aboutsummaryrefslogtreecommitdiffstatshomepage
path: root/libraries/ode-0.9/include/ode/odemath.h
diff options
context:
space:
mode:
authordan miller2007-10-19 05:20:07 +0000
committerdan miller2007-10-19 05:20:07 +0000
commitfca74b0bf0a0833f5701e9c0de7b3bc15b2233dd (patch)
tree51bcae7a1b8381a6bf6fd8025a7de1e30fe0045d /libraries/ode-0.9/include/ode/odemath.h
parentresubmitting ode (diff)
downloadopensim-SC-fca74b0bf0a0833f5701e9c0de7b3bc15b2233dd.zip
opensim-SC-fca74b0bf0a0833f5701e9c0de7b3bc15b2233dd.tar.gz
opensim-SC-fca74b0bf0a0833f5701e9c0de7b3bc15b2233dd.tar.bz2
opensim-SC-fca74b0bf0a0833f5701e9c0de7b3bc15b2233dd.tar.xz
dont ask
Diffstat (limited to 'libraries/ode-0.9/include/ode/odemath.h')
-rw-r--r--libraries/ode-0.9/include/ode/odemath.h330
1 files changed, 0 insertions, 330 deletions
diff --git a/libraries/ode-0.9/include/ode/odemath.h b/libraries/ode-0.9/include/ode/odemath.h
deleted file mode 100644
index f8fa3c7..0000000
--- a/libraries/ode-0.9/include/ode/odemath.h
+++ /dev/null
@@ -1,330 +0,0 @@
1/*************************************************************************
2 * *
3 * Open Dynamics Engine, Copyright (C) 2001,2002 Russell L. Smith. *
4 * All rights reserved. Email: russ@q12.org Web: www.q12.org *
5 * *
6 * This library is free software; you can redistribute it and/or *
7 * modify it under the terms of EITHER: *
8 * (1) The GNU Lesser General Public License as published by the Free *
9 * Software Foundation; either version 2.1 of the License, or (at *
10 * your option) any later version. The text of the GNU Lesser *
11 * General Public License is included with this library in the *
12 * file LICENSE.TXT. *
13 * (2) The BSD-style license that is included with this library in *
14 * the file LICENSE-BSD.TXT. *
15 * *
16 * This library is distributed in the hope that it will be useful, *
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the files *
19 * LICENSE.TXT and LICENSE-BSD.TXT for more details. *
20 * *
21 *************************************************************************/
22
23#ifndef _ODE_ODEMATH_H_
24#define _ODE_ODEMATH_H_
25
26#include <ode/common.h>
27
28#ifdef __GNUC__
29#define PURE_INLINE extern inline
30#else
31#define PURE_INLINE inline
32#endif
33
34/*
35 * macro to access elements i,j in an NxM matrix A, independent of the
36 * matrix storage convention.
37 */
38#define dACCESS33(A,i,j) ((A)[(i)*4+(j)])
39
40/*
41 * Macro to test for valid floating point values
42 */
43#define dVALIDVEC3(v) (!(dIsNan(v[0]) || dIsNan(v[1]) || dIsNan(v[2])))
44#define dVALIDVEC4(v) (!(dIsNan(v[0]) || dIsNan(v[1]) || dIsNan(v[2]) || dIsNan(v[3])))
45#define dVALIDMAT3(m) (!(dIsNan(m[0]) || dIsNan(m[1]) || dIsNan(m[2]) || dIsNan(m[3]) || dIsNan(m[4]) || dIsNan(m[5]) || dIsNan(m[6]) || dIsNan(m[7]) || dIsNan(m[8]) || dIsNan(m[9]) || dIsNan(m[10]) || dIsNan(m[11])))
46#define dVALIDMAT4(m) (!(dIsNan(m[0]) || dIsNan(m[1]) || dIsNan(m[2]) || dIsNan(m[3]) || dIsNan(m[4]) || dIsNan(m[5]) || dIsNan(m[6]) || dIsNan(m[7]) || dIsNan(m[8]) || dIsNan(m[9]) || dIsNan(m[10]) || dIsNan(m[11]) || dIsNan(m[12]) || dIsNan(m[13]) || dIsNan(m[14]) || dIsNan(m[15]) ))
47
48
49
50/*
51 * General purpose vector operations with other vectors or constants.
52 */
53
54#define dOP(a,op,b,c) \
55 (a)[0] = ((b)[0]) op ((c)[0]); \
56 (a)[1] = ((b)[1]) op ((c)[1]); \
57 (a)[2] = ((b)[2]) op ((c)[2]);
58#define dOPC(a,op,b,c) \
59 (a)[0] = ((b)[0]) op (c); \
60 (a)[1] = ((b)[1]) op (c); \
61 (a)[2] = ((b)[2]) op (c);
62#define dOPE(a,op,b) \
63 (a)[0] op ((b)[0]); \
64 (a)[1] op ((b)[1]); \
65 (a)[2] op ((b)[2]);
66#define dOPEC(a,op,c) \
67 (a)[0] op (c); \
68 (a)[1] op (c); \
69 (a)[2] op (c);
70
71
72/*
73 * Length, and squared length helpers. dLENGTH returns the length of a dVector3.
74 * dLENGTHSQUARED return the squared length of a dVector3.
75 */
76
77#define dLENGTHSQUARED(a) (((a)[0])*((a)[0]) + ((a)[1])*((a)[1]) + ((a)[2])*((a)[2]))
78
79#ifdef __cplusplus
80
81PURE_INLINE dReal dLENGTH (const dReal *a) { return dSqrt(dLENGTHSQUARED(a)); }
82
83#else
84
85#define dLENGTH(a) ( dSqrt( ((a)[0])*((a)[0]) + ((a)[1])*((a)[1]) + ((a)[2])*((a)[2]) ) )
86
87#endif /* __cplusplus */
88
89
90
91
92
93/*
94 * 3-way dot product. dDOTpq means that elements of `a' and `b' are spaced
95 * p and q indexes apart respectively. dDOT() means dDOT11.
96 * in C++ we could use function templates to get all the versions of these
97 * functions - but on some compilers this will result in sub-optimal code.
98 */
99
100#define dDOTpq(a,b,p,q) ((a)[0]*(b)[0] + (a)[p]*(b)[q] + (a)[2*(p)]*(b)[2*(q)])
101
102#ifdef __cplusplus
103
104PURE_INLINE dReal dDOT (const dReal *a, const dReal *b) { return dDOTpq(a,b,1,1); }
105PURE_INLINE dReal dDOT13 (const dReal *a, const dReal *b) { return dDOTpq(a,b,1,3); }
106PURE_INLINE dReal dDOT31 (const dReal *a, const dReal *b) { return dDOTpq(a,b,3,1); }
107PURE_INLINE dReal dDOT33 (const dReal *a, const dReal *b) { return dDOTpq(a,b,3,3); }
108PURE_INLINE dReal dDOT14 (const dReal *a, const dReal *b) { return dDOTpq(a,b,1,4); }
109PURE_INLINE dReal dDOT41 (const dReal *a, const dReal *b) { return dDOTpq(a,b,4,1); }
110PURE_INLINE dReal dDOT44 (const dReal *a, const dReal *b) { return dDOTpq(a,b,4,4); }
111
112#else
113
114#define dDOT(a,b) dDOTpq(a,b,1,1)
115#define dDOT13(a,b) dDOTpq(a,b,1,3)
116#define dDOT31(a,b) dDOTpq(a,b,3,1)
117#define dDOT33(a,b) dDOTpq(a,b,3,3)
118#define dDOT14(a,b) dDOTpq(a,b,1,4)
119#define dDOT41(a,b) dDOTpq(a,b,4,1)
120#define dDOT44(a,b) dDOTpq(a,b,4,4)
121
122#endif /* __cplusplus */
123
124
125/*
126 * cross product, set a = b x c. dCROSSpqr means that elements of `a', `b'
127 * and `c' are spaced p, q and r indexes apart respectively.
128 * dCROSS() means dCROSS111. `op' is normally `=', but you can set it to
129 * +=, -= etc to get other effects.
130 */
131
132#define dCROSS(a,op,b,c) \
133do { \
134 (a)[0] op ((b)[1]*(c)[2] - (b)[2]*(c)[1]); \
135 (a)[1] op ((b)[2]*(c)[0] - (b)[0]*(c)[2]); \
136 (a)[2] op ((b)[0]*(c)[1] - (b)[1]*(c)[0]); \
137} while(0)
138#define dCROSSpqr(a,op,b,c,p,q,r) \
139do { \
140 (a)[ 0] op ((b)[ q]*(c)[2*r] - (b)[2*q]*(c)[ r]); \
141 (a)[ p] op ((b)[2*q]*(c)[ 0] - (b)[ 0]*(c)[2*r]); \
142 (a)[2*p] op ((b)[ 0]*(c)[ r] - (b)[ q]*(c)[ 0]); \
143} while(0)
144#define dCROSS114(a,op,b,c) dCROSSpqr(a,op,b,c,1,1,4)
145#define dCROSS141(a,op,b,c) dCROSSpqr(a,op,b,c,1,4,1)
146#define dCROSS144(a,op,b,c) dCROSSpqr(a,op,b,c,1,4,4)
147#define dCROSS411(a,op,b,c) dCROSSpqr(a,op,b,c,4,1,1)
148#define dCROSS414(a,op,b,c) dCROSSpqr(a,op,b,c,4,1,4)
149#define dCROSS441(a,op,b,c) dCROSSpqr(a,op,b,c,4,4,1)
150#define dCROSS444(a,op,b,c) dCROSSpqr(a,op,b,c,4,4,4)
151
152
153/*
154 * set a 3x3 submatrix of A to a matrix such that submatrix(A)*b = a x b.
155 * A is stored by rows, and has `skip' elements per row. the matrix is
156 * assumed to be already zero, so this does not write zero elements!
157 * if (plus,minus) is (+,-) then a positive version will be written.
158 * if (plus,minus) is (-,+) then a negative version will be written.
159 */
160
161#define dCROSSMAT(A,a,skip,plus,minus) \
162do { \
163 (A)[1] = minus (a)[2]; \
164 (A)[2] = plus (a)[1]; \
165 (A)[(skip)+0] = plus (a)[2]; \
166 (A)[(skip)+2] = minus (a)[0]; \
167 (A)[2*(skip)+0] = minus (a)[1]; \
168 (A)[2*(skip)+1] = plus (a)[0]; \
169} while(0)
170
171
172/*
173 * compute the distance between two 3D-vectors
174 */
175
176#ifdef __cplusplus
177PURE_INLINE dReal dDISTANCE (const dVector3 a, const dVector3 b)
178 { return dSqrt( (a[0]-b[0])*(a[0]-b[0]) + (a[1]-b[1])*(a[1]-b[1]) + (a[2]-b[2])*(a[2]-b[2]) ); }
179#else
180#define dDISTANCE(a,b) \
181 (dSqrt( ((a)[0]-(b)[0])*((a)[0]-(b)[0]) + ((a)[1]-(b)[1])*((a)[1]-(b)[1]) + ((a)[2]-(b)[2])*((a)[2]-(b)[2]) ))
182#endif
183
184
185/*
186 * special case matrix multipication, with operator selection
187 */
188
189#define dMULTIPLYOP0_331(A,op,B,C) \
190do { \
191 (A)[0] op dDOT((B),(C)); \
192 (A)[1] op dDOT((B+4),(C)); \
193 (A)[2] op dDOT((B+8),(C)); \
194} while(0)
195#define dMULTIPLYOP1_331(A,op,B,C) \
196do { \
197 (A)[0] op dDOT41((B),(C)); \
198 (A)[1] op dDOT41((B+1),(C)); \
199 (A)[2] op dDOT41((B+2),(C)); \
200} while(0)
201#define dMULTIPLYOP0_133(A,op,B,C) \
202do { \
203 (A)[0] op dDOT14((B),(C)); \
204 (A)[1] op dDOT14((B),(C+1)); \
205 (A)[2] op dDOT14((B),(C+2)); \
206} while(0)
207#define dMULTIPLYOP0_333(A,op,B,C) \
208do { \
209 (A)[0] op dDOT14((B),(C)); \
210 (A)[1] op dDOT14((B),(C+1)); \
211 (A)[2] op dDOT14((B),(C+2)); \
212 (A)[4] op dDOT14((B+4),(C)); \
213 (A)[5] op dDOT14((B+4),(C+1)); \
214 (A)[6] op dDOT14((B+4),(C+2)); \
215 (A)[8] op dDOT14((B+8),(C)); \
216 (A)[9] op dDOT14((B+8),(C+1)); \
217 (A)[10] op dDOT14((B+8),(C+2)); \
218} while(0)
219#define dMULTIPLYOP1_333(A,op,B,C) \
220do { \
221 (A)[0] op dDOT44((B),(C)); \
222 (A)[1] op dDOT44((B),(C+1)); \
223 (A)[2] op dDOT44((B),(C+2)); \
224 (A)[4] op dDOT44((B+1),(C)); \
225 (A)[5] op dDOT44((B+1),(C+1)); \
226 (A)[6] op dDOT44((B+1),(C+2)); \
227 (A)[8] op dDOT44((B+2),(C)); \
228 (A)[9] op dDOT44((B+2),(C+1)); \
229 (A)[10] op dDOT44((B+2),(C+2)); \
230} while(0)
231#define dMULTIPLYOP2_333(A,op,B,C) \
232do { \
233 (A)[0] op dDOT((B),(C)); \
234 (A)[1] op dDOT((B),(C+4)); \
235 (A)[2] op dDOT((B),(C+8)); \
236 (A)[4] op dDOT((B+4),(C)); \
237 (A)[5] op dDOT((B+4),(C+4)); \
238 (A)[6] op dDOT((B+4),(C+8)); \
239 (A)[8] op dDOT((B+8),(C)); \
240 (A)[9] op dDOT((B+8),(C+4)); \
241 (A)[10] op dDOT((B+8),(C+8)); \
242} while(0)
243
244#ifdef __cplusplus
245
246#define DECL template <class TA, class TB, class TC> PURE_INLINE void
247
248DECL dMULTIPLY0_331(TA *A, const TB *B, const TC *C) { dMULTIPLYOP0_331(A,=,B,C); }
249DECL dMULTIPLY1_331(TA *A, const TB *B, const TC *C) { dMULTIPLYOP1_331(A,=,B,C); }
250DECL dMULTIPLY0_133(TA *A, const TB *B, const TC *C) { dMULTIPLYOP0_133(A,=,B,C); }
251DECL dMULTIPLY0_333(TA *A, const TB *B, const TC *C) { dMULTIPLYOP0_333(A,=,B,C); }
252DECL dMULTIPLY1_333(TA *A, const TB *B, const TC *C) { dMULTIPLYOP1_333(A,=,B,C); }
253DECL dMULTIPLY2_333(TA *A, const TB *B, const TC *C) { dMULTIPLYOP2_333(A,=,B,C); }
254
255DECL dMULTIPLYADD0_331(TA *A, const TB *B, const TC *C) { dMULTIPLYOP0_331(A,+=,B,C); }
256DECL dMULTIPLYADD1_331(TA *A, const TB *B, const TC *C) { dMULTIPLYOP1_331(A,+=,B,C); }
257DECL dMULTIPLYADD0_133(TA *A, const TB *B, const TC *C) { dMULTIPLYOP0_133(A,+=,B,C); }
258DECL dMULTIPLYADD0_333(TA *A, const TB *B, const TC *C) { dMULTIPLYOP0_333(A,+=,B,C); }
259DECL dMULTIPLYADD1_333(TA *A, const TB *B, const TC *C) { dMULTIPLYOP1_333(A,+=,B,C); }
260DECL dMULTIPLYADD2_333(TA *A, const TB *B, const TC *C) { dMULTIPLYOP2_333(A,+=,B,C); }
261
262#undef DECL
263
264#else
265
266#define dMULTIPLY0_331(A,B,C) dMULTIPLYOP0_331(A,=,B,C)
267#define dMULTIPLY1_331(A,B,C) dMULTIPLYOP1_331(A,=,B,C)
268#define dMULTIPLY0_133(A,B,C) dMULTIPLYOP0_133(A,=,B,C)
269#define dMULTIPLY0_333(A,B,C) dMULTIPLYOP0_333(A,=,B,C)
270#define dMULTIPLY1_333(A,B,C) dMULTIPLYOP1_333(A,=,B,C)
271#define dMULTIPLY2_333(A,B,C) dMULTIPLYOP2_333(A,=,B,C)
272
273#define dMULTIPLYADD0_331(A,B,C) dMULTIPLYOP0_331(A,+=,B,C)
274#define dMULTIPLYADD1_331(A,B,C) dMULTIPLYOP1_331(A,+=,B,C)
275#define dMULTIPLYADD0_133(A,B,C) dMULTIPLYOP0_133(A,+=,B,C)
276#define dMULTIPLYADD0_333(A,B,C) dMULTIPLYOP0_333(A,+=,B,C)
277#define dMULTIPLYADD1_333(A,B,C) dMULTIPLYOP1_333(A,+=,B,C)
278#define dMULTIPLYADD2_333(A,B,C) dMULTIPLYOP2_333(A,+=,B,C)
279
280#endif
281
282
283#ifdef __cplusplus
284extern "C" {
285#endif
286
287/*
288 * normalize 3x1 and 4x1 vectors (i.e. scale them to unit length)
289 */
290ODE_API int dSafeNormalize3 (dVector3 a);
291ODE_API int dSafeNormalize4 (dVector4 a);
292
293// For some reason demo_chain1.c does not understand "inline" keyword.
294static __inline void _dNormalize3(dVector3 a)
295{
296 int bNormalizationResult = dSafeNormalize3(a);
297 dIASSERT(bNormalizationResult);
298 dVARIABLEUSED(bNormalizationResult);
299}
300
301static __inline void _dNormalize4(dVector4 a)
302{
303 int bNormalizationResult = dSafeNormalize4(a);
304 dIASSERT(bNormalizationResult);
305 dVARIABLEUSED(bNormalizationResult);
306}
307
308// For DLL export
309ODE_API void dNormalize3 (dVector3 a); // Potentially asserts on zero vec
310ODE_API void dNormalize4 (dVector4 a); // Potentially asserts on zero vec
311
312// For internal use
313#define dNormalize3(a) _dNormalize3(a)
314#define dNormalize4(a) _dNormalize4(a)
315
316/*
317 * given a unit length "normal" vector n, generate vectors p and q vectors
318 * that are an orthonormal basis for the plane space perpendicular to n.
319 * i.e. this makes p,q such that n,p,q are all perpendicular to each other.
320 * q will equal n x p. if n is not unit length then p will be unit length but
321 * q wont be.
322 */
323
324ODE_API void dPlaneSpace (const dVector3 n, dVector3 p, dVector3 q);
325
326#ifdef __cplusplus
327}
328#endif
329
330#endif