * T0; | ||
397 | m->_I(0,0) = density * (T2[1] + T2[2]); | ||
398 | m->_I(1,1) = density * (T2[2] + T2[0]); | ||
399 | m->_I(2,2) = density * (T2[0] + T2[1]); | ||
400 | m->_I(0,1) = - density * TP[0]; | ||
401 | m->_I(1,0) = - density * TP[0]; | ||
402 | m->_I(2,1) = - density * TP[1]; | ||
403 | m->_I(1,2) = - density * TP[1]; | ||
404 | m->_I(2,0) = - density * TP[2]; | ||
405 | m->_I(0,2) = - density * TP[2]; | ||
406 | |||
407 | // Added to address SF bug 1729095 | ||
408 | dMassTranslate( m, T1[0] / T0, T1[1] / T0, T1[2] / T0 ); | ||
409 | |||
410 | # ifndef dNODEBUG | ||
411 | dMassCheck (m); | ||
412 | # endif | ||
413 | } | ||
414 | |||
415 | |||
416 | void dMassSetTrimeshTotal( dMass *m, dReal total_mass, dGeomID g) | ||
417 | { | ||
418 | dAASSERT( m ); | ||
419 | dUASSERT( g && g->type == dTriMeshClass, "argument not a trimesh" ); | ||
420 | dMassSetTrimesh( m, 1.0, g ); | ||
421 | dMassAdjust( m, total_mass ); | ||
422 | } | ||
423 | |||
424 | #endif // dTRIMESH_ENABLED | ||
425 | |||
426 | |||
427 | |||
428 | |||
429 | void dMassAdjust (dMass *m, dReal newmass) | ||
430 | { | ||
431 | dAASSERT (m); | ||
432 | dReal scale = newmass / m->mass; | ||
433 | m->mass = newmass; | ||
434 | for (int i=0; i<3; i++) for (int j=0; j<3; j++) m->_I(i,j) *= scale; | ||
435 | |||
436 | # ifndef dNODEBUG | ||
437 | dMassCheck (m); | ||
438 | # endif | ||
439 | } | ||
440 | |||
441 | |||
442 | void dMassTranslate (dMass *m, dReal x, dReal y, dReal z) | ||
443 | { | ||
444 | // if the body is translated by `a' relative to its point of reference, | ||
445 | // the new inertia about the point of reference is: | ||
446 | // | ||
447 | // I + mass*(crossmat(c)^2 - crossmat(c+a)^2) | ||
448 | // | ||
449 | // where c is the existing center of mass and I is the old inertia. | ||
450 | |||
451 | int i,j; | ||
452 | dMatrix3 ahat,chat,t1,t2; | ||
453 | dReal a[3]; | ||
454 | |||
455 | dAASSERT (m); | ||
456 | |||
457 | // adjust inertia matrix | ||
458 | dSetZero (chat,12); | ||
459 | dCROSSMAT (chat,m->c,4,+,-); | ||
460 | a[0] = x + m->c[0]; | ||
461 | a[1] = y + m->c[1]; | ||
462 | a[2] = z + m->c[2]; | ||
463 | dSetZero (ahat,12); | ||
464 | dCROSSMAT (ahat,a,4,+,-); | ||
465 | dMULTIPLY0_333 (t1,ahat,ahat); | ||
466 | dMULTIPLY0_333 (t2,chat,chat); | ||
467 | for (i=0; i<3; i++) for (j=0; j<3; j++) | ||
468 | m->_I(i,j) += m->mass * (t2[i*4+j]-t1[i*4+j]); | ||
469 | |||
470 | // ensure perfect symmetry | ||
471 | m->_I(1,0) = m->_I(0,1); | ||
472 | m->_I(2,0) = m->_I(0,2); | ||
473 | m->_I(2,1) = m->_I(1,2); | ||
474 | |||
475 | // adjust center of mass | ||
476 | m->c[0] += x; | ||
477 | m->c[1] += y; | ||
478 | m->c[2] += z; | ||
479 | |||
480 | # ifndef dNODEBUG | ||
481 | dMassCheck (m); | ||
482 | # endif | ||
483 | } | ||
484 | |||
485 | |||
486 | void dMassRotate (dMass *m, const dMatrix3 R) | ||
487 | { | ||
488 | // if the body is rotated by `R' relative to its point of reference, | ||
489 | // the new inertia about the point of reference is: | ||
490 | // | ||
491 | // R * I * R' | ||
492 | // | ||
493 | // where I is the old inertia. | ||
494 | |||
495 | dMatrix3 t1; | ||
496 | dReal t2[3]; | ||
497 | |||
498 | dAASSERT (m); | ||
499 | |||
500 | // rotate inertia matrix | ||
501 | dMULTIPLY2_333 (t1,m->I,R); | ||
502 | dMULTIPLY0_333 (m->I,R,t1); | ||
503 | |||
504 | // ensure perfect symmetry | ||
505 | m->_I(1,0) = m->_I(0,1); | ||
506 | m->_I(2,0) = m->_I(0,2); | ||
507 | m->_I(2,1) = m->_I(1,2); | ||
508 | |||
509 | // rotate center of mass | ||
510 | dMULTIPLY0_331 (t2,R,m->c); | ||
511 | m->c[0] = t2[0]; | ||
512 | m->c[1] = t2[1]; | ||
513 | m->c[2] = t2[2]; | ||
514 | |||
515 | # ifndef dNODEBUG | ||
516 | dMassCheck (m); | ||
517 | # endif | ||
518 | } | ||
519 | |||
520 | |||
521 | void dMassAdd (dMass *a, const dMass *b) | ||
522 | { | ||
523 | int i; | ||
524 | dAASSERT (a && b); | ||
525 | dReal denom = dRecip (a->mass + b->mass); | ||
526 | for (i=0; i<3; i++) a->c[i] = (a->c[i]*a->mass + b->c[i]*b->mass)*denom; | ||
527 | a->mass += b->mass; | ||
528 | for (i=0; i<12; i++) a->I[i] += b->I[i]; | ||
529 | } | ||