diff options
author | dan miller | 2007-10-19 05:24:38 +0000 |
---|---|---|
committer | dan miller | 2007-10-19 05:24:38 +0000 |
commit | f205de7847da7ae1c10212d82e7042d0100b4ce0 (patch) | |
tree | 9acc9608a6880502aaeda43af52c33e278e95b9c /libraries/ode-0.9/contrib/BreakableJoints | |
parent | trying to fix my screwup part deux (diff) | |
download | opensim-SC-f205de7847da7ae1c10212d82e7042d0100b4ce0.zip opensim-SC-f205de7847da7ae1c10212d82e7042d0100b4ce0.tar.gz opensim-SC-f205de7847da7ae1c10212d82e7042d0100b4ce0.tar.bz2 opensim-SC-f205de7847da7ae1c10212d82e7042d0100b4ce0.tar.xz |
from the start... checking in ode-0.9
Diffstat (limited to '')
18 files changed, 8830 insertions, 0 deletions
diff --git a/libraries/ode-0.9/contrib/BreakableJoints/README.txt b/libraries/ode-0.9/contrib/BreakableJoints/README.txt new file mode 100644 index 0000000..e996816 --- /dev/null +++ b/libraries/ode-0.9/contrib/BreakableJoints/README.txt | |||
@@ -0,0 +1,110 @@ | |||
1 | Breakable Joints | ||
2 | |||
3 | ================================================================================ | ||
4 | |||
5 | Description: | ||
6 | This is a small addition to ODE that makes joints breakable. Breakable means | ||
7 | that if a force on a joint is to high it wil break. I have included a modified | ||
8 | version of test_buggy.cpp (test_breakable.cpp) so you can see it for your self. | ||
9 | Just drive your buggy into an obstacle and enjoy! | ||
10 | |||
11 | ================================================================================ | ||
12 | |||
13 | Installation instructions: | ||
14 | - copy joint.h, joint.cpp, ode.cpp and step.cpp to the ode/src/ directory | ||
15 | - copy common.h and object.h to the include/ directory | ||
16 | - copy test_breakable.cpp to the ode/test/ directory | ||
17 | - add test_breakable.cpp to the ODE_TEST_SRC_CPP object in the makefile. | ||
18 | - make ode-lib | ||
19 | - make ode-test | ||
20 | You can also use the diffs. The above files will quickly go out of sync with the | ||
21 | rest of ODE but the diffs wil remain valid longer. | ||
22 | |||
23 | ================================================================================ | ||
24 | |||
25 | Functions: | ||
26 | dJointSetBreakable (dJointID joint, int b) | ||
27 | If b is 1 the joint is made breakable. If b is 0 the joint is made | ||
28 | unbreakable. | ||
29 | |||
30 | void dJointSetBreakCallback (dJointID joint, dJointBreakCallback *callbackFunc) | ||
31 | Sets the callback function for this joint. If a funtion is set it will be | ||
32 | called if the joint is broken but before it is actually detached or deleted. | ||
33 | |||
34 | void dJointSetBreakMode (dJointID joint, int mode) | ||
35 | Use this functions to set some flags. These flags can be ORred ( | ) | ||
36 | together; ie. dJointSetBreakMode (someJoint, | ||
37 | dJOINT_BREAK_AT_B1_FORCE|dJOINT_DELETE_ON_BREAK) | ||
38 | dJOINT_DELETE_ON_BREAK - If the joint breaks it wil be deleted. | ||
39 | dJOINT_BREAK_AT_B1_FORCE - If the force on body 1 is to high the joint will | ||
40 | break | ||
41 | dJOINT_BREAK_AT_B1_TORQUE - If the torque on body 1 is to high the joint will | ||
42 | break | ||
43 | dJOINT_BREAK_AT_B2_FORCE - If the force on body 2 is to high the joint will | ||
44 | break | ||
45 | dJOINT_BREAK_AT_B2_TORQUE - If the torque on body 2 is to high the joint will | ||
46 | break | ||
47 | |||
48 | void dJointSetBreakForce (dJointID joint, int body, dReal x, dReal y, dReal z) | ||
49 | With this function you can set the maximum force for a body connected to this | ||
50 | joint. A value of 0 for body means body 1, 1 means body 2. The force is | ||
51 | relative to the bodies rotation. | ||
52 | |||
53 | void dJointSetBreakTorque (dJointID joint, int body, dReal x, dReal y, dReal z) | ||
54 | With this function you can set the maximum torque for a body connected to this | ||
55 | joint. A value of 0 for body means body 1, 1 means body 2. The torque is | ||
56 | relative to the bodies rotation. | ||
57 | |||
58 | int dJointIsBreakable (dJointID joint) | ||
59 | Returns 1 if this joint is breakable, 0 otherwise. | ||
60 | |||
61 | int dJointGetBreakMode (dJointID joint) | ||
62 | Returns the breakmode flag. | ||
63 | |||
64 | void dJointGetBreakForce (dJointID joint, int body, dReal *force) | ||
65 | Returns the force at what this joint will break. A value of 0 for body means | ||
66 | body 1, 1 means body 2. force must have enough space for 3 dReal values. | ||
67 | |||
68 | void dJointGetBreakTorque (dJointID joint, int body, dReal *torque) | ||
69 | Returns the torque at what this joint will break. A value of 0 for body | ||
70 | means body 1, 1 means body 2. force must have enough space for 3 dReal | ||
71 | values. | ||
72 | |||
73 | ================================================================================ | ||
74 | |||
75 | The callback function is defined like this (in common.h): | ||
76 | void dJointBreakCallback (dJointID); | ||
77 | |||
78 | ================================================================================ | ||
79 | |||
80 | Problems, known bugs & other issues: | ||
81 | - If the timestep is very small then joints get a lot weaker. They can even fall | ||
82 | apart! | ||
83 | - I have tested all this with the latest checkout from CVS (at the time of | ||
84 | writing ofcourse). I haven't tested it with earlier versions of ODE. | ||
85 | - I have modified the code that fills the jointfeedback struct. I haven't tested | ||
86 | if it still works. | ||
87 | - I'm not sure if the forces are really relative to the connected bodies. | ||
88 | - There are some memory leaks in the test_breakable.cpp example. | ||
89 | |||
90 | ================================================================================ | ||
91 | |||
92 | Bugfixes and changes: | ||
93 | 09/08/2003 | ||
94 | - I fixed a bug when there where 0 joints in the simulation | ||
95 | |||
96 | 06/12/2003 | ||
97 | - dJointGetBreakMode() added, by vadim_mcagon@hotmail.com | ||
98 | |||
99 | 11/03/2004 | ||
100 | - Updated files to work with latest CVS checkout. | ||
101 | - Added support for dWorldStepFast1() | ||
102 | - Added separate test_breakable.cpp example. | ||
103 | - Updated the code that breaks and destroys a joint. | ||
104 | |||
105 | ================================================================================ | ||
106 | |||
107 | Send me an e-mail if you have any suggestions, ideas, bugs, bug-fixes, anything! | ||
108 | e-mail: roelvandijk@home.nl | ||
109 | |||
110 | Roel van Dijk - 11/03/2004 | ||
diff --git a/libraries/ode-0.9/contrib/BreakableJoints/common.h b/libraries/ode-0.9/contrib/BreakableJoints/common.h new file mode 100644 index 0000000..bc4272d --- /dev/null +++ b/libraries/ode-0.9/contrib/BreakableJoints/common.h | |||
@@ -0,0 +1,337 @@ | |||
1 | /************************************************************************* | ||
2 | * * | ||
3 | * Open Dynamics Engine, Copyright (C) 2001,2002 Russell L. Smith. * | ||
4 | * All rights reserved. Email: russ@q12.org Web: www.q12.org * | ||
5 | * * | ||
6 | * This library is free software; you can redistribute it and/or * | ||
7 | * modify it under the terms of EITHER: * | ||
8 | * (1) The GNU Lesser General Public License as published by the Free * | ||
9 | * Software Foundation; either version 2.1 of the License, or (at * | ||
10 | * your option) any later version. The text of the GNU Lesser * | ||
11 | * General Public License is included with this library in the * | ||
12 | * file LICENSE.TXT. * | ||
13 | * (2) The BSD-style license that is included with this library in * | ||
14 | * the file LICENSE-BSD.TXT. * | ||
15 | * * | ||
16 | * This library is distributed in the hope that it will be useful, * | ||
17 | * but WITHOUT ANY WARRANTY; without even the implied warranty of * | ||
18 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the files * | ||
19 | * LICENSE.TXT and LICENSE-BSD.TXT for more details. * | ||
20 | * * | ||
21 | *************************************************************************/ | ||
22 | |||
23 | #ifndef _ODE_COMMON_H_ | ||
24 | #define _ODE_COMMON_H_ | ||
25 | |||
26 | #include <ode/config.h> | ||
27 | #include <ode/error.h> | ||
28 | |||
29 | #ifdef __cplusplus | ||
30 | extern "C" { | ||
31 | #endif | ||
32 | |||
33 | |||
34 | /* configuration stuff */ | ||
35 | |||
36 | /* the efficient alignment. most platforms align data structures to some | ||
37 | * number of bytes, but this is not always the most efficient alignment. | ||
38 | * for example, many x86 compilers align to 4 bytes, but on a pentium it | ||
39 | * is important to align doubles to 8 byte boundaries (for speed), and | ||
40 | * the 4 floats in a SIMD register to 16 byte boundaries. many other | ||
41 | * platforms have similar behavior. setting a larger alignment can waste | ||
42 | * a (very) small amount of memory. NOTE: this number must be a power of | ||
43 | * two. this is set to 16 by default. | ||
44 | */ | ||
45 | #define EFFICIENT_ALIGNMENT 16 | ||
46 | |||
47 | |||
48 | /* constants */ | ||
49 | |||
50 | /* pi and 1/sqrt(2) are defined here if necessary because they don't get | ||
51 | * defined in <math.h> on some platforms (like MS-Windows) | ||
52 | */ | ||
53 | |||
54 | #ifndef M_PI | ||
55 | #define M_PI REAL(3.1415926535897932384626433832795029) | ||
56 | #endif | ||
57 | #ifndef M_SQRT1_2 | ||
58 | #define M_SQRT1_2 REAL(0.7071067811865475244008443621048490) | ||
59 | #endif | ||
60 | |||
61 | |||
62 | /* debugging: | ||
63 | * IASSERT is an internal assertion, i.e. a consistency check. if it fails | ||
64 | * we want to know where. | ||
65 | * UASSERT is a user assertion, i.e. if it fails a nice error message | ||
66 | * should be printed for the user. | ||
67 | * AASSERT is an arguments assertion, i.e. if it fails "bad argument(s)" | ||
68 | * is printed. | ||
69 | * DEBUGMSG just prints out a message | ||
70 | */ | ||
71 | |||
72 | #ifndef dNODEBUG | ||
73 | #ifdef __GNUC__ | ||
74 | #define dIASSERT(a) if (!(a)) dDebug (d_ERR_IASSERT, \ | ||
75 | "assertion \"" #a "\" failed in %s() [%s]",__FUNCTION__,__FILE__); | ||
76 | #define dUASSERT(a,msg) if (!(a)) dDebug (d_ERR_UASSERT, \ | ||
77 | msg " in %s()", __FUNCTION__); | ||
78 | #define dDEBUGMSG(msg) dMessage (d_ERR_UASSERT, \ | ||
79 | msg " in %s()", __FUNCTION__); | ||
80 | #else | ||
81 | #define dIASSERT(a) if (!(a)) dDebug (d_ERR_IASSERT, \ | ||
82 | "assertion \"" #a "\" failed in %s:%d",__FILE__,__LINE__); | ||
83 | #define dUASSERT(a,msg) if (!(a)) dDebug (d_ERR_UASSERT, \ | ||
84 | msg " (%s:%d)", __FILE__,__LINE__); | ||
85 | #define dDEBUGMSG(msg) dMessage (d_ERR_UASSERT, \ | ||
86 | msg " (%s:%d)", __FILE__,__LINE__); | ||
87 | #endif | ||
88 | #else | ||
89 | #define dIASSERT(a) ; | ||
90 | #define dUASSERT(a,msg) ; | ||
91 | #define dDEBUGMSG(msg) ; | ||
92 | #endif | ||
93 | #define dAASSERT(a) dUASSERT(a,"Bad argument(s)") | ||
94 | |||
95 | /* floating point data type, vector, matrix and quaternion types */ | ||
96 | |||
97 | #if defined(dSINGLE) | ||
98 | typedef float dReal; | ||
99 | #elif defined(dDOUBLE) | ||
100 | typedef double dReal; | ||
101 | #else | ||
102 | #error You must #define dSINGLE or dDOUBLE | ||
103 | #endif | ||
104 | |||
105 | |||
106 | /* round an integer up to a multiple of 4, except that 0 and 1 are unmodified | ||
107 | * (used to compute matrix leading dimensions) | ||
108 | */ | ||
109 | #define dPAD(a) (((a) > 1) ? ((((a)-1)|3)+1) : (a)) | ||
110 | |||
111 | /* these types are mainly just used in headers */ | ||
112 | typedef dReal dVector3[4]; | ||
113 | typedef dReal dVector4[4]; | ||
114 | typedef dReal dMatrix3[4*3]; | ||
115 | typedef dReal dMatrix4[4*4]; | ||
116 | typedef dReal dMatrix6[8*6]; | ||
117 | typedef dReal dQuaternion[4]; | ||
118 | |||
119 | |||
120 | /* precision dependent scalar math functions */ | ||
121 | |||
122 | #if defined(dSINGLE) | ||
123 | |||
124 | #define REAL(x) (x ## f) /* form a constant */ | ||
125 | #define dRecip(x) ((float)(1.0f/(x))) /* reciprocal */ | ||
126 | #define dSqrt(x) ((float)sqrt(x)) /* square root */ | ||
127 | #define dRecipSqrt(x) ((float)(1.0f/sqrt(x))) /* reciprocal square root */ | ||
128 | #define dSin(x) ((float)sin(x)) /* sine */ | ||
129 | #define dCos(x) ((float)cos(x)) /* cosine */ | ||
130 | #define dFabs(x) ((float)fabs(x)) /* absolute value */ | ||
131 | #define dAtan2(y,x) ((float)atan2((y),(x))) /* arc tangent with 2 args */ | ||
132 | |||
133 | #elif defined(dDOUBLE) | ||
134 | |||
135 | #define REAL(x) (x) | ||
136 | #define dRecip(x) (1.0/(x)) | ||
137 | #define dSqrt(x) sqrt(x) | ||
138 | #define dRecipSqrt(x) (1.0/sqrt(x)) | ||
139 | #define dSin(x) sin(x) | ||
140 | #define dCos(x) cos(x) | ||
141 | #define dFabs(x) fabs(x) | ||
142 | #define dAtan2(y,x) atan2((y),(x)) | ||
143 | |||
144 | #else | ||
145 | #error You must #define dSINGLE or dDOUBLE | ||
146 | #endif | ||
147 | |||
148 | |||
149 | /* utility */ | ||
150 | |||
151 | |||
152 | /* round something up to be a multiple of the EFFICIENT_ALIGNMENT */ | ||
153 | |||
154 | #define dEFFICIENT_SIZE(x) ((((x)-1)|(EFFICIENT_ALIGNMENT-1))+1) | ||
155 | |||
156 | |||
157 | /* alloca aligned to the EFFICIENT_ALIGNMENT. note that this can waste | ||
158 | * up to 15 bytes per allocation, depending on what alloca() returns. | ||
159 | */ | ||
160 | |||
161 | #define dALLOCA16(n) \ | ||
162 | ((char*)dEFFICIENT_SIZE(((int)(alloca((n)+(EFFICIENT_ALIGNMENT-1)))))) | ||
163 | |||
164 | |||
165 | /* internal object types (all prefixed with `dx') */ | ||
166 | |||
167 | struct dxWorld; /* dynamics world */ | ||
168 | struct dxSpace; /* collision space */ | ||
169 | struct dxBody; /* rigid body (dynamics object) */ | ||
170 | struct dxGeom; /* geometry (collision object) */ | ||
171 | struct dxJoint; | ||
172 | struct dxJointNode; | ||
173 | struct dxJointGroup; | ||
174 | |||
175 | typedef struct dxWorld *dWorldID; | ||
176 | typedef struct dxSpace *dSpaceID; | ||
177 | typedef struct dxBody *dBodyID; | ||
178 | typedef struct dxGeom *dGeomID; | ||
179 | typedef struct dxJoint *dJointID; | ||
180 | typedef struct dxJointGroup *dJointGroupID; | ||
181 | |||
182 | |||
183 | /* error numbers */ | ||
184 | |||
185 | enum { | ||
186 | d_ERR_UNKNOWN = 0, /* unknown error */ | ||
187 | d_ERR_IASSERT, /* internal assertion failed */ | ||
188 | d_ERR_UASSERT, /* user assertion failed */ | ||
189 | d_ERR_LCP /* user assertion failed */ | ||
190 | }; | ||
191 | |||
192 | |||
193 | /* joint type numbers */ | ||
194 | |||
195 | enum { | ||
196 | dJointTypeNone = 0, /* or "unknown" */ | ||
197 | dJointTypeBall, | ||
198 | dJointTypeHinge, | ||
199 | dJointTypeSlider, | ||
200 | dJointTypeContact, | ||
201 | dJointTypeUniversal, | ||
202 | dJointTypeHinge2, | ||
203 | dJointTypeFixed, | ||
204 | dJointTypeNull, | ||
205 | dJointTypeAMotor | ||
206 | }; | ||
207 | |||
208 | /******************** breakable joint contribution ***********************/ | ||
209 | /* joint break callback function */ | ||
210 | typedef void dJointBreakCallback (dJointID joint); | ||
211 | |||
212 | /* joint break modes */ | ||
213 | enum { | ||
214 | // if this flag is set, the joint wil break | ||
215 | dJOINT_BROKEN = 0x0001, | ||
216 | // if this flag is set, the joint wil be deleted when it breaks | ||
217 | dJOINT_DELETE_ON_BREAK = 0x0002, | ||
218 | // if this flag is set, the joint can break at a certain force on body 1 | ||
219 | dJOINT_BREAK_AT_B1_FORCE = 0x0004, | ||
220 | // if this flag is set, the joint can break at a certain torque on body 1 | ||
221 | dJOINT_BREAK_AT_B1_TORQUE = 0x0008, | ||
222 | // if this flag is set, the joint can break at a certain force on body 2 | ||
223 | dJOINT_BREAK_AT_B2_FORCE = 0x0010, | ||
224 | // if this flag is set, the joint can break at a certain torque on body 2 | ||
225 | dJOINT_BREAK_AT_B2_TORQUE = 0x0020 | ||
226 | }; | ||
227 | /*************************************************************************/ | ||
228 | |||
229 | /* an alternative way of setting joint parameters, using joint parameter | ||
230 | * structures and member constants. we don't actually do this yet. | ||
231 | */ | ||
232 | |||
233 | /* | ||
234 | typedef struct dLimot { | ||
235 | int mode; | ||
236 | dReal lostop, histop; | ||
237 | dReal vel, fmax; | ||
238 | dReal fudge_factor; | ||
239 | dReal bounce, soft; | ||
240 | dReal suspension_erp, suspension_cfm; | ||
241 | } dLimot; | ||
242 | |||
243 | enum { | ||
244 | dLimotLoStop = 0x0001, | ||
245 | dLimotHiStop = 0x0002, | ||
246 | dLimotVel = 0x0004, | ||
247 | dLimotFMax = 0x0008, | ||
248 | dLimotFudgeFactor = 0x0010, | ||
249 | dLimotBounce = 0x0020, | ||
250 | dLimotSoft = 0x0040 | ||
251 | }; | ||
252 | */ | ||
253 | |||
254 | |||
255 | /* standard joint parameter names. why are these here? - because we don't want | ||
256 | * to include all the joint function definitions in joint.cpp. hmmmm. | ||
257 | * MSVC complains if we call D_ALL_PARAM_NAMES_X with a blank second argument, | ||
258 | * which is why we have the D_ALL_PARAM_NAMES macro as well. please copy and | ||
259 | * paste between these two. | ||
260 | */ | ||
261 | |||
262 | #define D_ALL_PARAM_NAMES(start) \ | ||
263 | /* parameters for limits and motors */ \ | ||
264 | dParamLoStop = start, \ | ||
265 | dParamHiStop, \ | ||
266 | dParamVel, \ | ||
267 | dParamFMax, \ | ||
268 | dParamFudgeFactor, \ | ||
269 | dParamBounce, \ | ||
270 | dParamCFM, \ | ||
271 | dParamStopERP, \ | ||
272 | dParamStopCFM, \ | ||
273 | /* parameters for suspension */ \ | ||
274 | dParamSuspensionERP, \ | ||
275 | dParamSuspensionCFM, | ||
276 | |||
277 | #define D_ALL_PARAM_NAMES_X(start,x) \ | ||
278 | /* parameters for limits and motors */ \ | ||
279 | dParamLoStop ## x = start, \ | ||
280 | dParamHiStop ## x, \ | ||
281 | dParamVel ## x, \ | ||
282 | dParamFMax ## x, \ | ||
283 | dParamFudgeFactor ## x, \ | ||
284 | dParamBounce ## x, \ | ||
285 | dParamCFM ## x, \ | ||
286 | dParamStopERP ## x, \ | ||
287 | dParamStopCFM ## x, \ | ||
288 | /* parameters for suspension */ \ | ||
289 | dParamSuspensionERP ## x, \ | ||
290 | dParamSuspensionCFM ## x, | ||
291 | |||
292 | enum { | ||
293 | D_ALL_PARAM_NAMES(0) | ||
294 | D_ALL_PARAM_NAMES_X(0x100,2) | ||
295 | D_ALL_PARAM_NAMES_X(0x200,3) | ||
296 | |||
297 | /* add a multiple of this constant to the basic parameter numbers to get | ||
298 | * the parameters for the second, third etc axes. | ||
299 | */ | ||
300 | dParamGroup=0x100 | ||
301 | }; | ||
302 | |||
303 | |||
304 | /* angular motor mode numbers */ | ||
305 | |||
306 | enum{ | ||
307 | dAMotorUser = 0, | ||
308 | dAMotorEuler = 1 | ||
309 | }; | ||
310 | |||
311 | |||
312 | /* joint force feedback information */ | ||
313 | |||
314 | typedef struct dJointFeedback { | ||
315 | dVector3 f1; /* force applied to body 1 */ | ||
316 | dVector3 t1; /* torque applied to body 1 */ | ||
317 | dVector3 f2; /* force applied to body 2 */ | ||
318 | dVector3 t2; /* torque applied to body 2 */ | ||
319 | } dJointFeedback; | ||
320 | |||
321 | |||
322 | /* private functions that must be implemented by the collision library: | ||
323 | * (1) indicate that a geom has moved, (2) get the next geom in a body list. | ||
324 | * these functions are called whenever the position of geoms connected to a | ||
325 | * body have changed, e.g. with dBodySetPosition(), dBodySetRotation(), or | ||
326 | * when the ODE step function updates the body state. | ||
327 | */ | ||
328 | |||
329 | void dGeomMoved (dGeomID); | ||
330 | dGeomID dGeomGetBodyNext (dGeomID); | ||
331 | |||
332 | |||
333 | #ifdef __cplusplus | ||
334 | } | ||
335 | #endif | ||
336 | |||
337 | #endif | ||
diff --git a/libraries/ode-0.9/contrib/BreakableJoints/diff/common.h.diff b/libraries/ode-0.9/contrib/BreakableJoints/diff/common.h.diff new file mode 100644 index 0000000..24415a1 --- /dev/null +++ b/libraries/ode-0.9/contrib/BreakableJoints/diff/common.h.diff | |||
@@ -0,0 +1,21 @@ | |||
1 | 208,227d207 | ||
2 | < /******************** breakable joint contribution ***********************/ | ||
3 | < /* joint break callback function */ | ||
4 | < typedef void dJointBreakCallback (dJointID joint); | ||
5 | < | ||
6 | < /* joint break modes */ | ||
7 | < enum { | ||
8 | < // if this flag is set, the joint wil break | ||
9 | < dJOINT_BROKEN = 0x0001, | ||
10 | < // if this flag is set, the joint wil be deleted when it breaks | ||
11 | < dJOINT_DELETE_ON_BREAK = 0x0002, | ||
12 | < // if this flag is set, the joint can break at a certain force on body 1 | ||
13 | < dJOINT_BREAK_AT_B1_FORCE = 0x0004, | ||
14 | < // if this flag is set, the joint can break at a certain torque on body 1 | ||
15 | < dJOINT_BREAK_AT_B1_TORQUE = 0x0008, | ||
16 | < // if this flag is set, the joint can break at a certain force on body 2 | ||
17 | < dJOINT_BREAK_AT_B2_FORCE = 0x0010, | ||
18 | < // if this flag is set, the joint can break at a certain torque on body 2 | ||
19 | < dJOINT_BREAK_AT_B2_TORQUE = 0x0020 | ||
20 | < }; | ||
21 | < /*************************************************************************/ | ||
diff --git a/libraries/ode-0.9/contrib/BreakableJoints/diff/joint.cpp.diff b/libraries/ode-0.9/contrib/BreakableJoints/diff/joint.cpp.diff new file mode 100644 index 0000000..80397f0 --- /dev/null +++ b/libraries/ode-0.9/contrib/BreakableJoints/diff/joint.cpp.diff | |||
@@ -0,0 +1,148 @@ | |||
1 | 2659,2804d2658 | ||
2 | < | ||
3 | < /******************** breakable joint contribution ***********************/ | ||
4 | < extern "C" void dJointSetBreakable (dxJoint *joint, int b) { | ||
5 | < dAASSERT(joint); | ||
6 | < if (b) { | ||
7 | < // we want this joint to be breakable but we must first check if it | ||
8 | < // was already breakable | ||
9 | < if (!joint->breakInfo) { | ||
10 | < // allocate a dxJointBreakInfo struct | ||
11 | < joint->breakInfo = new dxJointBreakInfo; | ||
12 | < joint->breakInfo->flags = 0; | ||
13 | < for (int i = 0; i < 3; i++) { | ||
14 | < joint->breakInfo->b1MaxF[0] = 0; | ||
15 | < joint->breakInfo->b1MaxT[0] = 0; | ||
16 | < joint->breakInfo->b2MaxF[0] = 0; | ||
17 | < joint->breakInfo->b2MaxT[0] = 0; | ||
18 | < } | ||
19 | < joint->breakInfo->callback = 0; | ||
20 | < } | ||
21 | < else { | ||
22 | < // the joint was already breakable | ||
23 | < return; | ||
24 | < } | ||
25 | < } | ||
26 | < else { | ||
27 | < // we want this joint to be unbreakable mut we must first check if | ||
28 | < // it is alreay unbreakable | ||
29 | < if (joint->breakInfo) { | ||
30 | < // deallocate the dxJointBreakInfo struct | ||
31 | < delete joint->breakInfo; | ||
32 | < joint->breakInfo = 0; | ||
33 | < } | ||
34 | < else { | ||
35 | < // the joint was already unbreakable | ||
36 | < return; | ||
37 | < } | ||
38 | < } | ||
39 | < } | ||
40 | < | ||
41 | < extern "C" void dJointSetBreakCallback (dxJoint *joint, dJointBreakCallback *callbackFunc) { | ||
42 | < dAASSERT(joint); | ||
43 | < # ifndef dNODEBUG | ||
44 | < // only works for a breakable joint | ||
45 | < if (!joint->breakInfo) { | ||
46 | < dDebug (0, "dJointSetBreakCallback called on unbreakable joint"); | ||
47 | < } | ||
48 | < # endif | ||
49 | < joint->breakInfo->callback = callbackFunc; | ||
50 | < } | ||
51 | < | ||
52 | < extern "C" void dJointSetBreakMode (dxJoint *joint, int mode) { | ||
53 | < dAASSERT(joint); | ||
54 | < # ifndef dNODEBUG | ||
55 | < // only works for a breakable joint | ||
56 | < if (!joint->breakInfo) { | ||
57 | < dDebug (0, "dJointSetBreakMode called on unbreakable joint"); | ||
58 | < } | ||
59 | < # endif | ||
60 | < joint->breakInfo->flags = mode; | ||
61 | < } | ||
62 | < | ||
63 | < extern "C" int dJointGetBreakMode (dxJoint *joint) { | ||
64 | < dAASSERT(joint); | ||
65 | < # ifndef dNODEBUG | ||
66 | < // only works for a breakable joint | ||
67 | < if (!joint->breakInfo) { | ||
68 | < dDebug (0, "dJointGetBreakMode called on unbreakable joint"); | ||
69 | < } | ||
70 | < # endif | ||
71 | < return joint->breakInfo->flags; | ||
72 | < } | ||
73 | < | ||
74 | < extern "C" void dJointSetBreakForce (dxJoint *joint, int body, dReal x, dReal y, dReal z) { | ||
75 | < dAASSERT(joint); | ||
76 | < # ifndef dNODEBUG | ||
77 | < // only works for a breakable joint | ||
78 | < if (!joint->breakInfo) { | ||
79 | < dDebug (0, "dJointSetBreakForce called on unbreakable joint"); | ||
80 | < } | ||
81 | < # endif | ||
82 | < if (body) { | ||
83 | < joint->breakInfo->b2MaxF[0] = x; | ||
84 | < joint->breakInfo->b2MaxF[1] = y; | ||
85 | < joint->breakInfo->b2MaxF[2] = z; | ||
86 | < } | ||
87 | < else { | ||
88 | < joint->breakInfo->b1MaxF[0] = x; | ||
89 | < joint->breakInfo->b1MaxF[1] = y; | ||
90 | < joint->breakInfo->b1MaxF[2] = z; | ||
91 | < } | ||
92 | < } | ||
93 | < | ||
94 | < extern "C" void dJointSetBreakTorque (dxJoint *joint, int body, dReal x, dReal y, dReal z) { | ||
95 | < dAASSERT(joint); | ||
96 | < # ifndef dNODEBUG | ||
97 | < // only works for a breakable joint | ||
98 | < if (!joint->breakInfo) { | ||
99 | < dDebug (0, "dJointSetBreakTorque called on unbreakable joint"); | ||
100 | < } | ||
101 | < # endif | ||
102 | < if (body) { | ||
103 | < joint->breakInfo->b2MaxT[0] = x; | ||
104 | < joint->breakInfo->b2MaxT[1] = y; | ||
105 | < joint->breakInfo->b2MaxT[2] = z; | ||
106 | < } | ||
107 | < else { | ||
108 | < joint->breakInfo->b1MaxT[0] = x; | ||
109 | < joint->breakInfo->b1MaxT[1] = y; | ||
110 | < joint->breakInfo->b1MaxT[2] = z; | ||
111 | < } | ||
112 | < } | ||
113 | < | ||
114 | < extern "C" int dJointIsBreakable (dxJoint *joint) { | ||
115 | < dAASSERT(joint); | ||
116 | < return joint->breakInfo != 0; | ||
117 | < } | ||
118 | < | ||
119 | < extern "C" void dJointGetBreakForce (dxJoint *joint, int body, dReal *force) { | ||
120 | < dAASSERT(joint); | ||
121 | < # ifndef dNODEBUG | ||
122 | < // only works for a breakable joint | ||
123 | < if (!joint->breakInfo) { | ||
124 | < dDebug (0, "dJointGetBreakForce called on unbreakable joint"); | ||
125 | < } | ||
126 | < # endif | ||
127 | < if (body) | ||
128 | < for (int i=0; i<3; i++) force[i]=joint->breakInfo->b2MaxF[i]; | ||
129 | < else | ||
130 | < for (int i=0; i<3; i++) force[i]=joint->breakInfo->b1MaxF[i]; | ||
131 | < } | ||
132 | < | ||
133 | < extern "C" void dJointGetBreakTorque (dxJoint *joint, int body, dReal *torque) { | ||
134 | < dAASSERT(joint); | ||
135 | < # ifndef dNODEBUG | ||
136 | < // only works for a breakable joint | ||
137 | < if (!joint->breakInfo) { | ||
138 | < dDebug (0, "dJointGetBreakTorque called on unbreakable joint"); | ||
139 | < } | ||
140 | < # endif | ||
141 | < if (body) | ||
142 | < for (int i=0; i<3; i++) torque[i]=joint->breakInfo->b2MaxT[i]; | ||
143 | < else | ||
144 | < for (int i=0; i<3; i++) torque[i]=joint->breakInfo->b1MaxT[i]; | ||
145 | < } | ||
146 | < /*************************************************************************/ | ||
147 | < | ||
148 | \ No newline at end of file | ||
diff --git a/libraries/ode-0.9/contrib/BreakableJoints/diff/joint.h.diff b/libraries/ode-0.9/contrib/BreakableJoints/diff/joint.h.diff new file mode 100644 index 0000000..eed3c24 --- /dev/null +++ b/libraries/ode-0.9/contrib/BreakableJoints/diff/joint.h.diff | |||
@@ -0,0 +1,18 @@ | |||
1 | 61,70d60 | ||
2 | < /******************** breakable joint contribution ***********************/ | ||
3 | < struct dxJointBreakInfo : public dBase { | ||
4 | < int flags; | ||
5 | < dReal b1MaxF[3]; // maximum force on body 1 | ||
6 | < dReal b1MaxT[3]; // maximum torque on body 1 | ||
7 | < dReal b2MaxF[3]; // maximum force on body 2 | ||
8 | < dReal b2MaxT[3]; // maximum torque on body 2 | ||
9 | < dJointBreakCallback *callback; // function that is called when this joint breaks | ||
10 | < }; | ||
11 | < /*************************************************************************/ | ||
12 | 135,140d124 | ||
13 | < | ||
14 | < /******************** breakable joint contribution ***********************/ | ||
15 | < // optional break info structure. if this is not NULL the the joint is | ||
16 | < // breakable. | ||
17 | < dxJointBreakInfo *breakInfo; | ||
18 | < /*************************************************************************/ | ||
diff --git a/libraries/ode-0.9/contrib/BreakableJoints/diff/objects.h.diff b/libraries/ode-0.9/contrib/BreakableJoints/diff/objects.h.diff new file mode 100644 index 0000000..fd2129e --- /dev/null +++ b/libraries/ode-0.9/contrib/BreakableJoints/diff/objects.h.diff | |||
@@ -0,0 +1,13 @@ | |||
1 | 168,179d167 | ||
2 | < /******************** breakable joint contribution ***********************/ | ||
3 | < void dJointSetBreakable (dJointID, int b); | ||
4 | < void dJointSetBreakCallback (dJointID, dJointBreakCallback *callbackFunc); | ||
5 | < void dJointSetBreakMode (dJointID, int mode); | ||
6 | < int dJointGetBreakMode (dJointID); | ||
7 | < void dJointSetBreakForce (dJointID, int body, dReal x, dReal y, dReal z); | ||
8 | < void dJointSetBreakTorque (dJointID, int body, dReal x, dReal y, dReal z); | ||
9 | < int dJointIsBreakable (dJointID); | ||
10 | < void dJointGetBreakForce (dJointID, int body, dReal *force); | ||
11 | < void dJointGetBreakTorque (dJointID, int body, dReal *torque); | ||
12 | < /*************************************************************************/ | ||
13 | < | ||
diff --git a/libraries/ode-0.9/contrib/BreakableJoints/diff/ode.cpp.diff b/libraries/ode-0.9/contrib/BreakableJoints/diff/ode.cpp.diff new file mode 100644 index 0000000..761b7be --- /dev/null +++ b/libraries/ode-0.9/contrib/BreakableJoints/diff/ode.cpp.diff | |||
@@ -0,0 +1,28 @@ | |||
1 | 212,230d211 | ||
2 | < /******************** breakable joint contribution ***********************/ | ||
3 | < dxJoint* nextJ; | ||
4 | < if (!world->firstjoint) | ||
5 | < nextJ = 0; | ||
6 | < else | ||
7 | < nextJ = (dxJoint*)world->firstjoint->next; | ||
8 | < for (j=world->firstjoint; j; j=nextJ) { | ||
9 | < nextJ = (dxJoint*)j->next; | ||
10 | < // check if joint is breakable and broken | ||
11 | < if (j->breakInfo && j->breakInfo->flags & dJOINT_BROKEN) { | ||
12 | < // detach (break) the joint | ||
13 | < dJointAttach (j, 0, 0); | ||
14 | < // call the callback function if it is set | ||
15 | < if (j->breakInfo->callback) j->breakInfo->callback (j); | ||
16 | < // finally destroy the joint if the dJOINT_DELETE_ON_BREAK is set | ||
17 | < if (j->breakInfo->flags & dJOINT_DELETE_ON_BREAK) dJointDestroy (j); | ||
18 | < } | ||
19 | < } | ||
20 | < /*************************************************************************/ | ||
21 | 931,933d911 | ||
22 | < /******************** breakable joint contribution ***********************/ | ||
23 | < j->breakInfo = 0; | ||
24 | < /*************************************************************************/ | ||
25 | 1011,1013d988 | ||
26 | < /******************** breakable joint contribution ***********************/ | ||
27 | < if (j->breakInfo) delete j->breakInfo; | ||
28 | < /*************************************************************************/ | ||
diff --git a/libraries/ode-0.9/contrib/BreakableJoints/diff/step.cpp.diff b/libraries/ode-0.9/contrib/BreakableJoints/diff/step.cpp.diff new file mode 100644 index 0000000..dfc8c2f --- /dev/null +++ b/libraries/ode-0.9/contrib/BreakableJoints/diff/step.cpp.diff | |||
@@ -0,0 +1,130 @@ | |||
1 | 966,1066c966,989 | ||
2 | < /******************** breakable joint contribution ***********************/ | ||
3 | < // this saves us a few dereferences | ||
4 | < dxJointBreakInfo *jBI = joint[i]->breakInfo; | ||
5 | < // we need joint feedback if the joint is breakable or if the user | ||
6 | < // requested feedback. | ||
7 | < if (jBI||fb) { | ||
8 | < // we need feedback on the amount of force that this joint is | ||
9 | < // applying to the bodies. we use a slightly slower computation | ||
10 | < // that splits out the force components and puts them in the | ||
11 | < // feedback structure. | ||
12 | < dJointFeedback temp_fb; // temporary storage for joint feedback | ||
13 | < dReal data1[8],data2[8]; | ||
14 | < Multiply1_8q1 (data1, JJ, lambda+ofs[i], info[i].m); | ||
15 | < dReal *cf1 = cforce + 8*b1->tag; | ||
16 | < cf1[0] += (temp_fb.f1[0] = data1[0]); | ||
17 | < cf1[1] += (temp_fb.f1[1] = data1[1]); | ||
18 | < cf1[2] += (temp_fb.f1[2] = data1[2]); | ||
19 | < cf1[4] += (temp_fb.t1[0] = data1[4]); | ||
20 | < cf1[5] += (temp_fb.t1[1] = data1[5]); | ||
21 | < cf1[6] += (temp_fb.t1[2] = data1[6]); | ||
22 | < if (b2) { | ||
23 | < Multiply1_8q1 (data2, JJ + 8*info[i].m, lambda+ofs[i], info[i].m); | ||
24 | < dReal *cf2 = cforce + 8*b2->tag; | ||
25 | < cf2[0] += (temp_fb.f2[0] = data2[0]); | ||
26 | < cf2[1] += (temp_fb.f2[1] = data2[1]); | ||
27 | < cf2[2] += (temp_fb.f2[2] = data2[2]); | ||
28 | < cf2[4] += (temp_fb.t2[0] = data2[4]); | ||
29 | < cf2[5] += (temp_fb.t2[1] = data2[5]); | ||
30 | < cf2[6] += (temp_fb.t2[2] = data2[6]); | ||
31 | < } | ||
32 | < // if the user requested so we must copy the feedback information to | ||
33 | < // the feedback struct that the user suplied. | ||
34 | < if (fb) { | ||
35 | < // copy temp_fb to fb | ||
36 | < fb->f1[0] = temp_fb.f1[0]; | ||
37 | < fb->f1[1] = temp_fb.f1[1]; | ||
38 | < fb->f1[2] = temp_fb.f1[2]; | ||
39 | < fb->t1[0] = temp_fb.t1[0]; | ||
40 | < fb->t1[1] = temp_fb.t1[1]; | ||
41 | < fb->t1[2] = temp_fb.t1[2]; | ||
42 | < if (b2) { | ||
43 | < fb->f2[0] = temp_fb.f2[0]; | ||
44 | < fb->f2[1] = temp_fb.f2[1]; | ||
45 | < fb->f2[2] = temp_fb.f2[2]; | ||
46 | < fb->t2[0] = temp_fb.t2[0]; | ||
47 | < fb->t2[1] = temp_fb.t2[1]; | ||
48 | < fb->t2[2] = temp_fb.t2[2]; | ||
49 | < } | ||
50 | < } | ||
51 | < // if the joint is breakable we need to check the breaking conditions | ||
52 | < if (jBI) { | ||
53 | < dReal relCF1[3]; | ||
54 | < dReal relCT1[3]; | ||
55 | < // multiply the force and torque vectors by the rotation matrix of body 1 | ||
56 | < dMULTIPLY1_331 (&relCF1[0],b1->R,&temp_fb.f1[0]); | ||
57 | < dMULTIPLY1_331 (&relCT1[0],b1->R,&temp_fb.t1[0]); | ||
58 | < if (jBI->flags & dJOINT_BREAK_AT_B1_FORCE) { | ||
59 | < // check if the force is to high | ||
60 | < for (int i = 0; i < 3; i++) { | ||
61 | < if (relCF1[i] > jBI->b1MaxF[i]) { | ||
62 | < jBI->flags |= dJOINT_BROKEN; | ||
63 | < goto doneCheckingBreaks; | ||
64 | < } | ||
65 | < } | ||
66 | < } | ||
67 | < if (jBI->flags & dJOINT_BREAK_AT_B1_TORQUE) { | ||
68 | < // check if the torque is to high | ||
69 | < for (int i = 0; i < 3; i++) { | ||
70 | < if (relCT1[i] > jBI->b1MaxT[i]) { | ||
71 | < jBI->flags |= dJOINT_BROKEN; | ||
72 | < goto doneCheckingBreaks; | ||
73 | < } | ||
74 | < } | ||
75 | < } | ||
76 | < if (b2) { | ||
77 | < dReal relCF2[3]; | ||
78 | < dReal relCT2[3]; | ||
79 | < // multiply the force and torque vectors by the rotation matrix of body 2 | ||
80 | < dMULTIPLY1_331 (&relCF2[0],b2->R,&temp_fb.f2[0]); | ||
81 | < dMULTIPLY1_331 (&relCT2[0],b2->R,&temp_fb.t2[0]); | ||
82 | < if (jBI->flags & dJOINT_BREAK_AT_B2_FORCE) { | ||
83 | < // check if the force is to high | ||
84 | < for (int i = 0; i < 3; i++) { | ||
85 | < if (relCF2[i] > jBI->b2MaxF[i]) { | ||
86 | < jBI->flags |= dJOINT_BROKEN; | ||
87 | < goto doneCheckingBreaks; | ||
88 | < } | ||
89 | < } | ||
90 | < } | ||
91 | < if (jBI->flags & dJOINT_BREAK_AT_B2_TORQUE) { | ||
92 | < // check if the torque is to high | ||
93 | < for (int i = 0; i < 3; i++) { | ||
94 | < if (relCT2[i] > jBI->b2MaxT[i]) { | ||
95 | < jBI->flags |= dJOINT_BROKEN; | ||
96 | < goto doneCheckingBreaks; | ||
97 | < } | ||
98 | < } | ||
99 | < } | ||
100 | < } | ||
101 | < doneCheckingBreaks: | ||
102 | < ; | ||
103 | --- | ||
104 | > if (fb) { | ||
105 | > // the user has requested feedback on the amount of force that this | ||
106 | > // joint is applying to the bodies. we use a slightly slower | ||
107 | > // computation that splits out the force components and puts them | ||
108 | > // in the feedback structure. | ||
109 | > dReal data1[8],data2[8]; | ||
110 | > Multiply1_8q1 (data1, JJ, lambda+ofs[i], info[i].m); | ||
111 | > dReal *cf1 = cforce + 8*b1->tag; | ||
112 | > cf1[0] += (fb->f1[0] = data1[0]); | ||
113 | > cf1[1] += (fb->f1[1] = data1[1]); | ||
114 | > cf1[2] += (fb->f1[2] = data1[2]); | ||
115 | > cf1[4] += (fb->t1[0] = data1[4]); | ||
116 | > cf1[5] += (fb->t1[1] = data1[5]); | ||
117 | > cf1[6] += (fb->t1[2] = data1[6]); | ||
118 | > if (b2){ | ||
119 | > Multiply1_8q1 (data2, JJ + 8*info[i].m, lambda+ofs[i], info[i].m); | ||
120 | > dReal *cf2 = cforce + 8*b2->tag; | ||
121 | > cf2[0] += (fb->f2[0] = data2[0]); | ||
122 | > cf2[1] += (fb->f2[1] = data2[1]); | ||
123 | > cf2[2] += (fb->f2[2] = data2[2]); | ||
124 | > cf2[4] += (fb->t2[0] = data2[4]); | ||
125 | > cf2[5] += (fb->t2[1] = data2[5]); | ||
126 | > cf2[6] += (fb->t2[2] = data2[6]); | ||
127 | > } | ||
128 | 1068,1069d990 | ||
129 | < } | ||
130 | < /*************************************************************************/ | ||
diff --git a/libraries/ode-0.9/contrib/BreakableJoints/diff/stepfast.cpp.diff b/libraries/ode-0.9/contrib/BreakableJoints/diff/stepfast.cpp.diff new file mode 100644 index 0000000..ed64cba --- /dev/null +++ b/libraries/ode-0.9/contrib/BreakableJoints/diff/stepfast.cpp.diff | |||
@@ -0,0 +1,143 @@ | |||
1 | 587,598c587,593 | ||
2 | < /******************** breakable joint contribution ***********************/ | ||
3 | < // this saves us a few dereferences | ||
4 | < dxJointBreakInfo *jBI = joint->breakInfo; | ||
5 | < // we need joint feedback if the joint is breakable or if the user | ||
6 | < // requested feedback. | ||
7 | < if (jBI||fb) { | ||
8 | < // we need feedback on the amount of force that this joint is | ||
9 | < // applying to the bodies. we use a slightly slower computation | ||
10 | < // that splits out the force components and puts them in the | ||
11 | < // feedback structure. | ||
12 | < dJointFeedback temp_fb; // temporary storage for joint feedback | ||
13 | < dReal data1[8],data2[8]; | ||
14 | --- | ||
15 | > if (fb) | ||
16 | > { | ||
17 | > // the user has requested feedback on the amount of force that this | ||
18 | > // joint is applying to the bodies. we use a slightly slower | ||
19 | > // computation that splits out the force components and puts them | ||
20 | > // in the feedback structure. | ||
21 | > dReal data1[8], data2[8]; | ||
22 | 603,608c598,603 | ||
23 | < cf1[0] = (temp_fb.f1[0] = data1[0]); | ||
24 | < cf1[1] = (temp_fb.f1[1] = data1[1]); | ||
25 | < cf1[2] = (temp_fb.f1[2] = data1[2]); | ||
26 | < cf1[4] = (temp_fb.t1[0] = data1[4]); | ||
27 | < cf1[5] = (temp_fb.t1[1] = data1[5]); | ||
28 | < cf1[6] = (temp_fb.t1[2] = data1[6]); | ||
29 | --- | ||
30 | > cf1[0] = (fb->f1[0] = data1[0]); | ||
31 | > cf1[1] = (fb->f1[1] = data1[1]); | ||
32 | > cf1[2] = (fb->f1[2] = data1[2]); | ||
33 | > cf1[4] = (fb->t1[0] = data1[4]); | ||
34 | > cf1[5] = (fb->t1[1] = data1[5]); | ||
35 | > cf1[6] = (fb->t1[2] = data1[6]); | ||
36 | 614,691c609,614 | ||
37 | < cf2[0] = (temp_fb.f2[0] = data2[0]); | ||
38 | < cf2[1] = (temp_fb.f2[1] = data2[1]); | ||
39 | < cf2[2] = (temp_fb.f2[2] = data2[2]); | ||
40 | < cf2[4] = (temp_fb.t2[0] = data2[4]); | ||
41 | < cf2[5] = (temp_fb.t2[1] = data2[5]); | ||
42 | < cf2[6] = (temp_fb.t2[2] = data2[6]); | ||
43 | < } | ||
44 | < // if the user requested so we must copy the feedback information to | ||
45 | < // the feedback struct that the user suplied. | ||
46 | < if (fb) { | ||
47 | < // copy temp_fb to fb | ||
48 | < fb->f1[0] = temp_fb.f1[0]; | ||
49 | < fb->f1[1] = temp_fb.f1[1]; | ||
50 | < fb->f1[2] = temp_fb.f1[2]; | ||
51 | < fb->t1[0] = temp_fb.t1[0]; | ||
52 | < fb->t1[1] = temp_fb.t1[1]; | ||
53 | < fb->t1[2] = temp_fb.t1[2]; | ||
54 | < if (body[1]) { | ||
55 | < fb->f2[0] = temp_fb.f2[0]; | ||
56 | < fb->f2[1] = temp_fb.f2[1]; | ||
57 | < fb->f2[2] = temp_fb.f2[2]; | ||
58 | < fb->t2[0] = temp_fb.t2[0]; | ||
59 | < fb->t2[1] = temp_fb.t2[1]; | ||
60 | < fb->t2[2] = temp_fb.t2[2]; | ||
61 | < } | ||
62 | < } | ||
63 | < // if the joint is breakable we need to check the breaking conditions | ||
64 | < if (jBI) { | ||
65 | < dReal relCF1[3]; | ||
66 | < dReal relCT1[3]; | ||
67 | < // multiply the force and torque vectors by the rotation matrix of body 1 | ||
68 | < dMULTIPLY1_331 (&relCF1[0],body[0]->R,&temp_fb.f1[0]); | ||
69 | < dMULTIPLY1_331 (&relCT1[0],body[0]->R,&temp_fb.t1[0]); | ||
70 | < if (jBI->flags & dJOINT_BREAK_AT_B1_FORCE) { | ||
71 | < // check if the force is to high | ||
72 | < for (int i = 0; i < 3; i++) { | ||
73 | < if (relCF1[i] > jBI->b1MaxF[i]) { | ||
74 | < jBI->flags |= dJOINT_BROKEN; | ||
75 | < goto doneCheckingBreaks; | ||
76 | < } | ||
77 | < } | ||
78 | < } | ||
79 | < if (jBI->flags & dJOINT_BREAK_AT_B1_TORQUE) { | ||
80 | < // check if the torque is to high | ||
81 | < for (int i = 0; i < 3; i++) { | ||
82 | < if (relCT1[i] > jBI->b1MaxT[i]) { | ||
83 | < jBI->flags |= dJOINT_BROKEN; | ||
84 | < goto doneCheckingBreaks; | ||
85 | < } | ||
86 | < } | ||
87 | < } | ||
88 | < if (body[1]) { | ||
89 | < dReal relCF2[3]; | ||
90 | < dReal relCT2[3]; | ||
91 | < // multiply the force and torque vectors by the rotation matrix of body 2 | ||
92 | < dMULTIPLY1_331 (&relCF2[0],body[1]->R,&temp_fb.f2[0]); | ||
93 | < dMULTIPLY1_331 (&relCT2[0],body[1]->R,&temp_fb.t2[0]); | ||
94 | < if (jBI->flags & dJOINT_BREAK_AT_B2_FORCE) { | ||
95 | < // check if the force is to high | ||
96 | < for (int i = 0; i < 3; i++) { | ||
97 | < if (relCF2[i] > jBI->b2MaxF[i]) { | ||
98 | < jBI->flags |= dJOINT_BROKEN; | ||
99 | < goto doneCheckingBreaks; | ||
100 | < } | ||
101 | < } | ||
102 | < } | ||
103 | < if (jBI->flags & dJOINT_BREAK_AT_B2_TORQUE) { | ||
104 | < // check if the torque is to high | ||
105 | < for (int i = 0; i < 3; i++) { | ||
106 | < if (relCT2[i] > jBI->b2MaxT[i]) { | ||
107 | < jBI->flags |= dJOINT_BROKEN; | ||
108 | < goto doneCheckingBreaks; | ||
109 | < } | ||
110 | < } | ||
111 | < } | ||
112 | < } | ||
113 | < doneCheckingBreaks: | ||
114 | < ; | ||
115 | --- | ||
116 | > cf2[0] = (fb->f2[0] = data2[0]); | ||
117 | > cf2[1] = (fb->f2[1] = data2[1]); | ||
118 | > cf2[2] = (fb->f2[2] = data2[2]); | ||
119 | > cf2[4] = (fb->t2[0] = data2[4]); | ||
120 | > cf2[5] = (fb->t2[1] = data2[5]); | ||
121 | > cf2[6] = (fb->t2[2] = data2[6]); | ||
122 | 694d616 | ||
123 | < /*************************************************************************/ | ||
124 | 1178,1196d1099 | ||
125 | < /******************** breakable joint contribution ***********************/ | ||
126 | < dxJoint* nextJ; | ||
127 | < if (!world->firstjoint) | ||
128 | < nextJ = 0; | ||
129 | < else | ||
130 | < nextJ = (dxJoint*)world->firstjoint->next; | ||
131 | < for (j=world->firstjoint; j; j=nextJ) { | ||
132 | < nextJ = (dxJoint*)j->next; | ||
133 | < // check if joint is breakable and broken | ||
134 | < if (j->breakInfo && j->breakInfo->flags & dJOINT_BROKEN) { | ||
135 | < // detach (break) the joint | ||
136 | < dJointAttach (j, 0, 0); | ||
137 | < // call the callback function if it is set | ||
138 | < if (j->breakInfo->callback) j->breakInfo->callback (j); | ||
139 | < // finally destroy the joint if the dJOINT_DELETE_ON_BREAK is set | ||
140 | < if (j->breakInfo->flags & dJOINT_DELETE_ON_BREAK) dJointDestroy (j); | ||
141 | < } | ||
142 | < } | ||
143 | < /*************************************************************************/ | ||
diff --git a/libraries/ode-0.9/contrib/BreakableJoints/diff/test_buggy.cpp.diff b/libraries/ode-0.9/contrib/BreakableJoints/diff/test_buggy.cpp.diff new file mode 100644 index 0000000..65770da --- /dev/null +++ b/libraries/ode-0.9/contrib/BreakableJoints/diff/test_buggy.cpp.diff | |||
@@ -0,0 +1,16 @@ | |||
1 | 266,270d265 | ||
2 | < | ||
3 | < // breakable joints contribution | ||
4 | < dJointSetBreakable (joint[i], 1); | ||
5 | < dJointSetBreakMode (joint[i], dJOINT_BREAK_AT_FORCE); | ||
6 | < dJointSetBreakForce (joint[i], 0.5); | ||
7 | 298c293 | ||
8 | < ground_box = dCreateBox (space,2,1.5,5); | ||
9 | --- | ||
10 | > ground_box = dCreateBox (space,2,1.5,1); | ||
11 | 300,301c295,296 | ||
12 | < dRFromAxisAndAngle (R,0,1,0,-0.85); | ||
13 | < dGeomSetPosition (ground_box,5,0,-1); | ||
14 | --- | ||
15 | > dRFromAxisAndAngle (R,0,1,0,-0.15); | ||
16 | > dGeomSetPosition (ground_box,2,0,-0.34); | ||
diff --git a/libraries/ode-0.9/contrib/BreakableJoints/joint.cpp b/libraries/ode-0.9/contrib/BreakableJoints/joint.cpp new file mode 100644 index 0000000..2c724f8 --- /dev/null +++ b/libraries/ode-0.9/contrib/BreakableJoints/joint.cpp | |||
@@ -0,0 +1,2803 @@ | |||
1 | /************************************************************************* | ||
2 | * * | ||
3 | * Open Dynamics Engine, Copyright (C) 2001,2002 Russell L. Smith. * | ||
4 | * All rights reserved. Email: russ@q12.org Web: www.q12.org * | ||
5 | * * | ||
6 | * This library is free software; you can redistribute it and/or * | ||
7 | * modify it under the terms of EITHER: * | ||
8 | * (1) The GNU Lesser General Public License as published by the Free * | ||
9 | * Software Foundation; either version 2.1 of the License, or (at * | ||
10 | * your option) any later version. The text of the GNU Lesser * | ||
11 | * General Public License is included with this library in the * | ||
12 | * file LICENSE.TXT. * | ||
13 | * (2) The BSD-style license that is included with this library in * | ||
14 | * the file LICENSE-BSD.TXT. * | ||
15 | * * | ||
16 | * This library is distributed in the hope that it will be useful, * | ||
17 | * but WITHOUT ANY WARRANTY; without even the implied warranty of * | ||
18 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the files * | ||
19 | * LICENSE.TXT and LICENSE-BSD.TXT for more details. * | ||
20 | * * | ||
21 | *************************************************************************/ | ||
22 | |||
23 | /* | ||
24 | |||
25 | design note: the general principle for giving a joint the option of connecting | ||
26 | to the static environment (i.e. the absolute frame) is to check the second | ||
27 | body (joint->node[1].body), and if it is zero then behave as if its body | ||
28 | transform is the identity. | ||
29 | |||
30 | */ | ||
31 | |||
32 | #include <ode/odemath.h> | ||
33 | #include <ode/rotation.h> | ||
34 | #include <ode/matrix.h> | ||
35 | #include "joint.h" | ||
36 | |||
37 | //**************************************************************************** | ||
38 | // externs | ||
39 | |||
40 | extern "C" void dBodyAddTorque (dBodyID, dReal fx, dReal fy, dReal fz); | ||
41 | extern "C" void dBodyAddForce (dBodyID, dReal fx, dReal fy, dReal fz); | ||
42 | |||
43 | //**************************************************************************** | ||
44 | // utility | ||
45 | |||
46 | // set three "ball-and-socket" rows in the constraint equation, and the | ||
47 | // corresponding right hand side. | ||
48 | |||
49 | static inline void setBall (dxJoint *joint, dxJoint::Info2 *info, | ||
50 | dVector3 anchor1, dVector3 anchor2) | ||
51 | { | ||
52 | // anchor points in global coordinates with respect to body PORs. | ||
53 | dVector3 a1,a2; | ||
54 | |||
55 | int s = info->rowskip; | ||
56 | |||
57 | // set jacobian | ||
58 | info->J1l[0] = 1; | ||
59 | info->J1l[s+1] = 1; | ||
60 | info->J1l[2*s+2] = 1; | ||
61 | dMULTIPLY0_331 (a1,joint->node[0].body->R,anchor1); | ||
62 | dCROSSMAT (info->J1a,a1,s,-,+); | ||
63 | if (joint->node[1].body) { | ||
64 | info->J2l[0] = -1; | ||
65 | info->J2l[s+1] = -1; | ||
66 | info->J2l[2*s+2] = -1; | ||
67 | dMULTIPLY0_331 (a2,joint->node[1].body->R,anchor2); | ||
68 | dCROSSMAT (info->J2a,a2,s,+,-); | ||
69 | } | ||
70 | |||
71 | // set right hand side | ||
72 | dReal k = info->fps * info->erp; | ||
73 | if (joint->node[1].body) { | ||
74 | for (int j=0; j<3; j++) { | ||
75 | info->c[j] = k * (a2[j] + joint->node[1].body->pos[j] - | ||
76 | a1[j] - joint->node[0].body->pos[j]); | ||
77 | } | ||
78 | } | ||
79 | else { | ||
80 | for (int j=0; j<3; j++) { | ||
81 | info->c[j] = k * (anchor2[j] - a1[j] - | ||
82 | joint->node[0].body->pos[j]); | ||
83 | } | ||
84 | } | ||
85 | } | ||
86 | |||
87 | |||
88 | // this is like setBall(), except that `axis' is a unit length vector | ||
89 | // (in global coordinates) that should be used for the first jacobian | ||
90 | // position row (the other two row vectors will be derived from this). | ||
91 | // `erp1' is the erp value to use along the axis. | ||
92 | |||
93 | static inline void setBall2 (dxJoint *joint, dxJoint::Info2 *info, | ||
94 | dVector3 anchor1, dVector3 anchor2, | ||
95 | dVector3 axis, dReal erp1) | ||
96 | { | ||
97 | // anchor points in global coordinates with respect to body PORs. | ||
98 | dVector3 a1,a2; | ||
99 | |||
100 | int i,s = info->rowskip; | ||
101 | |||
102 | // get vectors normal to the axis. in setBall() axis,q1,q2 is [1 0 0], | ||
103 | // [0 1 0] and [0 0 1], which makes everything much easier. | ||
104 | dVector3 q1,q2; | ||
105 | dPlaneSpace (axis,q1,q2); | ||
106 | |||
107 | // set jacobian | ||
108 | for (i=0; i<3; i++) info->J1l[i] = axis[i]; | ||
109 | for (i=0; i<3; i++) info->J1l[s+i] = q1[i]; | ||
110 | for (i=0; i<3; i++) info->J1l[2*s+i] = q2[i]; | ||
111 | dMULTIPLY0_331 (a1,joint->node[0].body->R,anchor1); | ||
112 | dCROSS (info->J1a,=,a1,axis); | ||
113 | dCROSS (info->J1a+s,=,a1,q1); | ||
114 | dCROSS (info->J1a+2*s,=,a1,q2); | ||
115 | if (joint->node[1].body) { | ||
116 | for (i=0; i<3; i++) info->J2l[i] = -axis[i]; | ||
117 | for (i=0; i<3; i++) info->J2l[s+i] = -q1[i]; | ||
118 | for (i=0; i<3; i++) info->J2l[2*s+i] = -q2[i]; | ||
119 | dMULTIPLY0_331 (a2,joint->node[1].body->R,anchor2); | ||
120 | dCROSS (info->J2a,= -,a2,axis); | ||
121 | dCROSS (info->J2a+s,= -,a2,q1); | ||
122 | dCROSS (info->J2a+2*s,= -,a2,q2); | ||
123 | } | ||
124 | |||
125 | // set right hand side - measure error along (axis,q1,q2) | ||
126 | dReal k1 = info->fps * erp1; | ||
127 | dReal k = info->fps * info->erp; | ||
128 | |||
129 | for (i=0; i<3; i++) a1[i] += joint->node[0].body->pos[i]; | ||
130 | if (joint->node[1].body) { | ||
131 | for (i=0; i<3; i++) a2[i] += joint->node[1].body->pos[i]; | ||
132 | info->c[0] = k1 * (dDOT(axis,a2) - dDOT(axis,a1)); | ||
133 | info->c[1] = k * (dDOT(q1,a2) - dDOT(q1,a1)); | ||
134 | info->c[2] = k * (dDOT(q2,a2) - dDOT(q2,a1)); | ||
135 | } | ||
136 | else { | ||
137 | info->c[0] = k1 * (dDOT(axis,anchor2) - dDOT(axis,a1)); | ||
138 | info->c[1] = k * (dDOT(q1,anchor2) - dDOT(q1,a1)); | ||
139 | info->c[2] = k * (dDOT(q2,anchor2) - dDOT(q2,a1)); | ||
140 | } | ||
141 | } | ||
142 | |||
143 | |||
144 | // set three orientation rows in the constraint equation, and the | ||
145 | // corresponding right hand side. | ||
146 | |||
147 | static void setFixedOrientation(dxJoint *joint, dxJoint::Info2 *info, dQuaternion qrel, int start_row) | ||
148 | { | ||
149 | int s = info->rowskip; | ||
150 | int start_index = start_row * s; | ||
151 | |||
152 | // 3 rows to make body rotations equal | ||
153 | info->J1a[start_index] = 1; | ||
154 | info->J1a[start_index + s + 1] = 1; | ||
155 | info->J1a[start_index + s*2+2] = 1; | ||
156 | if (joint->node[1].body) { | ||
157 | info->J2a[start_index] = -1; | ||
158 | info->J2a[start_index + s+1] = -1; | ||
159 | info->J2a[start_index + s*2+2] = -1; | ||
160 | } | ||
161 | |||
162 | // compute the right hand side. the first three elements will result in | ||
163 | // relative angular velocity of the two bodies - this is set to bring them | ||
164 | // back into alignment. the correcting angular velocity is | ||
165 | // |angular_velocity| = angle/time = erp*theta / stepsize | ||
166 | // = (erp*fps) * theta | ||
167 | // angular_velocity = |angular_velocity| * u | ||
168 | // = (erp*fps) * theta * u | ||
169 | // where rotation along unit length axis u by theta brings body 2's frame | ||
170 | // to qrel with respect to body 1's frame. using a small angle approximation | ||
171 | // for sin(), this gives | ||
172 | // angular_velocity = (erp*fps) * 2 * v | ||
173 | // where the quaternion of the relative rotation between the two bodies is | ||
174 | // q = [cos(theta/2) sin(theta/2)*u] = [s v] | ||
175 | |||
176 | // get qerr = relative rotation (rotation error) between two bodies | ||
177 | dQuaternion qerr,e; | ||
178 | if (joint->node[1].body) { | ||
179 | dQuaternion qq; | ||
180 | dQMultiply1 (qq,joint->node[0].body->q,joint->node[1].body->q); | ||
181 | dQMultiply2 (qerr,qq,qrel); | ||
182 | } | ||
183 | else { | ||
184 | dQMultiply3 (qerr,joint->node[0].body->q,qrel); | ||
185 | } | ||
186 | if (qerr[0] < 0) { | ||
187 | qerr[1] = -qerr[1]; // adjust sign of qerr to make theta small | ||
188 | qerr[2] = -qerr[2]; | ||
189 | qerr[3] = -qerr[3]; | ||
190 | } | ||
191 | dMULTIPLY0_331 (e,joint->node[0].body->R,qerr+1); // @@@ bad SIMD padding! | ||
192 | dReal k = info->fps * info->erp; | ||
193 | info->c[start_row] = 2*k * e[0]; | ||
194 | info->c[start_row+1] = 2*k * e[1]; | ||
195 | info->c[start_row+2] = 2*k * e[2]; | ||
196 | } | ||
197 | |||
198 | |||
199 | // compute anchor points relative to bodies | ||
200 | |||
201 | static void setAnchors (dxJoint *j, dReal x, dReal y, dReal z, | ||
202 | dVector3 anchor1, dVector3 anchor2) | ||
203 | { | ||
204 | if (j->node[0].body) { | ||
205 | dReal q[4]; | ||
206 | q[0] = x - j->node[0].body->pos[0]; | ||
207 | q[1] = y - j->node[0].body->pos[1]; | ||
208 | q[2] = z - j->node[0].body->pos[2]; | ||
209 | q[3] = 0; | ||
210 | dMULTIPLY1_331 (anchor1,j->node[0].body->R,q); | ||
211 | if (j->node[1].body) { | ||
212 | q[0] = x - j->node[1].body->pos[0]; | ||
213 | q[1] = y - j->node[1].body->pos[1]; | ||
214 | q[2] = z - j->node[1].body->pos[2]; | ||
215 | q[3] = 0; | ||
216 | dMULTIPLY1_331 (anchor2,j->node[1].body->R,q); | ||
217 | } | ||
218 | else { | ||
219 | anchor2[0] = x; | ||
220 | anchor2[1] = y; | ||
221 | anchor2[2] = z; | ||
222 | } | ||
223 | } | ||
224 | anchor1[3] = 0; | ||
225 | anchor2[3] = 0; | ||
226 | } | ||
227 | |||
228 | |||
229 | // compute axes relative to bodies. either axis1 or axis2 can be 0. | ||
230 | |||
231 | static void setAxes (dxJoint *j, dReal x, dReal y, dReal z, | ||
232 | dVector3 axis1, dVector3 axis2) | ||
233 | { | ||
234 | if (j->node[0].body) { | ||
235 | dReal q[4]; | ||
236 | q[0] = x; | ||
237 | q[1] = y; | ||
238 | q[2] = z; | ||
239 | q[3] = 0; | ||
240 | dNormalize3 (q); | ||
241 | if (axis1) { | ||
242 | dMULTIPLY1_331 (axis1,j->node[0].body->R,q); | ||
243 | axis1[3] = 0; | ||
244 | } | ||
245 | if (axis2) { | ||
246 | if (j->node[1].body) { | ||
247 | dMULTIPLY1_331 (axis2,j->node[1].body->R,q); | ||
248 | } | ||
249 | else { | ||
250 | axis2[0] = x; | ||
251 | axis2[1] = y; | ||
252 | axis2[2] = z; | ||
253 | } | ||
254 | axis2[3] = 0; | ||
255 | } | ||
256 | } | ||
257 | } | ||
258 | |||
259 | |||
260 | static void getAnchor (dxJoint *j, dVector3 result, dVector3 anchor1) | ||
261 | { | ||
262 | if (j->node[0].body) { | ||
263 | dMULTIPLY0_331 (result,j->node[0].body->R,anchor1); | ||
264 | result[0] += j->node[0].body->pos[0]; | ||
265 | result[1] += j->node[0].body->pos[1]; | ||
266 | result[2] += j->node[0].body->pos[2]; | ||
267 | } | ||
268 | } | ||
269 | |||
270 | |||
271 | static void getAnchor2 (dxJoint *j, dVector3 result, dVector3 anchor2) | ||
272 | { | ||
273 | if (j->node[1].body) { | ||
274 | dMULTIPLY0_331 (result,j->node[1].body->R,anchor2); | ||
275 | result[0] += j->node[1].body->pos[0]; | ||
276 | result[1] += j->node[1].body->pos[1]; | ||
277 | result[2] += j->node[1].body->pos[2]; | ||
278 | } | ||
279 | else { | ||
280 | result[0] = anchor2[0]; | ||
281 | result[1] = anchor2[1]; | ||
282 | result[2] = anchor2[2]; | ||
283 | } | ||
284 | } | ||
285 | |||
286 | |||
287 | static void getAxis (dxJoint *j, dVector3 result, dVector3 axis1) | ||
288 | { | ||
289 | if (j->node[0].body) { | ||
290 | dMULTIPLY0_331 (result,j->node[0].body->R,axis1); | ||
291 | } | ||
292 | } | ||
293 | |||
294 | |||
295 | static void getAxis2 (dxJoint *j, dVector3 result, dVector3 axis2) | ||
296 | { | ||
297 | if (j->node[1].body) { | ||
298 | dMULTIPLY0_331 (result,j->node[1].body->R,axis2); | ||
299 | } | ||
300 | else { | ||
301 | result[0] = axis2[0]; | ||
302 | result[1] = axis2[1]; | ||
303 | result[2] = axis2[2]; | ||
304 | } | ||
305 | } | ||
306 | |||
307 | |||
308 | static dReal getHingeAngleFromRelativeQuat (dQuaternion qrel, dVector3 axis) | ||
309 | { | ||
310 | // the angle between the two bodies is extracted from the quaternion that | ||
311 | // represents the relative rotation between them. recall that a quaternion | ||
312 | // q is: | ||
313 | // [s,v] = [ cos(theta/2) , sin(theta/2) * u ] | ||
314 | // where s is a scalar and v is a 3-vector. u is a unit length axis and | ||
315 | // theta is a rotation along that axis. we can get theta/2 by: | ||
316 | // theta/2 = atan2 ( sin(theta/2) , cos(theta/2) ) | ||
317 | // but we can't get sin(theta/2) directly, only its absolute value, i.e.: | ||
318 | // |v| = |sin(theta/2)| * |u| | ||
319 | // = |sin(theta/2)| | ||
320 | // using this value will have a strange effect. recall that there are two | ||
321 | // quaternion representations of a given rotation, q and -q. typically as | ||
322 | // a body rotates along the axis it will go through a complete cycle using | ||
323 | // one representation and then the next cycle will use the other | ||
324 | // representation. this corresponds to u pointing in the direction of the | ||
325 | // hinge axis and then in the opposite direction. the result is that theta | ||
326 | // will appear to go "backwards" every other cycle. here is a fix: if u | ||
327 | // points "away" from the direction of the hinge (motor) axis (i.e. more | ||
328 | // than 90 degrees) then use -q instead of q. this represents the same | ||
329 | // rotation, but results in the cos(theta/2) value being sign inverted. | ||
330 | |||
331 | // extract the angle from the quaternion. cost2 = cos(theta/2), | ||
332 | // sint2 = |sin(theta/2)| | ||
333 | dReal cost2 = qrel[0]; | ||
334 | dReal sint2 = dSqrt (qrel[1]*qrel[1]+qrel[2]*qrel[2]+qrel[3]*qrel[3]); | ||
335 | dReal theta = (dDOT(qrel+1,axis) >= 0) ? // @@@ padding assumptions | ||
336 | (2 * dAtan2(sint2,cost2)) : // if u points in direction of axis | ||
337 | (2 * dAtan2(sint2,-cost2)); // if u points in opposite direction | ||
338 | |||
339 | // the angle we get will be between 0..2*pi, but we want to return angles | ||
340 | // between -pi..pi | ||
341 | if (theta > M_PI) theta -= 2*M_PI; | ||
342 | |||
343 | // the angle we've just extracted has the wrong sign | ||
344 | theta = -theta; | ||
345 | |||
346 | return theta; | ||
347 | } | ||
348 | |||
349 | |||
350 | // given two bodies (body1,body2), the hinge axis that they are connected by | ||
351 | // w.r.t. body1 (axis), and the initial relative orientation between them | ||
352 | // (q_initial), return the relative rotation angle. the initial relative | ||
353 | // orientation corresponds to an angle of zero. if body2 is 0 then measure the | ||
354 | // angle between body1 and the static frame. | ||
355 | // | ||
356 | // this will not return the correct angle if the bodies rotate along any axis | ||
357 | // other than the given hinge axis. | ||
358 | |||
359 | static dReal getHingeAngle (dxBody *body1, dxBody *body2, dVector3 axis, | ||
360 | dQuaternion q_initial) | ||
361 | { | ||
362 | // get qrel = relative rotation between the two bodies | ||
363 | dQuaternion qrel; | ||
364 | if (body2) { | ||
365 | dQuaternion qq; | ||
366 | dQMultiply1 (qq,body1->q,body2->q); | ||
367 | dQMultiply2 (qrel,qq,q_initial); | ||
368 | } | ||
369 | else { | ||
370 | // pretend body2->q is the identity | ||
371 | dQMultiply3 (qrel,body1->q,q_initial); | ||
372 | } | ||
373 | |||
374 | return getHingeAngleFromRelativeQuat (qrel,axis); | ||
375 | } | ||
376 | |||
377 | //**************************************************************************** | ||
378 | // dxJointLimitMotor | ||
379 | |||
380 | void dxJointLimitMotor::init (dxWorld *world) | ||
381 | { | ||
382 | vel = 0; | ||
383 | fmax = 0; | ||
384 | lostop = -dInfinity; | ||
385 | histop = dInfinity; | ||
386 | fudge_factor = 1; | ||
387 | normal_cfm = world->global_cfm; | ||
388 | stop_erp = world->global_erp; | ||
389 | stop_cfm = world->global_cfm; | ||
390 | bounce = 0; | ||
391 | limit = 0; | ||
392 | limit_err = 0; | ||
393 | } | ||
394 | |||
395 | |||
396 | void dxJointLimitMotor::set (int num, dReal value) | ||
397 | { | ||
398 | switch (num) { | ||
399 | case dParamLoStop: | ||
400 | if (value <= histop) lostop = value; | ||
401 | break; | ||
402 | case dParamHiStop: | ||
403 | if (value >= lostop) histop = value; | ||
404 | break; | ||
405 | case dParamVel: | ||
406 | vel = value; | ||
407 | break; | ||
408 | case dParamFMax: | ||
409 | if (value >= 0) fmax = value; | ||
410 | break; | ||
411 | case dParamFudgeFactor: | ||
412 | if (value >= 0 && value <= 1) fudge_factor = value; | ||
413 | break; | ||
414 | case dParamBounce: | ||
415 | bounce = value; | ||
416 | break; | ||
417 | case dParamCFM: | ||
418 | normal_cfm = value; | ||
419 | break; | ||
420 | case dParamStopERP: | ||
421 | stop_erp = value; | ||
422 | break; | ||
423 | case dParamStopCFM: | ||
424 | stop_cfm = value; | ||
425 | break; | ||
426 | } | ||
427 | } | ||
428 | |||
429 | |||
430 | dReal dxJointLimitMotor::get (int num) | ||
431 | { | ||
432 | switch (num) { | ||
433 | case dParamLoStop: return lostop; | ||
434 | case dParamHiStop: return histop; | ||
435 | case dParamVel: return vel; | ||
436 | case dParamFMax: return fmax; | ||
437 | case dParamFudgeFactor: return fudge_factor; | ||
438 | case dParamBounce: return bounce; | ||
439 | case dParamCFM: return normal_cfm; | ||
440 | case dParamStopERP: return stop_erp; | ||
441 | case dParamStopCFM: return stop_cfm; | ||
442 | default: return 0; | ||
443 | } | ||
444 | } | ||
445 | |||
446 | |||
447 | int dxJointLimitMotor::testRotationalLimit (dReal angle) | ||
448 | { | ||
449 | if (angle <= lostop) { | ||
450 | limit = 1; | ||
451 | limit_err = angle - lostop; | ||
452 | return 1; | ||
453 | } | ||
454 | else if (angle >= histop) { | ||
455 | limit = 2; | ||
456 | limit_err = angle - histop; | ||
457 | return 1; | ||
458 | } | ||
459 | else { | ||
460 | limit = 0; | ||
461 | return 0; | ||
462 | } | ||
463 | } | ||
464 | |||
465 | |||
466 | int dxJointLimitMotor::addLimot (dxJoint *joint, | ||
467 | dxJoint::Info2 *info, int row, | ||
468 | dVector3 ax1, int rotational) | ||
469 | { | ||
470 | int srow = row * info->rowskip; | ||
471 | |||
472 | // if the joint is powered, or has joint limits, add in the extra row | ||
473 | int powered = fmax > 0; | ||
474 | if (powered || limit) { | ||
475 | dReal *J1 = rotational ? info->J1a : info->J1l; | ||
476 | dReal *J2 = rotational ? info->J2a : info->J2l; | ||
477 | |||
478 | J1[srow+0] = ax1[0]; | ||
479 | J1[srow+1] = ax1[1]; | ||
480 | J1[srow+2] = ax1[2]; | ||
481 | if (joint->node[1].body) { | ||
482 | J2[srow+0] = -ax1[0]; | ||
483 | J2[srow+1] = -ax1[1]; | ||
484 | J2[srow+2] = -ax1[2]; | ||
485 | } | ||
486 | |||
487 | // linear limot torque decoupling step: | ||
488 | // | ||
489 | // if this is a linear limot (e.g. from a slider), we have to be careful | ||
490 | // that the linear constraint forces (+/- ax1) applied to the two bodies | ||
491 | // do not create a torque couple. in other words, the points that the | ||
492 | // constraint force is applied at must lie along the same ax1 axis. | ||
493 | // a torque couple will result in powered or limited slider-jointed free | ||
494 | // bodies from gaining angular momentum. | ||
495 | // the solution used here is to apply the constraint forces at the point | ||
496 | // halfway between the body centers. there is no penalty (other than an | ||
497 | // extra tiny bit of computation) in doing this adjustment. note that we | ||
498 | // only need to do this if the constraint connects two bodies. | ||
499 | |||
500 | dVector3 ltd; // Linear Torque Decoupling vector (a torque) | ||
501 | if (!rotational && joint->node[1].body) { | ||
502 | dVector3 c; | ||
503 | c[0]=REAL(0.5)*(joint->node[1].body->pos[0]-joint->node[0].body->pos[0]); | ||
504 | c[1]=REAL(0.5)*(joint->node[1].body->pos[1]-joint->node[0].body->pos[1]); | ||
505 | c[2]=REAL(0.5)*(joint->node[1].body->pos[2]-joint->node[0].body->pos[2]); | ||
506 | dCROSS (ltd,=,c,ax1); | ||
507 | info->J1a[srow+0] = ltd[0]; | ||
508 | info->J1a[srow+1] = ltd[1]; | ||
509 | info->J1a[srow+2] = ltd[2]; | ||
510 | info->J2a[srow+0] = ltd[0]; | ||
511 | info->J2a[srow+1] = ltd[1]; | ||
512 | info->J2a[srow+2] = ltd[2]; | ||
513 | } | ||
514 | |||
515 | // if we're limited low and high simultaneously, the joint motor is | ||
516 | // ineffective | ||
517 | if (limit && (lostop == histop)) powered = 0; | ||
518 | |||
519 | if (powered) { | ||
520 | info->cfm[row] = normal_cfm; | ||
521 | if (! limit) { | ||
522 | info->c[row] = vel; | ||
523 | info->lo[row] = -fmax; | ||
524 | info->hi[row] = fmax; | ||
525 | } | ||
526 | else { | ||
527 | // the joint is at a limit, AND is being powered. if the joint is | ||
528 | // being powered into the limit then we apply the maximum motor force | ||
529 | // in that direction, because the motor is working against the | ||
530 | // immovable limit. if the joint is being powered away from the limit | ||
531 | // then we have problems because actually we need *two* lcp | ||
532 | // constraints to handle this case. so we fake it and apply some | ||
533 | // fraction of the maximum force. the fraction to use can be set as | ||
534 | // a fudge factor. | ||
535 | |||
536 | dReal fm = fmax; | ||
537 | if (vel > 0) fm = -fm; | ||
538 | |||
539 | // if we're powering away from the limit, apply the fudge factor | ||
540 | if ((limit==1 && vel > 0) || (limit==2 && vel < 0)) fm *= fudge_factor; | ||
541 | |||
542 | if (rotational) { | ||
543 | dBodyAddTorque (joint->node[0].body,-fm*ax1[0],-fm*ax1[1], | ||
544 | -fm*ax1[2]); | ||
545 | if (joint->node[1].body) | ||
546 | dBodyAddTorque (joint->node[1].body,fm*ax1[0],fm*ax1[1],fm*ax1[2]); | ||
547 | } | ||
548 | else { | ||
549 | dBodyAddForce (joint->node[0].body,-fm*ax1[0],-fm*ax1[1],-fm*ax1[2]); | ||
550 | if (joint->node[1].body) { | ||
551 | dBodyAddForce (joint->node[1].body,fm*ax1[0],fm*ax1[1],fm*ax1[2]); | ||
552 | |||
553 | // linear limot torque decoupling step: refer to above discussion | ||
554 | dBodyAddTorque (joint->node[0].body,-fm*ltd[0],-fm*ltd[1], | ||
555 | -fm*ltd[2]); | ||
556 | dBodyAddTorque (joint->node[1].body,-fm*ltd[0],-fm*ltd[1], | ||
557 | -fm*ltd[2]); | ||
558 | } | ||
559 | } | ||
560 | } | ||
561 | } | ||
562 | |||
563 | if (limit) { | ||
564 | dReal k = info->fps * stop_erp; | ||
565 | info->c[row] = -k * limit_err; | ||
566 | info->cfm[row] = stop_cfm; | ||
567 | |||
568 | if (lostop == histop) { | ||
569 | // limited low and high simultaneously | ||
570 | info->lo[row] = -dInfinity; | ||
571 | info->hi[row] = dInfinity; | ||
572 | } | ||
573 | else { | ||
574 | if (limit == 1) { | ||
575 | // low limit | ||
576 | info->lo[row] = 0; | ||
577 | info->hi[row] = dInfinity; | ||
578 | } | ||
579 | else { | ||
580 | // high limit | ||
581 | info->lo[row] = -dInfinity; | ||
582 | info->hi[row] = 0; | ||
583 | } | ||
584 | |||
585 | // deal with bounce | ||
586 | if (bounce > 0) { | ||
587 | // calculate joint velocity | ||
588 | dReal vel; | ||
589 | if (rotational) { | ||
590 | vel = dDOT(joint->node[0].body->avel,ax1); | ||
591 | if (joint->node[1].body) | ||
592 | vel -= dDOT(joint->node[1].body->avel,ax1); | ||
593 | } | ||
594 | else { | ||
595 | vel = dDOT(joint->node[0].body->lvel,ax1); | ||
596 | if (joint->node[1].body) | ||
597 | vel -= dDOT(joint->node[1].body->lvel,ax1); | ||
598 | } | ||
599 | |||
600 | // only apply bounce if the velocity is incoming, and if the | ||
601 | // resulting c[] exceeds what we already have. | ||
602 | if (limit == 1) { | ||
603 | // low limit | ||
604 | if (vel < 0) { | ||
605 | dReal newc = -bounce * vel; | ||
606 | if (newc > info->c[row]) info->c[row] = newc; | ||
607 | } | ||
608 | } | ||
609 | else { | ||
610 | // high limit - all those computations are reversed | ||
611 | if (vel > 0) { | ||
612 | dReal newc = -bounce * vel; | ||
613 | if (newc < info->c[row]) info->c[row] = newc; | ||
614 | } | ||
615 | } | ||
616 | } | ||
617 | } | ||
618 | } | ||
619 | return 1; | ||
620 | } | ||
621 | else return 0; | ||
622 | } | ||
623 | |||
624 | //**************************************************************************** | ||
625 | // ball and socket | ||
626 | |||
627 | static void ballInit (dxJointBall *j) | ||
628 | { | ||
629 | dSetZero (j->anchor1,4); | ||
630 | dSetZero (j->anchor2,4); | ||
631 | } | ||
632 | |||
633 | |||
634 | static void ballGetInfo1 (dxJointBall *j, dxJoint::Info1 *info) | ||
635 | { | ||
636 | info->m = 3; | ||
637 | info->nub = 3; | ||
638 | } | ||
639 | |||
640 | |||
641 | static void ballGetInfo2 (dxJointBall *joint, dxJoint::Info2 *info) | ||
642 | { | ||
643 | setBall (joint,info,joint->anchor1,joint->anchor2); | ||
644 | } | ||
645 | |||
646 | |||
647 | extern "C" void dJointSetBallAnchor (dxJointBall *joint, | ||
648 | dReal x, dReal y, dReal z) | ||
649 | { | ||
650 | dUASSERT(joint,"bad joint argument"); | ||
651 | dUASSERT(joint->vtable == &__dball_vtable,"joint is not a ball"); | ||
652 | setAnchors (joint,x,y,z,joint->anchor1,joint->anchor2); | ||
653 | } | ||
654 | |||
655 | |||
656 | extern "C" void dJointGetBallAnchor (dxJointBall *joint, dVector3 result) | ||
657 | { | ||
658 | dUASSERT(joint,"bad joint argument"); | ||
659 | dUASSERT(result,"bad result argument"); | ||
660 | dUASSERT(joint->vtable == &__dball_vtable,"joint is not a ball"); | ||
661 | if (joint->flags & dJOINT_REVERSE) | ||
662 | getAnchor2 (joint,result,joint->anchor2); | ||
663 | else | ||
664 | getAnchor (joint,result,joint->anchor1); | ||
665 | } | ||
666 | |||
667 | |||
668 | extern "C" void dJointGetBallAnchor2 (dxJointBall *joint, dVector3 result) | ||
669 | { | ||
670 | dUASSERT(joint,"bad joint argument"); | ||
671 | dUASSERT(result,"bad result argument"); | ||
672 | dUASSERT(joint->vtable == &__dball_vtable,"joint is not a ball"); | ||
673 | if (joint->flags & dJOINT_REVERSE) | ||
674 | getAnchor (joint,result,joint->anchor1); | ||
675 | else | ||
676 | getAnchor2 (joint,result,joint->anchor2); | ||
677 | } | ||
678 | |||
679 | |||
680 | dxJoint::Vtable __dball_vtable = { | ||
681 | sizeof(dxJointBall), | ||
682 | (dxJoint::init_fn*) ballInit, | ||
683 | (dxJoint::getInfo1_fn*) ballGetInfo1, | ||
684 | (dxJoint::getInfo2_fn*) ballGetInfo2, | ||
685 | dJointTypeBall}; | ||
686 | |||
687 | //**************************************************************************** | ||
688 | // hinge | ||
689 | |||
690 | static void hingeInit (dxJointHinge *j) | ||
691 | { | ||
692 | dSetZero (j->anchor1,4); | ||
693 | dSetZero (j->anchor2,4); | ||
694 | dSetZero (j->axis1,4); | ||
695 | j->axis1[0] = 1; | ||
696 | dSetZero (j->axis2,4); | ||
697 | j->axis2[0] = 1; | ||
698 | dSetZero (j->qrel,4); | ||
699 | j->limot.init (j->world); | ||
700 | } | ||
701 | |||
702 | |||
703 | static void hingeGetInfo1 (dxJointHinge *j, dxJoint::Info1 *info) | ||
704 | { | ||
705 | info->nub = 5; | ||
706 | |||
707 | // see if joint is powered | ||
708 | if (j->limot.fmax > 0) | ||
709 | info->m = 6; // powered hinge needs an extra constraint row | ||
710 | else info->m = 5; | ||
711 | |||
712 | // see if we're at a joint limit. | ||
713 | if ((j->limot.lostop >= -M_PI || j->limot.histop <= M_PI) && | ||
714 | j->limot.lostop <= j->limot.histop) { | ||
715 | dReal angle = getHingeAngle (j->node[0].body,j->node[1].body,j->axis1, | ||
716 | j->qrel); | ||
717 | if (j->limot.testRotationalLimit (angle)) info->m = 6; | ||
718 | } | ||
719 | } | ||
720 | |||
721 | |||
722 | static void hingeGetInfo2 (dxJointHinge *joint, dxJoint::Info2 *info) | ||
723 | { | ||
724 | // set the three ball-and-socket rows | ||
725 | setBall (joint,info,joint->anchor1,joint->anchor2); | ||
726 | |||
727 | // set the two hinge rows. the hinge axis should be the only unconstrained | ||
728 | // rotational axis, the angular velocity of the two bodies perpendicular to | ||
729 | // the hinge axis should be equal. thus the constraint equations are | ||
730 | // p*w1 - p*w2 = 0 | ||
731 | // q*w1 - q*w2 = 0 | ||
732 | // where p and q are unit vectors normal to the hinge axis, and w1 and w2 | ||
733 | // are the angular velocity vectors of the two bodies. | ||
734 | |||
735 | dVector3 ax1; // length 1 joint axis in global coordinates, from 1st body | ||
736 | dVector3 p,q; // plane space vectors for ax1 | ||
737 | dMULTIPLY0_331 (ax1,joint->node[0].body->R,joint->axis1); | ||
738 | dPlaneSpace (ax1,p,q); | ||
739 | |||
740 | int s3=3*info->rowskip; | ||
741 | int s4=4*info->rowskip; | ||
742 | |||
743 | info->J1a[s3+0] = p[0]; | ||
744 | info->J1a[s3+1] = p[1]; | ||
745 | info->J1a[s3+2] = p[2]; | ||
746 | info->J1a[s4+0] = q[0]; | ||
747 | info->J1a[s4+1] = q[1]; | ||
748 | info->J1a[s4+2] = q[2]; | ||
749 | |||
750 | if (joint->node[1].body) { | ||
751 | info->J2a[s3+0] = -p[0]; | ||
752 | info->J2a[s3+1] = -p[1]; | ||
753 | info->J2a[s3+2] = -p[2]; | ||
754 | info->J2a[s4+0] = -q[0]; | ||
755 | info->J2a[s4+1] = -q[1]; | ||
756 | info->J2a[s4+2] = -q[2]; | ||
757 | } | ||
758 | |||
759 | // compute the right hand side of the constraint equation. set relative | ||
760 | // body velocities along p and q to bring the hinge back into alignment. | ||
761 | // if ax1,ax2 are the unit length hinge axes as computed from body1 and | ||
762 | // body2, we need to rotate both bodies along the axis u = (ax1 x ax2). | ||
763 | // if `theta' is the angle between ax1 and ax2, we need an angular velocity | ||
764 | // along u to cover angle erp*theta in one step : | ||
765 | // |angular_velocity| = angle/time = erp*theta / stepsize | ||
766 | // = (erp*fps) * theta | ||
767 | // angular_velocity = |angular_velocity| * (ax1 x ax2) / |ax1 x ax2| | ||
768 | // = (erp*fps) * theta * (ax1 x ax2) / sin(theta) | ||
769 | // ...as ax1 and ax2 are unit length. if theta is smallish, | ||
770 | // theta ~= sin(theta), so | ||
771 | // angular_velocity = (erp*fps) * (ax1 x ax2) | ||
772 | // ax1 x ax2 is in the plane space of ax1, so we project the angular | ||
773 | // velocity to p and q to find the right hand side. | ||
774 | |||
775 | dVector3 ax2,b; | ||
776 | if (joint->node[1].body) { | ||
777 | dMULTIPLY0_331 (ax2,joint->node[1].body->R,joint->axis2); | ||
778 | } | ||
779 | else { | ||
780 | ax2[0] = joint->axis2[0]; | ||
781 | ax2[1] = joint->axis2[1]; | ||
782 | ax2[2] = joint->axis2[2]; | ||
783 | } | ||
784 | dCROSS (b,=,ax1,ax2); | ||
785 | dReal k = info->fps * info->erp; | ||
786 | info->c[3] = k * dDOT(b,p); | ||
787 | info->c[4] = k * dDOT(b,q); | ||
788 | |||
789 | // if the hinge is powered, or has joint limits, add in the stuff | ||
790 | joint->limot.addLimot (joint,info,5,ax1,1); | ||
791 | } | ||
792 | |||
793 | |||
794 | // compute initial relative rotation body1 -> body2, or env -> body1 | ||
795 | |||
796 | static void hingeComputeInitialRelativeRotation (dxJointHinge *joint) | ||
797 | { | ||
798 | if (joint->node[0].body) { | ||
799 | if (joint->node[1].body) { | ||
800 | dQMultiply1 (joint->qrel,joint->node[0].body->q,joint->node[1].body->q); | ||
801 | } | ||
802 | else { | ||
803 | // set joint->qrel to the transpose of the first body q | ||
804 | joint->qrel[0] = joint->node[0].body->q[0]; | ||
805 | for (int i=1; i<4; i++) joint->qrel[i] = -joint->node[0].body->q[i]; | ||
806 | } | ||
807 | } | ||
808 | } | ||
809 | |||
810 | |||
811 | extern "C" void dJointSetHingeAnchor (dxJointHinge *joint, | ||
812 | dReal x, dReal y, dReal z) | ||
813 | { | ||
814 | dUASSERT(joint,"bad joint argument"); | ||
815 | dUASSERT(joint->vtable == &__dhinge_vtable,"joint is not a hinge"); | ||
816 | setAnchors (joint,x,y,z,joint->anchor1,joint->anchor2); | ||
817 | hingeComputeInitialRelativeRotation (joint); | ||
818 | } | ||
819 | |||
820 | |||
821 | extern "C" void dJointSetHingeAxis (dxJointHinge *joint, | ||
822 | dReal x, dReal y, dReal z) | ||
823 | { | ||
824 | dUASSERT(joint,"bad joint argument"); | ||
825 | dUASSERT(joint->vtable == &__dhinge_vtable,"joint is not a hinge"); | ||
826 | setAxes (joint,x,y,z,joint->axis1,joint->axis2); | ||
827 | hingeComputeInitialRelativeRotation (joint); | ||
828 | } | ||
829 | |||
830 | |||
831 | extern "C" void dJointGetHingeAnchor (dxJointHinge *joint, dVector3 result) | ||
832 | { | ||
833 | dUASSERT(joint,"bad joint argument"); | ||
834 | dUASSERT(result,"bad result argument"); | ||
835 | dUASSERT(joint->vtable == &__dhinge_vtable,"joint is not a hinge"); | ||
836 | if (joint->flags & dJOINT_REVERSE) | ||
837 | getAnchor2 (joint,result,joint->anchor2); | ||
838 | else | ||
839 | getAnchor (joint,result,joint->anchor1); | ||
840 | } | ||
841 | |||
842 | |||
843 | extern "C" void dJointGetHingeAnchor2 (dxJointHinge *joint, dVector3 result) | ||
844 | { | ||
845 | dUASSERT(joint,"bad joint argument"); | ||
846 | dUASSERT(result,"bad result argument"); | ||
847 | dUASSERT(joint->vtable == &__dhinge_vtable,"joint is not a hinge"); | ||
848 | if (joint->flags & dJOINT_REVERSE) | ||
849 | getAnchor (joint,result,joint->anchor1); | ||
850 | else | ||
851 | getAnchor2 (joint,result,joint->anchor2); | ||
852 | } | ||
853 | |||
854 | |||
855 | extern "C" void dJointGetHingeAxis (dxJointHinge *joint, dVector3 result) | ||
856 | { | ||
857 | dUASSERT(joint,"bad joint argument"); | ||
858 | dUASSERT(result,"bad result argument"); | ||
859 | dUASSERT(joint->vtable == &__dhinge_vtable,"joint is not a hinge"); | ||
860 | getAxis (joint,result,joint->axis1); | ||
861 | } | ||
862 | |||
863 | |||
864 | extern "C" void dJointSetHingeParam (dxJointHinge *joint, | ||
865 | int parameter, dReal value) | ||
866 | { | ||
867 | dUASSERT(joint,"bad joint argument"); | ||
868 | dUASSERT(joint->vtable == &__dhinge_vtable,"joint is not a hinge"); | ||
869 | joint->limot.set (parameter,value); | ||
870 | } | ||
871 | |||
872 | |||
873 | extern "C" dReal dJointGetHingeParam (dxJointHinge *joint, int parameter) | ||
874 | { | ||
875 | dUASSERT(joint,"bad joint argument"); | ||
876 | dUASSERT(joint->vtable == &__dhinge_vtable,"joint is not a hinge"); | ||
877 | return joint->limot.get (parameter); | ||
878 | } | ||
879 | |||
880 | |||
881 | extern "C" dReal dJointGetHingeAngle (dxJointHinge *joint) | ||
882 | { | ||
883 | dAASSERT(joint); | ||
884 | dUASSERT(joint->vtable == &__dhinge_vtable,"joint is not a hinge"); | ||
885 | if (joint->node[0].body) { | ||
886 | dReal ang = getHingeAngle (joint->node[0].body,joint->node[1].body,joint->axis1, | ||
887 | joint->qrel); | ||
888 | if (joint->flags & dJOINT_REVERSE) | ||
889 | return -ang; | ||
890 | else | ||
891 | return ang; | ||
892 | } | ||
893 | else return 0; | ||
894 | } | ||
895 | |||
896 | |||
897 | extern "C" dReal dJointGetHingeAngleRate (dxJointHinge *joint) | ||
898 | { | ||
899 | dAASSERT(joint); | ||
900 | dUASSERT(joint->vtable == &__dhinge_vtable,"joint is not a Hinge"); | ||
901 | if (joint->node[0].body) { | ||
902 | dVector3 axis; | ||
903 | dMULTIPLY0_331 (axis,joint->node[0].body->R,joint->axis1); | ||
904 | dReal rate = dDOT(axis,joint->node[0].body->avel); | ||
905 | if (joint->node[1].body) rate -= dDOT(axis,joint->node[1].body->avel); | ||
906 | if (joint->flags & dJOINT_REVERSE) rate = - rate; | ||
907 | return rate; | ||
908 | } | ||
909 | else return 0; | ||
910 | } | ||
911 | |||
912 | |||
913 | extern "C" void dJointAddHingeTorque (dxJointHinge *joint, dReal torque) | ||
914 | { | ||
915 | dVector3 axis; | ||
916 | dAASSERT(joint); | ||
917 | dUASSERT(joint->vtable == &__dhinge_vtable,"joint is not a Hinge"); | ||
918 | |||
919 | if (joint->flags & dJOINT_REVERSE) | ||
920 | torque = -torque; | ||
921 | |||
922 | getAxis (joint,axis,joint->axis1); | ||
923 | axis[0] *= torque; | ||
924 | axis[1] *= torque; | ||
925 | axis[2] *= torque; | ||
926 | |||
927 | if (joint->node[0].body != 0) | ||
928 | dBodyAddTorque (joint->node[0].body, axis[0], axis[1], axis[2]); | ||
929 | if (joint->node[1].body != 0) | ||
930 | dBodyAddTorque(joint->node[1].body, -axis[0], -axis[1], -axis[2]); | ||
931 | } | ||
932 | |||
933 | |||
934 | dxJoint::Vtable __dhinge_vtable = { | ||
935 | sizeof(dxJointHinge), | ||
936 | (dxJoint::init_fn*) hingeInit, | ||
937 | (dxJoint::getInfo1_fn*) hingeGetInfo1, | ||
938 | (dxJoint::getInfo2_fn*) hingeGetInfo2, | ||
939 | dJointTypeHinge}; | ||
940 | |||
941 | //**************************************************************************** | ||
942 | // slider | ||
943 | |||
944 | static void sliderInit (dxJointSlider *j) | ||
945 | { | ||
946 | dSetZero (j->axis1,4); | ||
947 | j->axis1[0] = 1; | ||
948 | dSetZero (j->qrel,4); | ||
949 | dSetZero (j->offset,4); | ||
950 | j->limot.init (j->world); | ||
951 | } | ||
952 | |||
953 | |||
954 | extern "C" dReal dJointGetSliderPosition (dxJointSlider *joint) | ||
955 | { | ||
956 | dUASSERT(joint,"bad joint argument"); | ||
957 | dUASSERT(joint->vtable == &__dslider_vtable,"joint is not a slider"); | ||
958 | |||
959 | // get axis1 in global coordinates | ||
960 | dVector3 ax1,q; | ||
961 | dMULTIPLY0_331 (ax1,joint->node[0].body->R,joint->axis1); | ||
962 | |||
963 | if (joint->node[1].body) { | ||
964 | // get body2 + offset point in global coordinates | ||
965 | dMULTIPLY0_331 (q,joint->node[1].body->R,joint->offset); | ||
966 | for (int i=0; i<3; i++) q[i] = joint->node[0].body->pos[i] - q[i] - | ||
967 | joint->node[1].body->pos[i]; | ||
968 | } | ||
969 | else { | ||
970 | for (int i=0; i<3; i++) q[i] = joint->node[0].body->pos[i] - | ||
971 | joint->offset[i]; | ||
972 | |||
973 | } | ||
974 | return dDOT(ax1,q); | ||
975 | } | ||
976 | |||
977 | |||
978 | extern "C" dReal dJointGetSliderPositionRate (dxJointSlider *joint) | ||
979 | { | ||
980 | dUASSERT(joint,"bad joint argument"); | ||
981 | dUASSERT(joint->vtable == &__dslider_vtable,"joint is not a slider"); | ||
982 | |||
983 | // get axis1 in global coordinates | ||
984 | dVector3 ax1; | ||
985 | dMULTIPLY0_331 (ax1,joint->node[0].body->R,joint->axis1); | ||
986 | |||
987 | if (joint->node[1].body) { | ||
988 | return dDOT(ax1,joint->node[0].body->lvel) - | ||
989 | dDOT(ax1,joint->node[1].body->lvel); | ||
990 | } | ||
991 | else { | ||
992 | return dDOT(ax1,joint->node[0].body->lvel); | ||
993 | } | ||
994 | } | ||
995 | |||
996 | |||
997 | static void sliderGetInfo1 (dxJointSlider *j, dxJoint::Info1 *info) | ||
998 | { | ||
999 | info->nub = 5; | ||
1000 | |||
1001 | // see if joint is powered | ||
1002 | if (j->limot.fmax > 0) | ||
1003 | info->m = 6; // powered slider needs an extra constraint row | ||
1004 | else info->m = 5; | ||
1005 | |||
1006 | // see if we're at a joint limit. | ||
1007 | j->limot.limit = 0; | ||
1008 | if ((j->limot.lostop > -dInfinity || j->limot.histop < dInfinity) && | ||
1009 | j->limot.lostop <= j->limot.histop) { | ||
1010 | // measure joint position | ||
1011 | dReal pos = dJointGetSliderPosition (j); | ||
1012 | if (pos <= j->limot.lostop) { | ||
1013 | j->limot.limit = 1; | ||
1014 | j->limot.limit_err = pos - j->limot.lostop; | ||
1015 | info->m = 6; | ||
1016 | } | ||
1017 | else if (pos >= j->limot.histop) { | ||
1018 | j->limot.limit = 2; | ||
1019 | j->limot.limit_err = pos - j->limot.histop; | ||
1020 | info->m = 6; | ||
1021 | } | ||
1022 | } | ||
1023 | } | ||
1024 | |||
1025 | |||
1026 | static void sliderGetInfo2 (dxJointSlider *joint, dxJoint::Info2 *info) | ||
1027 | { | ||
1028 | int i,s = info->rowskip; | ||
1029 | int s2=2*s,s3=3*s,s4=4*s; | ||
1030 | |||
1031 | // pull out pos and R for both bodies. also get the `connection' | ||
1032 | // vector pos2-pos1. | ||
1033 | |||
1034 | dReal *pos1,*pos2,*R1,*R2; | ||
1035 | dVector3 c; | ||
1036 | pos1 = joint->node[0].body->pos; | ||
1037 | R1 = joint->node[0].body->R; | ||
1038 | if (joint->node[1].body) { | ||
1039 | pos2 = joint->node[1].body->pos; | ||
1040 | R2 = joint->node[1].body->R; | ||
1041 | for (i=0; i<3; i++) c[i] = pos2[i] - pos1[i]; | ||
1042 | } | ||
1043 | else { | ||
1044 | pos2 = 0; | ||
1045 | R2 = 0; | ||
1046 | } | ||
1047 | |||
1048 | // 3 rows to make body rotations equal | ||
1049 | setFixedOrientation(joint, info, joint->qrel, 0); | ||
1050 | |||
1051 | // remaining two rows. we want: vel2 = vel1 + w1 x c ... but this would | ||
1052 | // result in three equations, so we project along the planespace vectors | ||
1053 | // so that sliding along the slider axis is disregarded. for symmetry we | ||
1054 | // also substitute (w1+w2)/2 for w1, as w1 is supposed to equal w2. | ||
1055 | |||
1056 | dVector3 ax1; // joint axis in global coordinates (unit length) | ||
1057 | dVector3 p,q; // plane space of ax1 | ||
1058 | dMULTIPLY0_331 (ax1,R1,joint->axis1); | ||
1059 | dPlaneSpace (ax1,p,q); | ||
1060 | if (joint->node[1].body) { | ||
1061 | dVector3 tmp; | ||
1062 | dCROSS (tmp, = REAL(0.5) * ,c,p); | ||
1063 | for (i=0; i<3; i++) info->J2a[s3+i] = tmp[i]; | ||
1064 | for (i=0; i<3; i++) info->J2a[s3+i] = tmp[i]; | ||
1065 | dCROSS (tmp, = REAL(0.5) * ,c,q); | ||
1066 | for (i=0; i<3; i++) info->J2a[s4+i] = tmp[i]; | ||
1067 | for (i=0; i<3; i++) info->J2a[s4+i] = tmp[i]; | ||
1068 | for (i=0; i<3; i++) info->J2l[s3+i] = -p[i]; | ||
1069 | for (i=0; i<3; i++) info->J2l[s4+i] = -q[i]; | ||
1070 | } | ||
1071 | for (i=0; i<3; i++) info->J1l[s3+i] = p[i]; | ||
1072 | for (i=0; i<3; i++) info->J1l[s4+i] = q[i]; | ||
1073 | |||
1074 | // compute last two elements of right hand side. we want to align the offset | ||
1075 | // point (in body 2's frame) with the center of body 1. | ||
1076 | dReal k = info->fps * info->erp; | ||
1077 | if (joint->node[1].body) { | ||
1078 | dVector3 ofs; // offset point in global coordinates | ||
1079 | dMULTIPLY0_331 (ofs,R2,joint->offset); | ||
1080 | for (i=0; i<3; i++) c[i] += ofs[i]; | ||
1081 | info->c[3] = k * dDOT(p,c); | ||
1082 | info->c[4] = k * dDOT(q,c); | ||
1083 | } | ||
1084 | else { | ||
1085 | dVector3 ofs; // offset point in global coordinates | ||
1086 | for (i=0; i<3; i++) ofs[i] = joint->offset[i] - pos1[i]; | ||
1087 | info->c[3] = k * dDOT(p,ofs); | ||
1088 | info->c[4] = k * dDOT(q,ofs); | ||
1089 | } | ||
1090 | |||
1091 | // if the slider is powered, or has joint limits, add in the extra row | ||
1092 | joint->limot.addLimot (joint,info,5,ax1,0); | ||
1093 | } | ||
1094 | |||
1095 | |||
1096 | extern "C" void dJointSetSliderAxis (dxJointSlider *joint, | ||
1097 | dReal x, dReal y, dReal z) | ||
1098 | { | ||
1099 | int i; | ||
1100 | dUASSERT(joint,"bad joint argument"); | ||
1101 | dUASSERT(joint->vtable == &__dslider_vtable,"joint is not a slider"); | ||
1102 | setAxes (joint,x,y,z,joint->axis1,0); | ||
1103 | |||
1104 | // compute initial relative rotation body1 -> body2, or env -> body1 | ||
1105 | // also compute center of body1 w.r.t body 2 | ||
1106 | if (joint->node[1].body) { | ||
1107 | dQMultiply1 (joint->qrel,joint->node[0].body->q,joint->node[1].body->q); | ||
1108 | dVector3 c; | ||
1109 | for (i=0; i<3; i++) | ||
1110 | c[i] = joint->node[0].body->pos[i] - joint->node[1].body->pos[i]; | ||
1111 | dMULTIPLY1_331 (joint->offset,joint->node[1].body->R,c); | ||
1112 | } | ||
1113 | else { | ||
1114 | // set joint->qrel to the transpose of the first body's q | ||
1115 | joint->qrel[0] = joint->node[0].body->q[0]; | ||
1116 | for (i=1; i<4; i++) joint->qrel[i] = -joint->node[0].body->q[i]; | ||
1117 | for (i=0; i<3; i++) joint->offset[i] = joint->node[0].body->pos[i]; | ||
1118 | } | ||
1119 | } | ||
1120 | |||
1121 | |||
1122 | extern "C" void dJointGetSliderAxis (dxJointSlider *joint, dVector3 result) | ||
1123 | { | ||
1124 | dUASSERT(joint,"bad joint argument"); | ||
1125 | dUASSERT(result,"bad result argument"); | ||
1126 | dUASSERT(joint->vtable == &__dslider_vtable,"joint is not a slider"); | ||
1127 | getAxis (joint,result,joint->axis1); | ||
1128 | } | ||
1129 | |||
1130 | |||
1131 | extern "C" void dJointSetSliderParam (dxJointSlider *joint, | ||
1132 | int parameter, dReal value) | ||
1133 | { | ||
1134 | dUASSERT(joint,"bad joint argument"); | ||
1135 | dUASSERT(joint->vtable == &__dslider_vtable,"joint is not a slider"); | ||
1136 | joint->limot.set (parameter,value); | ||
1137 | } | ||
1138 | |||
1139 | |||
1140 | extern "C" dReal dJointGetSliderParam (dxJointSlider *joint, int parameter) | ||
1141 | { | ||
1142 | dUASSERT(joint,"bad joint argument"); | ||
1143 | dUASSERT(joint->vtable == &__dslider_vtable,"joint is not a slider"); | ||
1144 | return joint->limot.get (parameter); | ||
1145 | } | ||
1146 | |||
1147 | |||
1148 | extern "C" void dJointAddSliderForce (dxJointSlider *joint, dReal force) | ||
1149 | { | ||
1150 | dVector3 axis; | ||
1151 | dUASSERT(joint,"bad joint argument"); | ||
1152 | dUASSERT(joint->vtable == &__dslider_vtable,"joint is not a slider"); | ||
1153 | |||
1154 | if (joint->flags & dJOINT_REVERSE) | ||
1155 | force -= force; | ||
1156 | |||
1157 | getAxis (joint,axis,joint->axis1); | ||
1158 | axis[0] *= force; | ||
1159 | axis[1] *= force; | ||
1160 | axis[2] *= force; | ||
1161 | |||
1162 | if (joint->node[0].body != 0) | ||
1163 | dBodyAddForce (joint->node[0].body,axis[0],axis[1],axis[2]); | ||
1164 | if (joint->node[1].body != 0) | ||
1165 | dBodyAddForce(joint->node[1].body, -axis[0], -axis[1], -axis[2]); | ||
1166 | } | ||
1167 | |||
1168 | |||
1169 | dxJoint::Vtable __dslider_vtable = { | ||
1170 | sizeof(dxJointSlider), | ||
1171 | (dxJoint::init_fn*) sliderInit, | ||
1172 | (dxJoint::getInfo1_fn*) sliderGetInfo1, | ||
1173 | (dxJoint::getInfo2_fn*) sliderGetInfo2, | ||
1174 | dJointTypeSlider}; | ||
1175 | |||
1176 | //**************************************************************************** | ||
1177 | // contact | ||
1178 | |||
1179 | static void contactInit (dxJointContact *j) | ||
1180 | { | ||
1181 | // default frictionless contact. hmmm, this info gets overwritten straight | ||
1182 | // away anyway, so why bother? | ||
1183 | #if 0 /* so don't bother ;) */ | ||
1184 | j->contact.surface.mode = 0; | ||
1185 | j->contact.surface.mu = 0; | ||
1186 | dSetZero (j->contact.geom.pos,4); | ||
1187 | dSetZero (j->contact.geom.normal,4); | ||
1188 | j->contact.geom.depth = 0; | ||
1189 | #endif | ||
1190 | } | ||
1191 | |||
1192 | |||
1193 | static void contactGetInfo1 (dxJointContact *j, dxJoint::Info1 *info) | ||
1194 | { | ||
1195 | // make sure mu's >= 0, then calculate number of constraint rows and number | ||
1196 | // of unbounded rows. | ||
1197 | int m = 1, nub=0; | ||
1198 | if (j->contact.surface.mu < 0) j->contact.surface.mu = 0; | ||
1199 | if (j->contact.surface.mode & dContactMu2) { | ||
1200 | if (j->contact.surface.mu > 0) m++; | ||
1201 | if (j->contact.surface.mu2 < 0) j->contact.surface.mu2 = 0; | ||
1202 | if (j->contact.surface.mu2 > 0) m++; | ||
1203 | if (j->contact.surface.mu == dInfinity) nub ++; | ||
1204 | if (j->contact.surface.mu2 == dInfinity) nub ++; | ||
1205 | } | ||
1206 | else { | ||
1207 | if (j->contact.surface.mu > 0) m += 2; | ||
1208 | if (j->contact.surface.mu == dInfinity) nub += 2; | ||
1209 | } | ||
1210 | |||
1211 | j->the_m = m; | ||
1212 | info->m = m; | ||
1213 | info->nub = nub; | ||
1214 | } | ||
1215 | |||
1216 | |||
1217 | static void contactGetInfo2 (dxJointContact *j, dxJoint::Info2 *info) | ||
1218 | { | ||
1219 | int i,s = info->rowskip; | ||
1220 | int s2 = 2*s; | ||
1221 | |||
1222 | // get normal, with sign adjusted for body1/body2 polarity | ||
1223 | dVector3 normal; | ||
1224 | if (j->flags & dJOINT_REVERSE) { | ||
1225 | normal[0] = - j->contact.geom.normal[0]; | ||
1226 | normal[1] = - j->contact.geom.normal[1]; | ||
1227 | normal[2] = - j->contact.geom.normal[2]; | ||
1228 | } | ||
1229 | else { | ||
1230 | normal[0] = j->contact.geom.normal[0]; | ||
1231 | normal[1] = j->contact.geom.normal[1]; | ||
1232 | normal[2] = j->contact.geom.normal[2]; | ||
1233 | } | ||
1234 | normal[3] = 0; // @@@ hmmm | ||
1235 | |||
1236 | // c1,c2 = contact points with respect to body PORs | ||
1237 | dVector3 c1,c2; | ||
1238 | for (i=0; i<3; i++) c1[i] = j->contact.geom.pos[i] - j->node[0].body->pos[i]; | ||
1239 | |||
1240 | // set jacobian for normal | ||
1241 | info->J1l[0] = normal[0]; | ||
1242 | info->J1l[1] = normal[1]; | ||
1243 | info->J1l[2] = normal[2]; | ||
1244 | dCROSS (info->J1a,=,c1,normal); | ||
1245 | if (j->node[1].body) { | ||
1246 | for (i=0; i<3; i++) c2[i] = j->contact.geom.pos[i] - | ||
1247 | j->node[1].body->pos[i]; | ||
1248 | info->J2l[0] = -normal[0]; | ||
1249 | info->J2l[1] = -normal[1]; | ||
1250 | info->J2l[2] = -normal[2]; | ||
1251 | dCROSS (info->J2a,= -,c2,normal); | ||
1252 | } | ||
1253 | |||
1254 | // set right hand side and cfm value for normal | ||
1255 | dReal erp = info->erp; | ||
1256 | if (j->contact.surface.mode & dContactSoftERP) | ||
1257 | erp = j->contact.surface.soft_erp; | ||
1258 | dReal k = info->fps * erp; | ||
1259 | info->c[0] = k*j->contact.geom.depth; | ||
1260 | if (j->contact.surface.mode & dContactSoftCFM) | ||
1261 | info->cfm[0] = j->contact.surface.soft_cfm; | ||
1262 | |||
1263 | // deal with bounce | ||
1264 | if (j->contact.surface.mode & dContactBounce) { | ||
1265 | // calculate outgoing velocity (-ve for incoming contact) | ||
1266 | dReal outgoing = dDOT(info->J1l,j->node[0].body->lvel) + | ||
1267 | dDOT(info->J1a,j->node[0].body->avel); | ||
1268 | if (j->node[1].body) { | ||
1269 | outgoing += dDOT(info->J2l,j->node[1].body->lvel) + | ||
1270 | dDOT(info->J2a,j->node[1].body->avel); | ||
1271 | } | ||
1272 | // only apply bounce if the outgoing velocity is greater than the | ||
1273 | // threshold, and if the resulting c[0] exceeds what we already have. | ||
1274 | if (j->contact.surface.bounce_vel >= 0 && | ||
1275 | (-outgoing) > j->contact.surface.bounce_vel) { | ||
1276 | dReal newc = - j->contact.surface.bounce * outgoing; | ||
1277 | if (newc > info->c[0]) info->c[0] = newc; | ||
1278 | } | ||
1279 | } | ||
1280 | |||
1281 | // set LCP limits for normal | ||
1282 | info->lo[0] = 0; | ||
1283 | info->hi[0] = dInfinity; | ||
1284 | |||
1285 | // now do jacobian for tangential forces | ||
1286 | dVector3 t1,t2; // two vectors tangential to normal | ||
1287 | |||
1288 | // first friction direction | ||
1289 | if (j->the_m >= 2) { | ||
1290 | if (j->contact.surface.mode & dContactFDir1) { // use fdir1 ? | ||
1291 | t1[0] = j->contact.fdir1[0]; | ||
1292 | t1[1] = j->contact.fdir1[1]; | ||
1293 | t1[2] = j->contact.fdir1[2]; | ||
1294 | dCROSS (t2,=,normal,t1); | ||
1295 | } | ||
1296 | else { | ||
1297 | dPlaneSpace (normal,t1,t2); | ||
1298 | } | ||
1299 | info->J1l[s+0] = t1[0]; | ||
1300 | info->J1l[s+1] = t1[1]; | ||
1301 | info->J1l[s+2] = t1[2]; | ||
1302 | dCROSS (info->J1a+s,=,c1,t1); | ||
1303 | if (j->node[1].body) { | ||
1304 | info->J2l[s+0] = -t1[0]; | ||
1305 | info->J2l[s+1] = -t1[1]; | ||
1306 | info->J2l[s+2] = -t1[2]; | ||
1307 | dCROSS (info->J2a+s,= -,c2,t1); | ||
1308 | } | ||
1309 | // set right hand side | ||
1310 | if (j->contact.surface.mode & dContactMotion1) { | ||
1311 | info->c[1] = j->contact.surface.motion1; | ||
1312 | } | ||
1313 | // set LCP bounds and friction index. this depends on the approximation | ||
1314 | // mode | ||
1315 | info->lo[1] = -j->contact.surface.mu; | ||
1316 | info->hi[1] = j->contact.surface.mu; | ||
1317 | if (j->contact.surface.mode & dContactApprox1_1) info->findex[1] = 0; | ||
1318 | |||
1319 | // set slip (constraint force mixing) | ||
1320 | if (j->contact.surface.mode & dContactSlip1) | ||
1321 | info->cfm[1] = j->contact.surface.slip1; | ||
1322 | } | ||
1323 | |||
1324 | // second friction direction | ||
1325 | if (j->the_m >= 3) { | ||
1326 | info->J1l[s2+0] = t2[0]; | ||
1327 | info->J1l[s2+1] = t2[1]; | ||
1328 | info->J1l[s2+2] = t2[2]; | ||
1329 | dCROSS (info->J1a+s2,=,c1,t2); | ||
1330 | if (j->node[1].body) { | ||
1331 | info->J2l[s2+0] = -t2[0]; | ||
1332 | info->J2l[s2+1] = -t2[1]; | ||
1333 | info->J2l[s2+2] = -t2[2]; | ||
1334 | dCROSS (info->J2a+s2,= -,c2,t2); | ||
1335 | } | ||
1336 | // set right hand side | ||
1337 | if (j->contact.surface.mode & dContactMotion2) { | ||
1338 | info->c[2] = j->contact.surface.motion2; | ||
1339 | } | ||
1340 | // set LCP bounds and friction index. this depends on the approximation | ||
1341 | // mode | ||
1342 | if (j->contact.surface.mode & dContactMu2) { | ||
1343 | info->lo[2] = -j->contact.surface.mu2; | ||
1344 | info->hi[2] = j->contact.surface.mu2; | ||
1345 | } | ||
1346 | else { | ||
1347 | info->lo[2] = -j->contact.surface.mu; | ||
1348 | info->hi[2] = j->contact.surface.mu; | ||
1349 | } | ||
1350 | if (j->contact.surface.mode & dContactApprox1_2) info->findex[2] = 0; | ||
1351 | |||
1352 | // set slip (constraint force mixing) | ||
1353 | if (j->contact.surface.mode & dContactSlip2) | ||
1354 | info->cfm[2] = j->contact.surface.slip2; | ||
1355 | } | ||
1356 | } | ||
1357 | |||
1358 | |||
1359 | dxJoint::Vtable __dcontact_vtable = { | ||
1360 | sizeof(dxJointContact), | ||
1361 | (dxJoint::init_fn*) contactInit, | ||
1362 | (dxJoint::getInfo1_fn*) contactGetInfo1, | ||
1363 | (dxJoint::getInfo2_fn*) contactGetInfo2, | ||
1364 | dJointTypeContact}; | ||
1365 | |||
1366 | //**************************************************************************** | ||
1367 | // hinge 2. note that this joint must be attached to two bodies for it to work | ||
1368 | |||
1369 | static dReal measureHinge2Angle (dxJointHinge2 *joint) | ||
1370 | { | ||
1371 | dVector3 a1,a2; | ||
1372 | dMULTIPLY0_331 (a1,joint->node[1].body->R,joint->axis2); | ||
1373 | dMULTIPLY1_331 (a2,joint->node[0].body->R,a1); | ||
1374 | dReal x = dDOT(joint->v1,a2); | ||
1375 | dReal y = dDOT(joint->v2,a2); | ||
1376 | return -dAtan2 (y,x); | ||
1377 | } | ||
1378 | |||
1379 | |||
1380 | static void hinge2Init (dxJointHinge2 *j) | ||
1381 | { | ||
1382 | dSetZero (j->anchor1,4); | ||
1383 | dSetZero (j->anchor2,4); | ||
1384 | dSetZero (j->axis1,4); | ||
1385 | j->axis1[0] = 1; | ||
1386 | dSetZero (j->axis2,4); | ||
1387 | j->axis2[1] = 1; | ||
1388 | j->c0 = 0; | ||
1389 | j->s0 = 0; | ||
1390 | |||
1391 | dSetZero (j->v1,4); | ||
1392 | j->v1[0] = 1; | ||
1393 | dSetZero (j->v2,4); | ||
1394 | j->v2[1] = 1; | ||
1395 | |||
1396 | j->limot1.init (j->world); | ||
1397 | j->limot2.init (j->world); | ||
1398 | |||
1399 | j->susp_erp = j->world->global_erp; | ||
1400 | j->susp_cfm = j->world->global_cfm; | ||
1401 | |||
1402 | j->flags |= dJOINT_TWOBODIES; | ||
1403 | } | ||
1404 | |||
1405 | |||
1406 | static void hinge2GetInfo1 (dxJointHinge2 *j, dxJoint::Info1 *info) | ||
1407 | { | ||
1408 | info->m = 4; | ||
1409 | info->nub = 4; | ||
1410 | |||
1411 | // see if we're powered or at a joint limit for axis 1 | ||
1412 | int atlimit=0; | ||
1413 | if ((j->limot1.lostop >= -M_PI || j->limot1.histop <= M_PI) && | ||
1414 | j->limot1.lostop <= j->limot1.histop) { | ||
1415 | dReal angle = measureHinge2Angle (j); | ||
1416 | if (j->limot1.testRotationalLimit (angle)) atlimit = 1; | ||
1417 | } | ||
1418 | if (atlimit || j->limot1.fmax > 0) info->m++; | ||
1419 | |||
1420 | // see if we're powering axis 2 (we currently never limit this axis) | ||
1421 | j->limot2.limit = 0; | ||
1422 | if (j->limot2.fmax > 0) info->m++; | ||
1423 | } | ||
1424 | |||
1425 | |||
1426 | // macro that computes ax1,ax2 = axis 1 and 2 in global coordinates (they are | ||
1427 | // relative to body 1 and 2 initially) and then computes the constrained | ||
1428 | // rotational axis as the cross product of ax1 and ax2. | ||
1429 | // the sin and cos of the angle between axis 1 and 2 is computed, this comes | ||
1430 | // from dot and cross product rules. | ||
1431 | |||
1432 | #define HINGE2_GET_AXIS_INFO(axis,sin_angle,cos_angle) \ | ||
1433 | dVector3 ax1,ax2; \ | ||
1434 | dMULTIPLY0_331 (ax1,joint->node[0].body->R,joint->axis1); \ | ||
1435 | dMULTIPLY0_331 (ax2,joint->node[1].body->R,joint->axis2); \ | ||
1436 | dCROSS (axis,=,ax1,ax2); \ | ||
1437 | sin_angle = dSqrt (axis[0]*axis[0] + axis[1]*axis[1] + axis[2]*axis[2]); \ | ||
1438 | cos_angle = dDOT (ax1,ax2); | ||
1439 | |||
1440 | |||
1441 | static void hinge2GetInfo2 (dxJointHinge2 *joint, dxJoint::Info2 *info) | ||
1442 | { | ||
1443 | // get information we need to set the hinge row | ||
1444 | dReal s,c; | ||
1445 | dVector3 q; | ||
1446 | HINGE2_GET_AXIS_INFO (q,s,c); | ||
1447 | dNormalize3 (q); // @@@ quicker: divide q by s ? | ||
1448 | |||
1449 | // set the three ball-and-socket rows (aligned to the suspension axis ax1) | ||
1450 | setBall2 (joint,info,joint->anchor1,joint->anchor2,ax1,joint->susp_erp); | ||
1451 | |||
1452 | // set the hinge row | ||
1453 | int s3=3*info->rowskip; | ||
1454 | info->J1a[s3+0] = q[0]; | ||
1455 | info->J1a[s3+1] = q[1]; | ||
1456 | info->J1a[s3+2] = q[2]; | ||
1457 | if (joint->node[1].body) { | ||
1458 | info->J2a[s3+0] = -q[0]; | ||
1459 | info->J2a[s3+1] = -q[1]; | ||
1460 | info->J2a[s3+2] = -q[2]; | ||
1461 | } | ||
1462 | |||
1463 | // compute the right hand side for the constrained rotational DOF. | ||
1464 | // axis 1 and axis 2 are separated by an angle `theta'. the desired | ||
1465 | // separation angle is theta0. sin(theta0) and cos(theta0) are recorded | ||
1466 | // in the joint structure. the correcting angular velocity is: | ||
1467 | // |angular_velocity| = angle/time = erp*(theta0-theta) / stepsize | ||
1468 | // = (erp*fps) * (theta0-theta) | ||
1469 | // (theta0-theta) can be computed using the following small-angle-difference | ||
1470 | // approximation: | ||
1471 | // theta0-theta ~= tan(theta0-theta) | ||
1472 | // = sin(theta0-theta)/cos(theta0-theta) | ||
1473 | // = (c*s0 - s*c0) / (c*c0 + s*s0) | ||
1474 | // = c*s0 - s*c0 assuming c*c0 + s*s0 ~= 1 | ||
1475 | // where c = cos(theta), s = sin(theta) | ||
1476 | // c0 = cos(theta0), s0 = sin(theta0) | ||
1477 | |||
1478 | dReal k = info->fps * info->erp; | ||
1479 | info->c[3] = k * (joint->c0 * s - joint->s0 * c); | ||
1480 | |||
1481 | // if the axis1 hinge is powered, or has joint limits, add in more stuff | ||
1482 | int row = 4 + joint->limot1.addLimot (joint,info,4,ax1,1); | ||
1483 | |||
1484 | // if the axis2 hinge is powered, add in more stuff | ||
1485 | joint->limot2.addLimot (joint,info,row,ax2,1); | ||
1486 | |||
1487 | // set parameter for the suspension | ||
1488 | info->cfm[0] = joint->susp_cfm; | ||
1489 | } | ||
1490 | |||
1491 | |||
1492 | // compute vectors v1 and v2 (embedded in body1), used to measure angle | ||
1493 | // between body 1 and body 2 | ||
1494 | |||
1495 | static void makeHinge2V1andV2 (dxJointHinge2 *joint) | ||
1496 | { | ||
1497 | if (joint->node[0].body) { | ||
1498 | // get axis 1 and 2 in global coords | ||
1499 | dVector3 ax1,ax2,v; | ||
1500 | dMULTIPLY0_331 (ax1,joint->node[0].body->R,joint->axis1); | ||
1501 | dMULTIPLY0_331 (ax2,joint->node[1].body->R,joint->axis2); | ||
1502 | |||
1503 | // don't do anything if the axis1 or axis2 vectors are zero or the same | ||
1504 | if ((ax1[0]==0 && ax1[1]==0 && ax1[2]==0) || | ||
1505 | (ax2[0]==0 && ax2[1]==0 && ax2[2]==0) || | ||
1506 | (ax1[0]==ax2[0] && ax1[1]==ax2[1] && ax1[2]==ax2[2])) return; | ||
1507 | |||
1508 | // modify axis 2 so it's perpendicular to axis 1 | ||
1509 | dReal k = dDOT(ax1,ax2); | ||
1510 | for (int i=0; i<3; i++) ax2[i] -= k*ax1[i]; | ||
1511 | dNormalize3 (ax2); | ||
1512 | |||
1513 | // make v1 = modified axis2, v2 = axis1 x (modified axis2) | ||
1514 | dCROSS (v,=,ax1,ax2); | ||
1515 | dMULTIPLY1_331 (joint->v1,joint->node[0].body->R,ax2); | ||
1516 | dMULTIPLY1_331 (joint->v2,joint->node[0].body->R,v); | ||
1517 | } | ||
1518 | } | ||
1519 | |||
1520 | |||
1521 | extern "C" void dJointSetHinge2Anchor (dxJointHinge2 *joint, | ||
1522 | dReal x, dReal y, dReal z) | ||
1523 | { | ||
1524 | dUASSERT(joint,"bad joint argument"); | ||
1525 | dUASSERT(joint->vtable == &__dhinge2_vtable,"joint is not a hinge2"); | ||
1526 | setAnchors (joint,x,y,z,joint->anchor1,joint->anchor2); | ||
1527 | makeHinge2V1andV2 (joint); | ||
1528 | } | ||
1529 | |||
1530 | |||
1531 | extern "C" void dJointSetHinge2Axis1 (dxJointHinge2 *joint, | ||
1532 | dReal x, dReal y, dReal z) | ||
1533 | { | ||
1534 | dUASSERT(joint,"bad joint argument"); | ||
1535 | dUASSERT(joint->vtable == &__dhinge2_vtable,"joint is not a hinge2"); | ||
1536 | if (joint->node[0].body) { | ||
1537 | dReal q[4]; | ||
1538 | q[0] = x; | ||
1539 | q[1] = y; | ||
1540 | q[2] = z; | ||
1541 | q[3] = 0; | ||
1542 | dNormalize3 (q); | ||
1543 | dMULTIPLY1_331 (joint->axis1,joint->node[0].body->R,q); | ||
1544 | joint->axis1[3] = 0; | ||
1545 | |||
1546 | // compute the sin and cos of the angle between axis 1 and axis 2 | ||
1547 | dVector3 ax; | ||
1548 | HINGE2_GET_AXIS_INFO(ax,joint->s0,joint->c0); | ||
1549 | } | ||
1550 | makeHinge2V1andV2 (joint); | ||
1551 | } | ||
1552 | |||
1553 | |||
1554 | extern "C" void dJointSetHinge2Axis2 (dxJointHinge2 *joint, | ||
1555 | dReal x, dReal y, dReal z) | ||
1556 | { | ||
1557 | dUASSERT(joint,"bad joint argument"); | ||
1558 | dUASSERT(joint->vtable == &__dhinge2_vtable,"joint is not a hinge2"); | ||
1559 | if (joint->node[1].body) { | ||
1560 | dReal q[4]; | ||
1561 | q[0] = x; | ||
1562 | q[1] = y; | ||
1563 | q[2] = z; | ||
1564 | q[3] = 0; | ||
1565 | dNormalize3 (q); | ||
1566 | dMULTIPLY1_331 (joint->axis2,joint->node[1].body->R,q); | ||
1567 | joint->axis1[3] = 0; | ||
1568 | |||
1569 | // compute the sin and cos of the angle between axis 1 and axis 2 | ||
1570 | dVector3 ax; | ||
1571 | HINGE2_GET_AXIS_INFO(ax,joint->s0,joint->c0); | ||
1572 | } | ||
1573 | makeHinge2V1andV2 (joint); | ||
1574 | } | ||
1575 | |||
1576 | |||
1577 | extern "C" void dJointSetHinge2Param (dxJointHinge2 *joint, | ||
1578 | int parameter, dReal value) | ||
1579 | { | ||
1580 | dUASSERT(joint,"bad joint argument"); | ||
1581 | dUASSERT(joint->vtable == &__dhinge2_vtable,"joint is not a hinge2"); | ||
1582 | if ((parameter & 0xff00) == 0x100) { | ||
1583 | joint->limot2.set (parameter & 0xff,value); | ||
1584 | } | ||
1585 | else { | ||
1586 | if (parameter == dParamSuspensionERP) joint->susp_erp = value; | ||
1587 | else if (parameter == dParamSuspensionCFM) joint->susp_cfm = value; | ||
1588 | else joint->limot1.set (parameter,value); | ||
1589 | } | ||
1590 | } | ||
1591 | |||
1592 | |||
1593 | extern "C" void dJointGetHinge2Anchor (dxJointHinge2 *joint, dVector3 result) | ||
1594 | { | ||
1595 | dUASSERT(joint,"bad joint argument"); | ||
1596 | dUASSERT(result,"bad result argument"); | ||
1597 | dUASSERT(joint->vtable == &__dhinge2_vtable,"joint is not a hinge2"); | ||
1598 | if (joint->flags & dJOINT_REVERSE) | ||
1599 | getAnchor2 (joint,result,joint->anchor2); | ||
1600 | else | ||
1601 | getAnchor (joint,result,joint->anchor1); | ||
1602 | } | ||
1603 | |||
1604 | |||
1605 | extern "C" void dJointGetHinge2Anchor2 (dxJointHinge2 *joint, dVector3 result) | ||
1606 | { | ||
1607 | dUASSERT(joint,"bad joint argument"); | ||
1608 | dUASSERT(result,"bad result argument"); | ||
1609 | dUASSERT(joint->vtable == &__dhinge2_vtable,"joint is not a hinge2"); | ||
1610 | if (joint->flags & dJOINT_REVERSE) | ||
1611 | getAnchor (joint,result,joint->anchor1); | ||
1612 | else | ||
1613 | getAnchor2 (joint,result,joint->anchor2); | ||
1614 | } | ||
1615 | |||
1616 | |||
1617 | extern "C" void dJointGetHinge2Axis1 (dxJointHinge2 *joint, dVector3 result) | ||
1618 | { | ||
1619 | dUASSERT(joint,"bad joint argument"); | ||
1620 | dUASSERT(result,"bad result argument"); | ||
1621 | dUASSERT(joint->vtable == &__dhinge2_vtable,"joint is not a hinge2"); | ||
1622 | if (joint->node[0].body) { | ||
1623 | dMULTIPLY0_331 (result,joint->node[0].body->R,joint->axis1); | ||
1624 | } | ||
1625 | } | ||
1626 | |||
1627 | |||
1628 | extern "C" void dJointGetHinge2Axis2 (dxJointHinge2 *joint, dVector3 result) | ||
1629 | { | ||
1630 | dUASSERT(joint,"bad joint argument"); | ||
1631 | dUASSERT(result,"bad result argument"); | ||
1632 | dUASSERT(joint->vtable == &__dhinge2_vtable,"joint is not a hinge2"); | ||
1633 | if (joint->node[1].body) { | ||
1634 | dMULTIPLY0_331 (result,joint->node[1].body->R,joint->axis2); | ||
1635 | } | ||
1636 | } | ||
1637 | |||
1638 | |||
1639 | extern "C" dReal dJointGetHinge2Param (dxJointHinge2 *joint, int parameter) | ||
1640 | { | ||
1641 | dUASSERT(joint,"bad joint argument"); | ||
1642 | dUASSERT(joint->vtable == &__dhinge2_vtable,"joint is not a hinge2"); | ||
1643 | if ((parameter & 0xff00) == 0x100) { | ||
1644 | return joint->limot2.get (parameter & 0xff); | ||
1645 | } | ||
1646 | else { | ||
1647 | if (parameter == dParamSuspensionERP) return joint->susp_erp; | ||
1648 | else if (parameter == dParamSuspensionCFM) return joint->susp_cfm; | ||
1649 | else return joint->limot1.get (parameter); | ||
1650 | } | ||
1651 | } | ||
1652 | |||
1653 | |||
1654 | extern "C" dReal dJointGetHinge2Angle1 (dxJointHinge2 *joint) | ||
1655 | { | ||
1656 | dUASSERT(joint,"bad joint argument"); | ||
1657 | dUASSERT(joint->vtable == &__dhinge2_vtable,"joint is not a hinge2"); | ||
1658 | if (joint->node[0].body) return measureHinge2Angle (joint); | ||
1659 | else return 0; | ||
1660 | } | ||
1661 | |||
1662 | |||
1663 | extern "C" dReal dJointGetHinge2Angle1Rate (dxJointHinge2 *joint) | ||
1664 | { | ||
1665 | dUASSERT(joint,"bad joint argument"); | ||
1666 | dUASSERT(joint->vtable == &__dhinge2_vtable,"joint is not a hinge2"); | ||
1667 | if (joint->node[0].body) { | ||
1668 | dVector3 axis; | ||
1669 | dMULTIPLY0_331 (axis,joint->node[0].body->R,joint->axis1); | ||
1670 | dReal rate = dDOT(axis,joint->node[0].body->avel); | ||
1671 | if (joint->node[1].body) rate -= dDOT(axis,joint->node[1].body->avel); | ||
1672 | return rate; | ||
1673 | } | ||
1674 | else return 0; | ||
1675 | } | ||
1676 | |||
1677 | |||
1678 | extern "C" dReal dJointGetHinge2Angle2Rate (dxJointHinge2 *joint) | ||
1679 | { | ||
1680 | dUASSERT(joint,"bad joint argument"); | ||
1681 | dUASSERT(joint->vtable == &__dhinge2_vtable,"joint is not a hinge2"); | ||
1682 | if (joint->node[0].body && joint->node[1].body) { | ||
1683 | dVector3 axis; | ||
1684 | dMULTIPLY0_331 (axis,joint->node[1].body->R,joint->axis2); | ||
1685 | dReal rate = dDOT(axis,joint->node[0].body->avel); | ||
1686 | if (joint->node[1].body) rate -= dDOT(axis,joint->node[1].body->avel); | ||
1687 | return rate; | ||
1688 | } | ||
1689 | else return 0; | ||
1690 | } | ||
1691 | |||
1692 | |||
1693 | extern "C" void dJointAddHinge2Torques (dxJointHinge2 *joint, dReal torque1, dReal torque2) | ||
1694 | { | ||
1695 | dVector3 axis1, axis2; | ||
1696 | dUASSERT(joint,"bad joint argument"); | ||
1697 | dUASSERT(joint->vtable == &__dhinge2_vtable,"joint is not a hinge2"); | ||
1698 | |||
1699 | if (joint->node[0].body && joint->node[1].body) { | ||
1700 | dMULTIPLY0_331 (axis1,joint->node[0].body->R,joint->axis1); | ||
1701 | dMULTIPLY0_331 (axis2,joint->node[1].body->R,joint->axis2); | ||
1702 | axis1[0] = axis1[0] * torque1 + axis2[0] * torque2; | ||
1703 | axis1[1] = axis1[1] * torque1 + axis2[1] * torque2; | ||
1704 | axis1[2] = axis1[2] * torque1 + axis2[2] * torque2; | ||
1705 | dBodyAddTorque (joint->node[0].body,axis1[0],axis1[1],axis1[2]); | ||
1706 | dBodyAddTorque(joint->node[1].body, -axis1[0], -axis1[1], -axis1[2]); | ||
1707 | } | ||
1708 | } | ||
1709 | |||
1710 | |||
1711 | dxJoint::Vtable __dhinge2_vtable = { | ||
1712 | sizeof(dxJointHinge2), | ||
1713 | (dxJoint::init_fn*) hinge2Init, | ||
1714 | (dxJoint::getInfo1_fn*) hinge2GetInfo1, | ||
1715 | (dxJoint::getInfo2_fn*) hinge2GetInfo2, | ||
1716 | dJointTypeHinge2}; | ||
1717 | |||
1718 | //**************************************************************************** | ||
1719 | // universal | ||
1720 | |||
1721 | // I just realized that the universal joint is equivalent to a hinge 2 joint with | ||
1722 | // perfectly stiff suspension. By comparing the hinge 2 implementation to | ||
1723 | // the universal implementation, you may be able to improve this | ||
1724 | // implementation (or, less likely, the hinge2 implementation). | ||
1725 | |||
1726 | static void universalInit (dxJointUniversal *j) | ||
1727 | { | ||
1728 | dSetZero (j->anchor1,4); | ||
1729 | dSetZero (j->anchor2,4); | ||
1730 | dSetZero (j->axis1,4); | ||
1731 | j->axis1[0] = 1; | ||
1732 | dSetZero (j->axis2,4); | ||
1733 | j->axis2[1] = 1; | ||
1734 | dSetZero(j->qrel1,4); | ||
1735 | dSetZero(j->qrel2,4); | ||
1736 | j->limot1.init (j->world); | ||
1737 | j->limot2.init (j->world); | ||
1738 | } | ||
1739 | |||
1740 | |||
1741 | static void getUniversalAxes(dxJointUniversal *joint, dVector3 ax1, dVector3 ax2) | ||
1742 | { | ||
1743 | // This says "ax1 = joint->node[0].body->R * joint->axis1" | ||
1744 | dMULTIPLY0_331 (ax1,joint->node[0].body->R,joint->axis1); | ||
1745 | |||
1746 | if (joint->node[1].body) { | ||
1747 | dMULTIPLY0_331 (ax2,joint->node[1].body->R,joint->axis2); | ||
1748 | } | ||
1749 | else { | ||
1750 | ax2[0] = joint->axis2[0]; | ||
1751 | ax2[1] = joint->axis2[1]; | ||
1752 | ax2[2] = joint->axis2[2]; | ||
1753 | } | ||
1754 | } | ||
1755 | |||
1756 | |||
1757 | static dReal getUniversalAngle1(dxJointUniversal *joint) | ||
1758 | { | ||
1759 | if (joint->node[0].body) { | ||
1760 | // length 1 joint axis in global coordinates, from each body | ||
1761 | dVector3 ax1, ax2; | ||
1762 | dMatrix3 R; | ||
1763 | dQuaternion qcross, qq, qrel; | ||
1764 | |||
1765 | getUniversalAxes (joint,ax1,ax2); | ||
1766 | |||
1767 | // It should be possible to get both angles without explicitly | ||
1768 | // constructing the rotation matrix of the cross. Basically, | ||
1769 | // orientation of the cross about axis1 comes from body 2, | ||
1770 | // about axis 2 comes from body 1, and the perpendicular | ||
1771 | // axis can come from the two bodies somehow. (We don't really | ||
1772 | // want to assume it's 90 degrees, because in general the | ||
1773 | // constraints won't be perfectly satisfied, or even very well | ||
1774 | // satisfied.) | ||
1775 | // | ||
1776 | // However, we'd need a version of getHingeAngleFromRElativeQuat() | ||
1777 | // that CAN handle when its relative quat is rotated along a direction | ||
1778 | // other than the given axis. What I have here works, | ||
1779 | // although it's probably much slower than need be. | ||
1780 | |||
1781 | dRFrom2Axes(R, ax1[0], ax1[1], ax1[2], ax2[0], ax2[1], ax2[2]); | ||
1782 | dRtoQ (R,qcross); | ||
1783 | |||
1784 | // This code is essential the same as getHingeAngle(), see the comments | ||
1785 | // there for details. | ||
1786 | |||
1787 | // get qrel = relative rotation between node[0] and the cross | ||
1788 | dQMultiply1 (qq,joint->node[0].body->q,qcross); | ||
1789 | dQMultiply2 (qrel,qq,joint->qrel1); | ||
1790 | |||
1791 | return getHingeAngleFromRelativeQuat(qrel, joint->axis1); | ||
1792 | } | ||
1793 | return 0; | ||
1794 | } | ||
1795 | |||
1796 | |||
1797 | static dReal getUniversalAngle2(dxJointUniversal *joint) | ||
1798 | { | ||
1799 | if (joint->node[0].body) { | ||
1800 | // length 1 joint axis in global coordinates, from each body | ||
1801 | dVector3 ax1, ax2; | ||
1802 | dMatrix3 R; | ||
1803 | dQuaternion qcross, qq, qrel; | ||
1804 | |||
1805 | getUniversalAxes (joint,ax1,ax2); | ||
1806 | |||
1807 | // It should be possible to get both angles without explicitly | ||
1808 | // constructing the rotation matrix of the cross. Basically, | ||
1809 | // orientation of the cross about axis1 comes from body 2, | ||
1810 | // about axis 2 comes from body 1, and the perpendicular | ||
1811 | // axis can come from the two bodies somehow. (We don't really | ||
1812 | // want to assume it's 90 degrees, because in general the | ||
1813 | // constraints won't be perfectly satisfied, or even very well | ||
1814 | // satisfied.) | ||
1815 | // | ||
1816 | // However, we'd need a version of getHingeAngleFromRElativeQuat() | ||
1817 | // that CAN handle when its relative quat is rotated along a direction | ||
1818 | // other than the given axis. What I have here works, | ||
1819 | // although it's probably much slower than need be. | ||
1820 | |||
1821 | dRFrom2Axes(R, ax2[0], ax2[1], ax2[2], ax1[0], ax1[1], ax1[2]); | ||
1822 | dRtoQ(R, qcross); | ||
1823 | |||
1824 | if (joint->node[1].body) { | ||
1825 | dQMultiply1 (qq, joint->node[1].body->q, qcross); | ||
1826 | dQMultiply2 (qrel,qq,joint->qrel2); | ||
1827 | } | ||
1828 | else { | ||
1829 | // pretend joint->node[1].body->q is the identity | ||
1830 | dQMultiply2 (qrel,qcross, joint->qrel2); | ||
1831 | } | ||
1832 | |||
1833 | return - getHingeAngleFromRelativeQuat(qrel, joint->axis2); | ||
1834 | } | ||
1835 | return 0; | ||
1836 | } | ||
1837 | |||
1838 | |||
1839 | static void universalGetInfo1 (dxJointUniversal *j, dxJoint::Info1 *info) | ||
1840 | { | ||
1841 | info->nub = 4; | ||
1842 | info->m = 4; | ||
1843 | |||
1844 | // see if we're powered or at a joint limit. | ||
1845 | bool constraint1 = j->limot1.fmax > 0; | ||
1846 | bool constraint2 = j->limot2.fmax > 0; | ||
1847 | |||
1848 | bool limiting1 = (j->limot1.lostop >= -M_PI || j->limot1.histop <= M_PI) && | ||
1849 | j->limot1.lostop <= j->limot1.histop; | ||
1850 | bool limiting2 = (j->limot2.lostop >= -M_PI || j->limot2.histop <= M_PI) && | ||
1851 | j->limot2.lostop <= j->limot2.histop; | ||
1852 | |||
1853 | // We need to call testRotationLimit() even if we're motored, since it | ||
1854 | // records the result. | ||
1855 | if (limiting1 || limiting2) { | ||
1856 | dReal angle1, angle2; | ||
1857 | angle1 = getUniversalAngle1(j); | ||
1858 | angle2 = getUniversalAngle2(j); | ||
1859 | if (limiting1 && j->limot1.testRotationalLimit (angle1)) constraint1 = true; | ||
1860 | if (limiting2 && j->limot2.testRotationalLimit (angle2)) constraint2 = true; | ||
1861 | } | ||
1862 | if (constraint1) | ||
1863 | info->m++; | ||
1864 | if (constraint2) | ||
1865 | info->m++; | ||
1866 | } | ||
1867 | |||
1868 | |||
1869 | static void universalGetInfo2 (dxJointUniversal *joint, dxJoint::Info2 *info) | ||
1870 | { | ||
1871 | // set the three ball-and-socket rows | ||
1872 | setBall (joint,info,joint->anchor1,joint->anchor2); | ||
1873 | |||
1874 | // set the universal joint row. the angular velocity about an axis | ||
1875 | // perpendicular to both joint axes should be equal. thus the constraint | ||
1876 | // equation is | ||
1877 | // p*w1 - p*w2 = 0 | ||
1878 | // where p is a vector normal to both joint axes, and w1 and w2 | ||
1879 | // are the angular velocity vectors of the two bodies. | ||
1880 | |||
1881 | // length 1 joint axis in global coordinates, from each body | ||
1882 | dVector3 ax1, ax2; | ||
1883 | dVector3 ax2_temp; | ||
1884 | // length 1 vector perpendicular to ax1 and ax2. Neither body can rotate | ||
1885 | // about this. | ||
1886 | dVector3 p; | ||
1887 | dReal k; | ||
1888 | |||
1889 | getUniversalAxes(joint, ax1, ax2); | ||
1890 | k = dDOT(ax1, ax2); | ||
1891 | ax2_temp[0] = ax2[0] - k*ax1[0]; | ||
1892 | ax2_temp[1] = ax2[1] - k*ax1[1]; | ||
1893 | ax2_temp[2] = ax2[2] - k*ax1[2]; | ||
1894 | dCROSS(p, =, ax1, ax2_temp); | ||
1895 | dNormalize3(p); | ||
1896 | |||
1897 | int s3=3*info->rowskip; | ||
1898 | |||
1899 | info->J1a[s3+0] = p[0]; | ||
1900 | info->J1a[s3+1] = p[1]; | ||
1901 | info->J1a[s3+2] = p[2]; | ||
1902 | |||
1903 | if (joint->node[1].body) { | ||
1904 | info->J2a[s3+0] = -p[0]; | ||
1905 | info->J2a[s3+1] = -p[1]; | ||
1906 | info->J2a[s3+2] = -p[2]; | ||
1907 | } | ||
1908 | |||
1909 | // compute the right hand side of the constraint equation. set relative | ||
1910 | // body velocities along p to bring the axes back to perpendicular. | ||
1911 | // If ax1, ax2 are unit length joint axes as computed from body1 and | ||
1912 | // body2, we need to rotate both bodies along the axis p. If theta | ||
1913 | // is the angle between ax1 and ax2, we need an angular velocity | ||
1914 | // along p to cover the angle erp * (theta - Pi/2) in one step: | ||
1915 | // | ||
1916 | // |angular_velocity| = angle/time = erp*(theta - Pi/2) / stepsize | ||
1917 | // = (erp*fps) * (theta - Pi/2) | ||
1918 | // | ||
1919 | // if theta is close to Pi/2, | ||
1920 | // theta - Pi/2 ~= cos(theta), so | ||
1921 | // |angular_velocity| ~= (erp*fps) * (ax1 dot ax2) | ||
1922 | |||
1923 | info->c[3] = info->fps * info->erp * - dDOT(ax1, ax2); | ||
1924 | |||
1925 | // if the first angle is powered, or has joint limits, add in the stuff | ||
1926 | int row = 4 + joint->limot1.addLimot (joint,info,4,ax1,1); | ||
1927 | |||
1928 | // if the second angle is powered, or has joint limits, add in more stuff | ||
1929 | joint->limot2.addLimot (joint,info,row,ax2,1); | ||
1930 | } | ||
1931 | |||
1932 | |||
1933 | static void universalComputeInitialRelativeRotations (dxJointUniversal *joint) | ||
1934 | { | ||
1935 | if (joint->node[0].body) { | ||
1936 | dVector3 ax1, ax2; | ||
1937 | dMatrix3 R; | ||
1938 | dQuaternion qcross; | ||
1939 | |||
1940 | getUniversalAxes(joint, ax1, ax2); | ||
1941 | |||
1942 | // Axis 1. | ||
1943 | dRFrom2Axes(R, ax1[0], ax1[1], ax1[2], ax2[0], ax2[1], ax2[2]); | ||
1944 | dRtoQ(R, qcross); | ||
1945 | dQMultiply1 (joint->qrel1, joint->node[0].body->q, qcross); | ||
1946 | |||
1947 | // Axis 2. | ||
1948 | dRFrom2Axes(R, ax2[0], ax2[1], ax2[2], ax1[0], ax1[1], ax1[2]); | ||
1949 | dRtoQ(R, qcross); | ||
1950 | if (joint->node[1].body) { | ||
1951 | dQMultiply1 (joint->qrel2, joint->node[1].body->q, qcross); | ||
1952 | } | ||
1953 | else { | ||
1954 | // set joint->qrel to qcross | ||
1955 | for (int i=0; i<4; i++) joint->qrel2[i] = qcross[i]; | ||
1956 | } | ||
1957 | } | ||
1958 | } | ||
1959 | |||
1960 | |||
1961 | extern "C" void dJointSetUniversalAnchor (dxJointUniversal *joint, | ||
1962 | dReal x, dReal y, dReal z) | ||
1963 | { | ||
1964 | dUASSERT(joint,"bad joint argument"); | ||
1965 | dUASSERT(joint->vtable == &__duniversal_vtable,"joint is not a universal"); | ||
1966 | setAnchors (joint,x,y,z,joint->anchor1,joint->anchor2); | ||
1967 | universalComputeInitialRelativeRotations(joint); | ||
1968 | } | ||
1969 | |||
1970 | |||
1971 | extern "C" void dJointSetUniversalAxis1 (dxJointUniversal *joint, | ||
1972 | dReal x, dReal y, dReal z) | ||
1973 | { | ||
1974 | dUASSERT(joint,"bad joint argument"); | ||
1975 | dUASSERT(joint->vtable == &__duniversal_vtable,"joint is not a universal"); | ||
1976 | if (joint->flags & dJOINT_REVERSE) | ||
1977 | setAxes (joint,x,y,z,NULL,joint->axis2); | ||
1978 | else | ||
1979 | setAxes (joint,x,y,z,joint->axis1,NULL); | ||
1980 | universalComputeInitialRelativeRotations(joint); | ||
1981 | } | ||
1982 | |||
1983 | |||
1984 | extern "C" void dJointSetUniversalAxis2 (dxJointUniversal *joint, | ||
1985 | dReal x, dReal y, dReal z) | ||
1986 | { | ||
1987 | dUASSERT(joint,"bad joint argument"); | ||
1988 | dUASSERT(joint->vtable == &__duniversal_vtable,"joint is not a universal"); | ||
1989 | if (joint->flags & dJOINT_REVERSE) | ||
1990 | setAxes (joint,x,y,z,joint->axis1,NULL); | ||
1991 | else | ||
1992 | setAxes (joint,x,y,z,NULL,joint->axis2); | ||
1993 | universalComputeInitialRelativeRotations(joint); | ||
1994 | } | ||
1995 | |||
1996 | |||
1997 | extern "C" void dJointGetUniversalAnchor (dxJointUniversal *joint, | ||
1998 | dVector3 result) | ||
1999 | { | ||
2000 | dUASSERT(joint,"bad joint argument"); | ||
2001 | dUASSERT(result,"bad result argument"); | ||
2002 | dUASSERT(joint->vtable == &__duniversal_vtable,"joint is not a universal"); | ||
2003 | if (joint->flags & dJOINT_REVERSE) | ||
2004 | getAnchor2 (joint,result,joint->anchor2); | ||
2005 | else | ||
2006 | getAnchor (joint,result,joint->anchor1); | ||
2007 | } | ||
2008 | |||
2009 | |||
2010 | extern "C" void dJointGetUniversalAnchor2 (dxJointUniversal *joint, | ||
2011 | dVector3 result) | ||
2012 | { | ||
2013 | dUASSERT(joint,"bad joint argument"); | ||
2014 | dUASSERT(result,"bad result argument"); | ||
2015 | dUASSERT(joint->vtable == &__duniversal_vtable,"joint is not a universal"); | ||
2016 | if (joint->flags & dJOINT_REVERSE) | ||
2017 | getAnchor (joint,result,joint->anchor1); | ||
2018 | else | ||
2019 | getAnchor2 (joint,result,joint->anchor2); | ||
2020 | } | ||
2021 | |||
2022 | |||
2023 | extern "C" void dJointGetUniversalAxis1 (dxJointUniversal *joint, | ||
2024 | dVector3 result) | ||
2025 | { | ||
2026 | dUASSERT(joint,"bad joint argument"); | ||
2027 | dUASSERT(result,"bad result argument"); | ||
2028 | dUASSERT(joint->vtable == &__duniversal_vtable,"joint is not a universal"); | ||
2029 | if (joint->flags & dJOINT_REVERSE) | ||
2030 | getAxis2 (joint,result,joint->axis2); | ||
2031 | else | ||
2032 | getAxis (joint,result,joint->axis1); | ||
2033 | } | ||
2034 | |||
2035 | |||
2036 | extern "C" void dJointGetUniversalAxis2 (dxJointUniversal *joint, | ||
2037 | dVector3 result) | ||
2038 | { | ||
2039 | dUASSERT(joint,"bad joint argument"); | ||
2040 | dUASSERT(result,"bad result argument"); | ||
2041 | dUASSERT(joint->vtable == &__duniversal_vtable,"joint is not a universal"); | ||
2042 | if (joint->flags & dJOINT_REVERSE) | ||
2043 | getAxis (joint,result,joint->axis1); | ||
2044 | else | ||
2045 | getAxis2 (joint,result,joint->axis2); | ||
2046 | } | ||
2047 | |||
2048 | |||
2049 | extern "C" void dJointSetUniversalParam (dxJointUniversal *joint, | ||
2050 | int parameter, dReal value) | ||
2051 | { | ||
2052 | dUASSERT(joint,"bad joint argument"); | ||
2053 | dUASSERT(joint->vtable == &__duniversal_vtable,"joint is not a universal"); | ||
2054 | if ((parameter & 0xff00) == 0x100) { | ||
2055 | joint->limot2.set (parameter & 0xff,value); | ||
2056 | } | ||
2057 | else { | ||
2058 | joint->limot1.set (parameter,value); | ||
2059 | } | ||
2060 | } | ||
2061 | |||
2062 | |||
2063 | extern "C" dReal dJointGetUniversalParam (dxJointUniversal *joint, int parameter) | ||
2064 | { | ||
2065 | dUASSERT(joint,"bad joint argument"); | ||
2066 | dUASSERT(joint->vtable == &__duniversal_vtable,"joint is not a universal"); | ||
2067 | if ((parameter & 0xff00) == 0x100) { | ||
2068 | return joint->limot2.get (parameter & 0xff); | ||
2069 | } | ||
2070 | else { | ||
2071 | return joint->limot1.get (parameter); | ||
2072 | } | ||
2073 | } | ||
2074 | |||
2075 | |||
2076 | extern "C" dReal dJointGetUniversalAngle1 (dxJointUniversal *joint) | ||
2077 | { | ||
2078 | dUASSERT(joint,"bad joint argument"); | ||
2079 | dUASSERT(joint->vtable == &__duniversal_vtable,"joint is not a universal"); | ||
2080 | if (joint->flags & dJOINT_REVERSE) | ||
2081 | return getUniversalAngle2 (joint); | ||
2082 | else | ||
2083 | return getUniversalAngle1 (joint); | ||
2084 | } | ||
2085 | |||
2086 | |||
2087 | extern "C" dReal dJointGetUniversalAngle2 (dxJointUniversal *joint) | ||
2088 | { | ||
2089 | dUASSERT(joint,"bad joint argument"); | ||
2090 | dUASSERT(joint->vtable == &__duniversal_vtable,"joint is not a universal"); | ||
2091 | if (joint->flags & dJOINT_REVERSE) | ||
2092 | return getUniversalAngle1 (joint); | ||
2093 | else | ||
2094 | return getUniversalAngle2 (joint); | ||
2095 | } | ||
2096 | |||
2097 | |||
2098 | extern "C" dReal dJointGetUniversalAngle1Rate (dxJointUniversal *joint) | ||
2099 | { | ||
2100 | dUASSERT(joint,"bad joint argument"); | ||
2101 | dUASSERT(joint->vtable == &__duniversal_vtable,"joint is not a universal"); | ||
2102 | |||
2103 | if (joint->node[0].body) { | ||
2104 | dVector3 axis; | ||
2105 | |||
2106 | if (joint->flags & dJOINT_REVERSE) | ||
2107 | getAxis2 (joint,axis,joint->axis2); | ||
2108 | else | ||
2109 | getAxis (joint,axis,joint->axis1); | ||
2110 | |||
2111 | dReal rate = dDOT(axis, joint->node[0].body->avel); | ||
2112 | if (joint->node[1].body) rate -= dDOT(axis, joint->node[1].body->avel); | ||
2113 | return rate; | ||
2114 | } | ||
2115 | return 0; | ||
2116 | } | ||
2117 | |||
2118 | |||
2119 | extern "C" dReal dJointGetUniversalAngle2Rate (dxJointUniversal *joint) | ||
2120 | { | ||
2121 | dUASSERT(joint,"bad joint argument"); | ||
2122 | dUASSERT(joint->vtable == &__duniversal_vtable,"joint is not a universal"); | ||
2123 | |||
2124 | if (joint->node[0].body) { | ||
2125 | dVector3 axis; | ||
2126 | |||
2127 | if (joint->flags & dJOINT_REVERSE) | ||
2128 | getAxis (joint,axis,joint->axis1); | ||
2129 | else | ||
2130 | getAxis2 (joint,axis,joint->axis2); | ||
2131 | |||
2132 | dReal rate = dDOT(axis, joint->node[0].body->avel); | ||
2133 | if (joint->node[1].body) rate -= dDOT(axis, joint->node[1].body->avel); | ||
2134 | return rate; | ||
2135 | } | ||
2136 | return 0; | ||
2137 | } | ||
2138 | |||
2139 | |||
2140 | extern "C" void dJointAddUniversalTorques (dxJointUniversal *joint, dReal torque1, dReal torque2) | ||
2141 | { | ||
2142 | dVector3 axis1, axis2; | ||
2143 | dAASSERT(joint); | ||
2144 | dUASSERT(joint->vtable == &__duniversal_vtable,"joint is not a universal"); | ||
2145 | |||
2146 | if (joint->flags & dJOINT_REVERSE) { | ||
2147 | dReal temp = torque1; | ||
2148 | torque1 = - torque2; | ||
2149 | torque2 = - temp; | ||
2150 | } | ||
2151 | |||
2152 | getAxis (joint,axis1,joint->axis1); | ||
2153 | getAxis2 (joint,axis2,joint->axis2); | ||
2154 | axis1[0] = axis1[0] * torque1 + axis2[0] * torque2; | ||
2155 | axis1[1] = axis1[1] * torque1 + axis2[1] * torque2; | ||
2156 | axis1[2] = axis1[2] * torque1 + axis2[2] * torque2; | ||
2157 | |||
2158 | if (joint->node[0].body != 0) | ||
2159 | dBodyAddTorque (joint->node[0].body,axis1[0],axis1[1],axis1[2]); | ||
2160 | if (joint->node[1].body != 0) | ||
2161 | dBodyAddTorque(joint->node[1].body, -axis1[0], -axis1[1], -axis1[2]); | ||
2162 | } | ||
2163 | |||
2164 | |||
2165 | |||
2166 | |||
2167 | |||
2168 | dxJoint::Vtable __duniversal_vtable = { | ||
2169 | sizeof(dxJointUniversal), | ||
2170 | (dxJoint::init_fn*) universalInit, | ||
2171 | (dxJoint::getInfo1_fn*) universalGetInfo1, | ||
2172 | (dxJoint::getInfo2_fn*) universalGetInfo2, | ||
2173 | dJointTypeUniversal}; | ||
2174 | |||
2175 | //**************************************************************************** | ||
2176 | // angular motor | ||
2177 | |||
2178 | static void amotorInit (dxJointAMotor *j) | ||
2179 | { | ||
2180 | int i; | ||
2181 | j->num = 0; | ||
2182 | j->mode = dAMotorUser; | ||
2183 | for (i=0; i<3; i++) { | ||
2184 | j->rel[i] = 0; | ||
2185 | dSetZero (j->axis[i],4); | ||
2186 | j->limot[i].init (j->world); | ||
2187 | j->angle[i] = 0; | ||
2188 | } | ||
2189 | dSetZero (j->reference1,4); | ||
2190 | dSetZero (j->reference2,4); | ||
2191 | |||
2192 | j->flags |= dJOINT_TWOBODIES; | ||
2193 | } | ||
2194 | |||
2195 | |||
2196 | // compute the 3 axes in global coordinates | ||
2197 | |||
2198 | static void amotorComputeGlobalAxes (dxJointAMotor *joint, dVector3 ax[3]) | ||
2199 | { | ||
2200 | if (joint->mode == dAMotorEuler) { | ||
2201 | // special handling for euler mode | ||
2202 | dMULTIPLY0_331 (ax[0],joint->node[0].body->R,joint->axis[0]); | ||
2203 | dMULTIPLY0_331 (ax[2],joint->node[1].body->R,joint->axis[2]); | ||
2204 | dCROSS (ax[1],=,ax[2],ax[0]); | ||
2205 | dNormalize3 (ax[1]); | ||
2206 | } | ||
2207 | else { | ||
2208 | for (int i=0; i < joint->num; i++) { | ||
2209 | if (joint->rel[i] == 1) { | ||
2210 | // relative to b1 | ||
2211 | dMULTIPLY0_331 (ax[i],joint->node[0].body->R,joint->axis[i]); | ||
2212 | } | ||
2213 | if (joint->rel[i] == 2) { | ||
2214 | // relative to b2 | ||
2215 | dMULTIPLY0_331 (ax[i],joint->node[1].body->R,joint->axis[i]); | ||
2216 | } | ||
2217 | else { | ||
2218 | // global - just copy it | ||
2219 | ax[i][0] = joint->axis[i][0]; | ||
2220 | ax[i][1] = joint->axis[i][1]; | ||
2221 | ax[i][2] = joint->axis[i][2]; | ||
2222 | } | ||
2223 | } | ||
2224 | } | ||
2225 | } | ||
2226 | |||
2227 | |||
2228 | static void amotorComputeEulerAngles (dxJointAMotor *joint, dVector3 ax[3]) | ||
2229 | { | ||
2230 | // assumptions: | ||
2231 | // global axes already calculated --> ax | ||
2232 | // axis[0] is relative to body 1 --> global ax[0] | ||
2233 | // axis[2] is relative to body 2 --> global ax[2] | ||
2234 | // ax[1] = ax[2] x ax[0] | ||
2235 | // original ax[0] and ax[2] are perpendicular | ||
2236 | // reference1 is perpendicular to ax[0] (in body 1 frame) | ||
2237 | // reference2 is perpendicular to ax[2] (in body 2 frame) | ||
2238 | // all ax[] and reference vectors are unit length | ||
2239 | |||
2240 | // calculate references in global frame | ||
2241 | dVector3 ref1,ref2; | ||
2242 | dMULTIPLY0_331 (ref1,joint->node[0].body->R,joint->reference1); | ||
2243 | dMULTIPLY0_331 (ref2,joint->node[1].body->R,joint->reference2); | ||
2244 | |||
2245 | // get q perpendicular to both ax[0] and ref1, get first euler angle | ||
2246 | dVector3 q; | ||
2247 | dCROSS (q,=,ax[0],ref1); | ||
2248 | joint->angle[0] = -dAtan2 (dDOT(ax[2],q),dDOT(ax[2],ref1)); | ||
2249 | |||
2250 | // get q perpendicular to both ax[0] and ax[1], get second euler angle | ||
2251 | dCROSS (q,=,ax[0],ax[1]); | ||
2252 | joint->angle[1] = -dAtan2 (dDOT(ax[2],ax[0]),dDOT(ax[2],q)); | ||
2253 | |||
2254 | // get q perpendicular to both ax[1] and ax[2], get third euler angle | ||
2255 | dCROSS (q,=,ax[1],ax[2]); | ||
2256 | joint->angle[2] = -dAtan2 (dDOT(ref2,ax[1]), dDOT(ref2,q)); | ||
2257 | } | ||
2258 | |||
2259 | |||
2260 | // set the reference vectors as follows: | ||
2261 | // * reference1 = current axis[2] relative to body 1 | ||
2262 | // * reference2 = current axis[0] relative to body 2 | ||
2263 | // this assumes that: | ||
2264 | // * axis[0] is relative to body 1 | ||
2265 | // * axis[2] is relative to body 2 | ||
2266 | |||
2267 | static void amotorSetEulerReferenceVectors (dxJointAMotor *j) | ||
2268 | { | ||
2269 | if (j->node[0].body && j->node[1].body) { | ||
2270 | dVector3 r; // axis[2] and axis[0] in global coordinates | ||
2271 | dMULTIPLY0_331 (r,j->node[1].body->R,j->axis[2]); | ||
2272 | dMULTIPLY1_331 (j->reference1,j->node[0].body->R,r); | ||
2273 | dMULTIPLY0_331 (r,j->node[0].body->R,j->axis[0]); | ||
2274 | dMULTIPLY1_331 (j->reference2,j->node[1].body->R,r); | ||
2275 | } | ||
2276 | } | ||
2277 | |||
2278 | |||
2279 | static void amotorGetInfo1 (dxJointAMotor *j, dxJoint::Info1 *info) | ||
2280 | { | ||
2281 | info->m = 0; | ||
2282 | info->nub = 0; | ||
2283 | |||
2284 | // compute the axes and angles, if in euler mode | ||
2285 | if (j->mode == dAMotorEuler) { | ||
2286 | dVector3 ax[3]; | ||
2287 | amotorComputeGlobalAxes (j,ax); | ||
2288 | amotorComputeEulerAngles (j,ax); | ||
2289 | } | ||
2290 | |||
2291 | // see if we're powered or at a joint limit for each axis | ||
2292 | for (int i=0; i < j->num; i++) { | ||
2293 | if (j->limot[i].testRotationalLimit (j->angle[i]) || | ||
2294 | j->limot[i].fmax > 0) { | ||
2295 | info->m++; | ||
2296 | } | ||
2297 | } | ||
2298 | } | ||
2299 | |||
2300 | |||
2301 | static void amotorGetInfo2 (dxJointAMotor *joint, dxJoint::Info2 *info) | ||
2302 | { | ||
2303 | int i; | ||
2304 | |||
2305 | // compute the axes (if not global) | ||
2306 | dVector3 ax[3]; | ||
2307 | amotorComputeGlobalAxes (joint,ax); | ||
2308 | |||
2309 | // in euler angle mode we do not actually constrain the angular velocity | ||
2310 | // along the axes axis[0] and axis[2] (although we do use axis[1]) : | ||
2311 | // | ||
2312 | // to get constrain w2-w1 along ...not | ||
2313 | // ------ --------------------- ------ | ||
2314 | // d(angle[0])/dt = 0 ax[1] x ax[2] ax[0] | ||
2315 | // d(angle[1])/dt = 0 ax[1] | ||
2316 | // d(angle[2])/dt = 0 ax[0] x ax[1] ax[2] | ||
2317 | // | ||
2318 | // constraining w2-w1 along an axis 'a' means that a'*(w2-w1)=0. | ||
2319 | // to prove the result for angle[0], write the expression for angle[0] from | ||
2320 | // GetInfo1 then take the derivative. to prove this for angle[2] it is | ||
2321 | // easier to take the euler rate expression for d(angle[2])/dt with respect | ||
2322 | // to the components of w and set that to 0. | ||
2323 | |||
2324 | dVector3 *axptr[3]; | ||
2325 | axptr[0] = &ax[0]; | ||
2326 | axptr[1] = &ax[1]; | ||
2327 | axptr[2] = &ax[2]; | ||
2328 | |||
2329 | dVector3 ax0_cross_ax1; | ||
2330 | dVector3 ax1_cross_ax2; | ||
2331 | if (joint->mode == dAMotorEuler) { | ||
2332 | dCROSS (ax0_cross_ax1,=,ax[0],ax[1]); | ||
2333 | axptr[2] = &ax0_cross_ax1; | ||
2334 | dCROSS (ax1_cross_ax2,=,ax[1],ax[2]); | ||
2335 | axptr[0] = &ax1_cross_ax2; | ||
2336 | } | ||
2337 | |||
2338 | int row=0; | ||
2339 | for (i=0; i < joint->num; i++) { | ||
2340 | row += joint->limot[i].addLimot (joint,info,row,*(axptr[i]),1); | ||
2341 | } | ||
2342 | } | ||
2343 | |||
2344 | |||
2345 | extern "C" void dJointSetAMotorNumAxes (dxJointAMotor *joint, int num) | ||
2346 | { | ||
2347 | dAASSERT(joint && num >= 0 && num <= 3); | ||
2348 | dUASSERT(joint->vtable == &__damotor_vtable,"joint is not an amotor"); | ||
2349 | if (joint->mode == dAMotorEuler) { | ||
2350 | joint->num = 3; | ||
2351 | } | ||
2352 | else { | ||
2353 | if (num < 0) num = 0; | ||
2354 | if (num > 3) num = 3; | ||
2355 | joint->num = num; | ||
2356 | } | ||
2357 | } | ||
2358 | |||
2359 | |||
2360 | extern "C" void dJointSetAMotorAxis (dxJointAMotor *joint, int anum, int rel, | ||
2361 | dReal x, dReal y, dReal z) | ||
2362 | { | ||
2363 | dAASSERT(joint && anum >= 0 && anum <= 2 && rel >= 0 && rel <= 2); | ||
2364 | dUASSERT(joint->vtable == &__damotor_vtable,"joint is not an amotor"); | ||
2365 | if (anum < 0) anum = 0; | ||
2366 | if (anum > 2) anum = 2; | ||
2367 | joint->rel[anum] = rel; | ||
2368 | |||
2369 | // x,y,z is always in global coordinates regardless of rel, so we may have | ||
2370 | // to convert it to be relative to a body | ||
2371 | dVector3 r; | ||
2372 | r[0] = x; | ||
2373 | r[1] = y; | ||
2374 | r[2] = z; | ||
2375 | r[3] = 0; | ||
2376 | if (rel > 0) { | ||
2377 | if (rel==1) { | ||
2378 | dMULTIPLY1_331 (joint->axis[anum],joint->node[0].body->R,r); | ||
2379 | } | ||
2380 | else { | ||
2381 | dMULTIPLY1_331 (joint->axis[anum],joint->node[1].body->R,r); | ||
2382 | } | ||
2383 | } | ||
2384 | else { | ||
2385 | joint->axis[anum][0] = r[0]; | ||
2386 | joint->axis[anum][1] = r[1]; | ||
2387 | joint->axis[anum][2] = r[2]; | ||
2388 | } | ||
2389 | dNormalize3 (joint->axis[anum]); | ||
2390 | if (joint->mode == dAMotorEuler) amotorSetEulerReferenceVectors (joint); | ||
2391 | } | ||
2392 | |||
2393 | |||
2394 | extern "C" void dJointSetAMotorAngle (dxJointAMotor *joint, int anum, | ||
2395 | dReal angle) | ||
2396 | { | ||
2397 | dAASSERT(joint && anum >= 0 && anum < 3); | ||
2398 | dUASSERT(joint->vtable == &__damotor_vtable,"joint is not an amotor"); | ||
2399 | if (joint->mode == dAMotorUser) { | ||
2400 | if (anum < 0) anum = 0; | ||
2401 | if (anum > 3) anum = 3; | ||
2402 | joint->angle[anum] = angle; | ||
2403 | } | ||
2404 | } | ||
2405 | |||
2406 | |||
2407 | extern "C" void dJointSetAMotorParam (dxJointAMotor *joint, int parameter, | ||
2408 | dReal value) | ||
2409 | { | ||
2410 | dAASSERT(joint); | ||
2411 | dUASSERT(joint->vtable == &__damotor_vtable,"joint is not an amotor"); | ||
2412 | int anum = parameter >> 8; | ||
2413 | if (anum < 0) anum = 0; | ||
2414 | if (anum > 2) anum = 2; | ||
2415 | parameter &= 0xff; | ||
2416 | joint->limot[anum].set (parameter, value); | ||
2417 | } | ||
2418 | |||
2419 | |||
2420 | extern "C" void dJointSetAMotorMode (dxJointAMotor *joint, int mode) | ||
2421 | { | ||
2422 | dAASSERT(joint); | ||
2423 | dUASSERT(joint->vtable == &__damotor_vtable,"joint is not an amotor"); | ||
2424 | joint->mode = mode; | ||
2425 | if (joint->mode == dAMotorEuler) { | ||
2426 | joint->num = 3; | ||
2427 | amotorSetEulerReferenceVectors (joint); | ||
2428 | } | ||
2429 | } | ||
2430 | |||
2431 | |||
2432 | extern "C" int dJointGetAMotorNumAxes (dxJointAMotor *joint) | ||
2433 | { | ||
2434 | dAASSERT(joint); | ||
2435 | dUASSERT(joint->vtable == &__damotor_vtable,"joint is not an amotor"); | ||
2436 | return joint->num; | ||
2437 | } | ||
2438 | |||
2439 | |||
2440 | extern "C" void dJointGetAMotorAxis (dxJointAMotor *joint, int anum, | ||
2441 | dVector3 result) | ||
2442 | { | ||
2443 | dAASSERT(joint && anum >= 0 && anum < 3); | ||
2444 | dUASSERT(joint->vtable == &__damotor_vtable,"joint is not an amotor"); | ||
2445 | if (anum < 0) anum = 0; | ||
2446 | if (anum > 2) anum = 2; | ||
2447 | if (joint->rel[anum] > 0) { | ||
2448 | if (joint->rel[anum]==1) { | ||
2449 | dMULTIPLY0_331 (result,joint->node[0].body->R,joint->axis[anum]); | ||
2450 | } | ||
2451 | else { | ||
2452 | dMULTIPLY0_331 (result,joint->node[1].body->R,joint->axis[anum]); | ||
2453 | } | ||
2454 | } | ||
2455 | else { | ||
2456 | result[0] = joint->axis[anum][0]; | ||
2457 | result[1] = joint->axis[anum][1]; | ||
2458 | result[2] = joint->axis[anum][2]; | ||
2459 | } | ||
2460 | } | ||
2461 | |||
2462 | |||
2463 | extern "C" int dJointGetAMotorAxisRel (dxJointAMotor *joint, int anum) | ||
2464 | { | ||
2465 | dAASSERT(joint && anum >= 0 && anum < 3); | ||
2466 | dUASSERT(joint->vtable == &__damotor_vtable,"joint is not an amotor"); | ||
2467 | if (anum < 0) anum = 0; | ||
2468 | if (anum > 2) anum = 2; | ||
2469 | return joint->rel[anum]; | ||
2470 | } | ||
2471 | |||
2472 | |||
2473 | extern "C" dReal dJointGetAMotorAngle (dxJointAMotor *joint, int anum) | ||
2474 | { | ||
2475 | dAASSERT(joint && anum >= 0 && anum < 3); | ||
2476 | dUASSERT(joint->vtable == &__damotor_vtable,"joint is not an amotor"); | ||
2477 | if (anum < 0) anum = 0; | ||
2478 | if (anum > 3) anum = 3; | ||
2479 | return joint->angle[anum]; | ||
2480 | } | ||
2481 | |||
2482 | |||
2483 | extern "C" dReal dJointGetAMotorAngleRate (dxJointAMotor *joint, int anum) | ||
2484 | { | ||
2485 | // @@@ | ||
2486 | dDebug (0,"not yet implemented"); | ||
2487 | return 0; | ||
2488 | } | ||
2489 | |||
2490 | |||
2491 | extern "C" dReal dJointGetAMotorParam (dxJointAMotor *joint, int parameter) | ||
2492 | { | ||
2493 | dAASSERT(joint); | ||
2494 | dUASSERT(joint->vtable == &__damotor_vtable,"joint is not an amotor"); | ||
2495 | int anum = parameter >> 8; | ||
2496 | if (anum < 0) anum = 0; | ||
2497 | if (anum > 2) anum = 2; | ||
2498 | parameter &= 0xff; | ||
2499 | return joint->limot[anum].get (parameter); | ||
2500 | } | ||
2501 | |||
2502 | |||
2503 | extern "C" int dJointGetAMotorMode (dxJointAMotor *joint) | ||
2504 | { | ||
2505 | dAASSERT(joint); | ||
2506 | dUASSERT(joint->vtable == &__damotor_vtable,"joint is not an amotor"); | ||
2507 | return joint->mode; | ||
2508 | } | ||
2509 | |||
2510 | |||
2511 | extern "C" void dJointAddAMotorTorques (dxJointAMotor *joint, dReal torque1, dReal torque2, dReal torque3) | ||
2512 | { | ||
2513 | dVector3 axes[3]; | ||
2514 | dAASSERT(joint); | ||
2515 | dUASSERT(joint->vtable == &__damotor_vtable,"joint is not an amotor"); | ||
2516 | |||
2517 | if (joint->num == 0) | ||
2518 | return; | ||
2519 | dUASSERT((joint->flags & dJOINT_REVERSE) == 0, "dJointAddAMotorTorques not yet implemented for reverse AMotor joints"); | ||
2520 | |||
2521 | amotorComputeGlobalAxes (joint,axes); | ||
2522 | axes[0][0] *= torque1; | ||
2523 | axes[0][1] *= torque1; | ||
2524 | axes[0][2] *= torque1; | ||
2525 | if (joint->num >= 2) { | ||
2526 | axes[0][0] += axes[1][0] * torque2; | ||
2527 | axes[0][1] += axes[1][0] * torque2; | ||
2528 | axes[0][2] += axes[1][0] * torque2; | ||
2529 | if (joint->num >= 3) { | ||
2530 | axes[0][0] += axes[2][0] * torque3; | ||
2531 | axes[0][1] += axes[2][0] * torque3; | ||
2532 | axes[0][2] += axes[2][0] * torque3; | ||
2533 | } | ||
2534 | } | ||
2535 | |||
2536 | if (joint->node[0].body != 0) | ||
2537 | dBodyAddTorque (joint->node[0].body,axes[0][0],axes[0][1],axes[0][2]); | ||
2538 | if (joint->node[1].body != 0) | ||
2539 | dBodyAddTorque(joint->node[1].body, -axes[0][0], -axes[0][1], -axes[0][2]); | ||
2540 | } | ||
2541 | |||
2542 | |||
2543 | dxJoint::Vtable __damotor_vtable = { | ||
2544 | sizeof(dxJointAMotor), | ||
2545 | (dxJoint::init_fn*) amotorInit, | ||
2546 | (dxJoint::getInfo1_fn*) amotorGetInfo1, | ||
2547 | (dxJoint::getInfo2_fn*) amotorGetInfo2, | ||
2548 | dJointTypeAMotor}; | ||
2549 | |||
2550 | //**************************************************************************** | ||
2551 | // fixed joint | ||
2552 | |||
2553 | static void fixedInit (dxJointFixed *j) | ||
2554 | { | ||
2555 | dSetZero (j->offset,4); | ||
2556 | dSetZero (j->qrel,4); | ||
2557 | } | ||
2558 | |||
2559 | |||
2560 | static void fixedGetInfo1 (dxJointFixed *j, dxJoint::Info1 *info) | ||
2561 | { | ||
2562 | info->m = 6; | ||
2563 | info->nub = 6; | ||
2564 | } | ||
2565 | |||
2566 | |||
2567 | static void fixedGetInfo2 (dxJointFixed *joint, dxJoint::Info2 *info) | ||
2568 | { | ||
2569 | int s = info->rowskip; | ||
2570 | |||
2571 | // Three rows for orientation | ||
2572 | setFixedOrientation(joint, info, joint->qrel, 3); | ||
2573 | |||
2574 | // Three rows for position. | ||
2575 | // set jacobian | ||
2576 | info->J1l[0] = 1; | ||
2577 | info->J1l[s+1] = 1; | ||
2578 | info->J1l[2*s+2] = 1; | ||
2579 | |||
2580 | dVector3 ofs; | ||
2581 | dMULTIPLY0_331 (ofs,joint->node[0].body->R,joint->offset); | ||
2582 | if (joint->node[1].body) { | ||
2583 | dCROSSMAT (info->J1a,ofs,s,+,-); | ||
2584 | info->J2l[0] = -1; | ||
2585 | info->J2l[s+1] = -1; | ||
2586 | info->J2l[2*s+2] = -1; | ||
2587 | } | ||
2588 | |||
2589 | // set right hand side for the first three rows (linear) | ||
2590 | dReal k = info->fps * info->erp; | ||
2591 | if (joint->node[1].body) { | ||
2592 | for (int j=0; j<3; j++) | ||
2593 | info->c[j] = k * (joint->node[1].body->pos[j] - | ||
2594 | joint->node[0].body->pos[j] + ofs[j]); | ||
2595 | } | ||
2596 | else { | ||
2597 | for (int j=0; j<3; j++) | ||
2598 | info->c[j] = k * (joint->offset[j] - joint->node[0].body->pos[j]); | ||
2599 | } | ||
2600 | } | ||
2601 | |||
2602 | |||
2603 | extern "C" void dJointSetFixed (dxJointFixed *joint) | ||
2604 | { | ||
2605 | dUASSERT(joint,"bad joint argument"); | ||
2606 | dUASSERT(joint->vtable == &__dfixed_vtable,"joint is not fixed"); | ||
2607 | int i; | ||
2608 | |||
2609 | // This code is taken from sJointSetSliderAxis(), we should really put the | ||
2610 | // common code in its own function. | ||
2611 | // compute the offset between the bodies | ||
2612 | if (joint->node[0].body) { | ||
2613 | if (joint->node[1].body) { | ||
2614 | dQMultiply1 (joint->qrel,joint->node[0].body->q,joint->node[1].body->q); | ||
2615 | dReal ofs[4]; | ||
2616 | for (i=0; i<4; i++) ofs[i] = joint->node[0].body->pos[i]; | ||
2617 | for (i=0; i<4; i++) ofs[i] -= joint->node[1].body->pos[i]; | ||
2618 | dMULTIPLY1_331 (joint->offset,joint->node[0].body->R,ofs); | ||
2619 | } | ||
2620 | else { | ||
2621 | // set joint->qrel to the transpose of the first body's q | ||
2622 | joint->qrel[0] = joint->node[0].body->q[0]; | ||
2623 | for (i=1; i<4; i++) joint->qrel[i] = -joint->node[0].body->q[i]; | ||
2624 | for (i=0; i<4; i++) joint->offset[i] = joint->node[0].body->pos[i]; | ||
2625 | } | ||
2626 | } | ||
2627 | } | ||
2628 | |||
2629 | |||
2630 | dxJoint::Vtable __dfixed_vtable = { | ||
2631 | sizeof(dxJointFixed), | ||
2632 | (dxJoint::init_fn*) fixedInit, | ||
2633 | (dxJoint::getInfo1_fn*) fixedGetInfo1, | ||
2634 | (dxJoint::getInfo2_fn*) fixedGetInfo2, | ||
2635 | dJointTypeFixed}; | ||
2636 | |||
2637 | //**************************************************************************** | ||
2638 | // null joint | ||
2639 | |||
2640 | static void nullGetInfo1 (dxJointNull *j, dxJoint::Info1 *info) | ||
2641 | { | ||
2642 | info->m = 0; | ||
2643 | info->nub = 0; | ||
2644 | } | ||
2645 | |||
2646 | |||
2647 | static void nullGetInfo2 (dxJointNull *joint, dxJoint::Info2 *info) | ||
2648 | { | ||
2649 | dDebug (0,"this should never get called"); | ||
2650 | } | ||
2651 | |||
2652 | |||
2653 | dxJoint::Vtable __dnull_vtable = { | ||
2654 | sizeof(dxJointNull), | ||
2655 | (dxJoint::init_fn*) 0, | ||
2656 | (dxJoint::getInfo1_fn*) nullGetInfo1, | ||
2657 | (dxJoint::getInfo2_fn*) nullGetInfo2, | ||
2658 | dJointTypeNull}; | ||
2659 | |||
2660 | /******************** breakable joint contribution ***********************/ | ||
2661 | extern "C" void dJointSetBreakable (dxJoint *joint, int b) { | ||
2662 | dAASSERT(joint); | ||
2663 | if (b) { | ||
2664 | // we want this joint to be breakable but we must first check if it | ||
2665 | // was already breakable | ||
2666 | if (!joint->breakInfo) { | ||
2667 | // allocate a dxJointBreakInfo struct | ||
2668 | joint->breakInfo = new dxJointBreakInfo; | ||
2669 | joint->breakInfo->flags = 0; | ||
2670 | for (int i = 0; i < 3; i++) { | ||
2671 | joint->breakInfo->b1MaxF[0] = 0; | ||
2672 | joint->breakInfo->b1MaxT[0] = 0; | ||
2673 | joint->breakInfo->b2MaxF[0] = 0; | ||
2674 | joint->breakInfo->b2MaxT[0] = 0; | ||
2675 | } | ||
2676 | joint->breakInfo->callback = 0; | ||
2677 | } | ||
2678 | else { | ||
2679 | // the joint was already breakable | ||
2680 | return; | ||
2681 | } | ||
2682 | } | ||
2683 | else { | ||
2684 | // we want this joint to be unbreakable mut we must first check if | ||
2685 | // it is alreay unbreakable | ||
2686 | if (joint->breakInfo) { | ||
2687 | // deallocate the dxJointBreakInfo struct | ||
2688 | delete joint->breakInfo; | ||
2689 | joint->breakInfo = 0; | ||
2690 | } | ||
2691 | else { | ||
2692 | // the joint was already unbreakable | ||
2693 | return; | ||
2694 | } | ||
2695 | } | ||
2696 | } | ||
2697 | |||
2698 | extern "C" void dJointSetBreakCallback (dxJoint *joint, dJointBreakCallback *callbackFunc) { | ||
2699 | dAASSERT(joint); | ||
2700 | # ifndef dNODEBUG | ||
2701 | // only works for a breakable joint | ||
2702 | if (!joint->breakInfo) { | ||
2703 | dDebug (0, "dJointSetBreakCallback called on unbreakable joint"); | ||
2704 | } | ||
2705 | # endif | ||
2706 | joint->breakInfo->callback = callbackFunc; | ||
2707 | } | ||
2708 | |||
2709 | extern "C" void dJointSetBreakMode (dxJoint *joint, int mode) { | ||
2710 | dAASSERT(joint); | ||
2711 | # ifndef dNODEBUG | ||
2712 | // only works for a breakable joint | ||
2713 | if (!joint->breakInfo) { | ||
2714 | dDebug (0, "dJointSetBreakMode called on unbreakable joint"); | ||
2715 | } | ||
2716 | # endif | ||
2717 | joint->breakInfo->flags = mode; | ||
2718 | } | ||
2719 | |||
2720 | extern "C" int dJointGetBreakMode (dxJoint *joint) { | ||
2721 | dAASSERT(joint); | ||
2722 | # ifndef dNODEBUG | ||
2723 | // only works for a breakable joint | ||
2724 | if (!joint->breakInfo) { | ||
2725 | dDebug (0, "dJointGetBreakMode called on unbreakable joint"); | ||
2726 | } | ||
2727 | # endif | ||
2728 | return joint->breakInfo->flags; | ||
2729 | } | ||
2730 | |||
2731 | extern "C" void dJointSetBreakForce (dxJoint *joint, int body, dReal x, dReal y, dReal z) { | ||
2732 | dAASSERT(joint); | ||
2733 | # ifndef dNODEBUG | ||
2734 | // only works for a breakable joint | ||
2735 | if (!joint->breakInfo) { | ||
2736 | dDebug (0, "dJointSetBreakForce called on unbreakable joint"); | ||
2737 | } | ||
2738 | # endif | ||
2739 | if (body) { | ||
2740 | joint->breakInfo->b2MaxF[0] = x; | ||
2741 | joint->breakInfo->b2MaxF[1] = y; | ||
2742 | joint->breakInfo->b2MaxF[2] = z; | ||
2743 | } | ||
2744 | else { | ||
2745 | joint->breakInfo->b1MaxF[0] = x; | ||
2746 | joint->breakInfo->b1MaxF[1] = y; | ||
2747 | joint->breakInfo->b1MaxF[2] = z; | ||
2748 | } | ||
2749 | } | ||
2750 | |||
2751 | extern "C" void dJointSetBreakTorque (dxJoint *joint, int body, dReal x, dReal y, dReal z) { | ||
2752 | dAASSERT(joint); | ||
2753 | # ifndef dNODEBUG | ||
2754 | // only works for a breakable joint | ||
2755 | if (!joint->breakInfo) { | ||
2756 | dDebug (0, "dJointSetBreakTorque called on unbreakable joint"); | ||
2757 | } | ||
2758 | # endif | ||
2759 | if (body) { | ||
2760 | joint->breakInfo->b2MaxT[0] = x; | ||
2761 | joint->breakInfo->b2MaxT[1] = y; | ||
2762 | joint->breakInfo->b2MaxT[2] = z; | ||
2763 | } | ||
2764 | else { | ||
2765 | joint->breakInfo->b1MaxT[0] = x; | ||
2766 | joint->breakInfo->b1MaxT[1] = y; | ||
2767 | joint->breakInfo->b1MaxT[2] = z; | ||
2768 | } | ||
2769 | } | ||
2770 | |||
2771 | extern "C" int dJointIsBreakable (dxJoint *joint) { | ||
2772 | dAASSERT(joint); | ||
2773 | return joint->breakInfo != 0; | ||
2774 | } | ||
2775 | |||
2776 | extern "C" void dJointGetBreakForce (dxJoint *joint, int body, dReal *force) { | ||
2777 | dAASSERT(joint); | ||
2778 | # ifndef dNODEBUG | ||
2779 | // only works for a breakable joint | ||
2780 | if (!joint->breakInfo) { | ||
2781 | dDebug (0, "dJointGetBreakForce called on unbreakable joint"); | ||
2782 | } | ||
2783 | # endif | ||
2784 | if (body) | ||
2785 | for (int i=0; i<3; i++) force[i]=joint->breakInfo->b2MaxF[i]; | ||
2786 | else | ||
2787 | for (int i=0; i<3; i++) force[i]=joint->breakInfo->b1MaxF[i]; | ||
2788 | } | ||
2789 | |||
2790 | extern "C" void dJointGetBreakTorque (dxJoint *joint, int body, dReal *torque) { | ||
2791 | dAASSERT(joint); | ||
2792 | # ifndef dNODEBUG | ||
2793 | // only works for a breakable joint | ||
2794 | if (!joint->breakInfo) { | ||
2795 | dDebug (0, "dJointGetBreakTorque called on unbreakable joint"); | ||
2796 | } | ||
2797 | # endif | ||
2798 | if (body) | ||
2799 | for (int i=0; i<3; i++) torque[i]=joint->breakInfo->b2MaxT[i]; | ||
2800 | else | ||
2801 | for (int i=0; i<3; i++) torque[i]=joint->breakInfo->b1MaxT[i]; | ||
2802 | } | ||
2803 | /*************************************************************************/ | ||
diff --git a/libraries/ode-0.9/contrib/BreakableJoints/joint.h b/libraries/ode-0.9/contrib/BreakableJoints/joint.h new file mode 100644 index 0000000..0573119 --- /dev/null +++ b/libraries/ode-0.9/contrib/BreakableJoints/joint.h | |||
@@ -0,0 +1,282 @@ | |||
1 | /************************************************************************* | ||
2 | * * | ||
3 | * Open Dynamics Engine, Copyright (C) 2001,2002 Russell L. Smith. * | ||
4 | * All rights reserved. Email: russ@q12.org Web: www.q12.org * | ||
5 | * * | ||
6 | * This library is free software; you can redistribute it and/or * | ||
7 | * modify it under the terms of EITHER: * | ||
8 | * (1) The GNU Lesser General Public License as published by the Free * | ||
9 | * Software Foundation; either version 2.1 of the License, or (at * | ||
10 | * your option) any later version. The text of the GNU Lesser * | ||
11 | * General Public License is included with this library in the * | ||
12 | * file LICENSE.TXT. * | ||
13 | * (2) The BSD-style license that is included with this library in * | ||
14 | * the file LICENSE-BSD.TXT. * | ||
15 | * * | ||
16 | * This library is distributed in the hope that it will be useful, * | ||
17 | * but WITHOUT ANY WARRANTY; without even the implied warranty of * | ||
18 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the files * | ||
19 | * LICENSE.TXT and LICENSE-BSD.TXT for more details. * | ||
20 | * * | ||
21 | *************************************************************************/ | ||
22 | |||
23 | #ifndef _ODE_JOINT_H_ | ||
24 | #define _ODE_JOINT_H_ | ||
25 | |||
26 | |||
27 | #include "objects.h" | ||
28 | #include <ode/contact.h> | ||
29 | #include "obstack.h" | ||
30 | |||
31 | |||
32 | // joint flags | ||
33 | enum { | ||
34 | // if this flag is set, the joint was allocated in a joint group | ||
35 | dJOINT_INGROUP = 1, | ||
36 | |||
37 | // if this flag is set, the joint was attached with arguments (0,body). | ||
38 | // our convention is to treat all attaches as (body,0), i.e. so node[0].body | ||
39 | // is always nonzero, so this flag records the fact that the arguments were | ||
40 | // swapped. | ||
41 | dJOINT_REVERSE = 2, | ||
42 | |||
43 | // if this flag is set, the joint can not have just one body attached to it, | ||
44 | // it must have either zero or two bodies attached. | ||
45 | dJOINT_TWOBODIES = 4 | ||
46 | }; | ||
47 | |||
48 | |||
49 | // there are two of these nodes in the joint, one for each connection to a | ||
50 | // body. these are node of a linked list kept by each body of it's connecting | ||
51 | // joints. but note that the body pointer in each node points to the body that | ||
52 | // makes use of the *other* node, not this node. this trick makes it a bit | ||
53 | // easier to traverse the body/joint graph. | ||
54 | |||
55 | struct dxJointNode { | ||
56 | dxJoint *joint; // pointer to enclosing dxJoint object | ||
57 | dxBody *body; // *other* body this joint is connected to | ||
58 | dxJointNode *next; // next node in body's list of connected joints | ||
59 | }; | ||
60 | |||
61 | /******************** breakable joint contribution ***********************/ | ||
62 | struct dxJointBreakInfo : public dBase { | ||
63 | int flags; | ||
64 | dReal b1MaxF[3]; // maximum force on body 1 | ||
65 | dReal b1MaxT[3]; // maximum torque on body 1 | ||
66 | dReal b2MaxF[3]; // maximum force on body 2 | ||
67 | dReal b2MaxT[3]; // maximum torque on body 2 | ||
68 | dJointBreakCallback *callback; // function that is called when this joint breaks | ||
69 | }; | ||
70 | /*************************************************************************/ | ||
71 | |||
72 | struct dxJoint : public dObject { | ||
73 | // naming convention: the "first" body this is connected to is node[0].body, | ||
74 | // and the "second" body is node[1].body. if this joint is only connected | ||
75 | // to one body then the second body is 0. | ||
76 | |||
77 | // info returned by getInfo1 function. the constraint dimension is m (<=6). | ||
78 | // i.e. that is the total number of rows in the jacobian. `nub' is the | ||
79 | // number of unbounded variables (which have lo,hi = -/+ infinity). | ||
80 | |||
81 | struct Info1 { | ||
82 | int m,nub; | ||
83 | }; | ||
84 | |||
85 | // info returned by getInfo2 function | ||
86 | |||
87 | struct Info2 { | ||
88 | // integrator parameters: frames per second (1/stepsize), default error | ||
89 | // reduction parameter (0..1). | ||
90 | dReal fps,erp; | ||
91 | |||
92 | // for the first and second body, pointers to two (linear and angular) | ||
93 | // n*3 jacobian sub matrices, stored by rows. these matrices will have | ||
94 | // been initialized to 0 on entry. if the second body is zero then the | ||
95 | // J2xx pointers may be 0. | ||
96 | dReal *J1l,*J1a,*J2l,*J2a; | ||
97 | |||
98 | // elements to jump from one row to the next in J's | ||
99 | int rowskip; | ||
100 | |||
101 | // right hand sides of the equation J*v = c + cfm * lambda. cfm is the | ||
102 | // "constraint force mixing" vector. c is set to zero on entry, cfm is | ||
103 | // set to a constant value (typically very small or zero) value on entry. | ||
104 | dReal *c,*cfm; | ||
105 | |||
106 | // lo and hi limits for variables (set to -/+ infinity on entry). | ||
107 | dReal *lo,*hi; | ||
108 | |||
109 | // findex vector for variables. see the LCP solver interface for a | ||
110 | // description of what this does. this is set to -1 on entry. | ||
111 | // note that the returned indexes are relative to the first index of | ||
112 | // the constraint. | ||
113 | int *findex; | ||
114 | }; | ||
115 | |||
116 | // virtual function table: size of the joint structure, function pointers. | ||
117 | // we do it this way instead of using C++ virtual functions because | ||
118 | // sometimes we need to allocate joints ourself within a memory pool. | ||
119 | |||
120 | typedef void init_fn (dxJoint *joint); | ||
121 | typedef void getInfo1_fn (dxJoint *joint, Info1 *info); | ||
122 | typedef void getInfo2_fn (dxJoint *joint, Info2 *info); | ||
123 | struct Vtable { | ||
124 | int size; | ||
125 | init_fn *init; | ||
126 | getInfo1_fn *getInfo1; | ||
127 | getInfo2_fn *getInfo2; | ||
128 | int typenum; // a dJointTypeXXX type number | ||
129 | }; | ||
130 | |||
131 | Vtable *vtable; // virtual function table | ||
132 | int flags; // dJOINT_xxx flags | ||
133 | dxJointNode node[2]; // connections to bodies. node[1].body can be 0 | ||
134 | dJointFeedback *feedback; // optional feedback structure | ||
135 | |||
136 | /******************** breakable joint contribution ***********************/ | ||
137 | // optional break info structure. if this is not NULL the the joint is | ||
138 | // breakable. | ||
139 | dxJointBreakInfo *breakInfo; | ||
140 | /*************************************************************************/ | ||
141 | }; | ||
142 | |||
143 | |||
144 | // joint group. NOTE: any joints in the group that have their world destroyed | ||
145 | // will have their world pointer set to 0. | ||
146 | |||
147 | struct dxJointGroup : public dBase { | ||
148 | int num; // number of joints on the stack | ||
149 | dObStack stack; // a stack of (possibly differently sized) dxJoint | ||
150 | }; // objects. | ||
151 | |||
152 | |||
153 | // common limit and motor information for a single joint axis of movement | ||
154 | struct dxJointLimitMotor { | ||
155 | dReal vel,fmax; // powered joint: velocity, max force | ||
156 | dReal lostop,histop; // joint limits, relative to initial position | ||
157 | dReal fudge_factor; // when powering away from joint limits | ||
158 | dReal normal_cfm; // cfm to use when not at a stop | ||
159 | dReal stop_erp,stop_cfm; // erp and cfm for when at joint limit | ||
160 | dReal bounce; // restitution factor | ||
161 | // variables used between getInfo1() and getInfo2() | ||
162 | int limit; // 0=free, 1=at lo limit, 2=at hi limit | ||
163 | dReal limit_err; // if at limit, amount over limit | ||
164 | |||
165 | void init (dxWorld *); | ||
166 | void set (int num, dReal value); | ||
167 | dReal get (int num); | ||
168 | int testRotationalLimit (dReal angle); | ||
169 | int addLimot (dxJoint *joint, dxJoint::Info2 *info, int row, | ||
170 | dVector3 ax1, int rotational); | ||
171 | }; | ||
172 | |||
173 | |||
174 | // ball and socket | ||
175 | |||
176 | struct dxJointBall : public dxJoint { | ||
177 | dVector3 anchor1; // anchor w.r.t first body | ||
178 | dVector3 anchor2; // anchor w.r.t second body | ||
179 | }; | ||
180 | extern struct dxJoint::Vtable __dball_vtable; | ||
181 | |||
182 | |||
183 | // hinge | ||
184 | |||
185 | struct dxJointHinge : public dxJoint { | ||
186 | dVector3 anchor1; // anchor w.r.t first body | ||
187 | dVector3 anchor2; // anchor w.r.t second body | ||
188 | dVector3 axis1; // axis w.r.t first body | ||
189 | dVector3 axis2; // axis w.r.t second body | ||
190 | dQuaternion qrel; // initial relative rotation body1 -> body2 | ||
191 | dxJointLimitMotor limot; // limit and motor information | ||
192 | }; | ||
193 | extern struct dxJoint::Vtable __dhinge_vtable; | ||
194 | |||
195 | |||
196 | // universal | ||
197 | |||
198 | struct dxJointUniversal : public dxJoint { | ||
199 | dVector3 anchor1; // anchor w.r.t first body | ||
200 | dVector3 anchor2; // anchor w.r.t second body | ||
201 | dVector3 axis1; // axis w.r.t first body | ||
202 | dVector3 axis2; // axis w.r.t second body | ||
203 | dQuaternion qrel1; // initial relative rotation body1 -> virtual cross piece | ||
204 | dQuaternion qrel2; // initial relative rotation virtual cross piece -> body2 | ||
205 | dxJointLimitMotor limot1; // limit and motor information for axis1 | ||
206 | dxJointLimitMotor limot2; // limit and motor information for axis2 | ||
207 | }; | ||
208 | extern struct dxJoint::Vtable __duniversal_vtable; | ||
209 | |||
210 | |||
211 | // slider. if body2 is 0 then qrel is the absolute rotation of body1 and | ||
212 | // offset is the position of body1 center along axis1. | ||
213 | |||
214 | struct dxJointSlider : public dxJoint { | ||
215 | dVector3 axis1; // axis w.r.t first body | ||
216 | dQuaternion qrel; // initial relative rotation body1 -> body2 | ||
217 | dVector3 offset; // point relative to body2 that should be | ||
218 | // aligned with body1 center along axis1 | ||
219 | dxJointLimitMotor limot; // limit and motor information | ||
220 | }; | ||
221 | extern struct dxJoint::Vtable __dslider_vtable; | ||
222 | |||
223 | |||
224 | // contact | ||
225 | |||
226 | struct dxJointContact : public dxJoint { | ||
227 | int the_m; // number of rows computed by getInfo1 | ||
228 | dContact contact; | ||
229 | }; | ||
230 | extern struct dxJoint::Vtable __dcontact_vtable; | ||
231 | |||
232 | |||
233 | // hinge 2 | ||
234 | |||
235 | struct dxJointHinge2 : public dxJoint { | ||
236 | dVector3 anchor1; // anchor w.r.t first body | ||
237 | dVector3 anchor2; // anchor w.r.t second body | ||
238 | dVector3 axis1; // axis 1 w.r.t first body | ||
239 | dVector3 axis2; // axis 2 w.r.t second body | ||
240 | dReal c0,s0; // cos,sin of desired angle between axis 1,2 | ||
241 | dVector3 v1,v2; // angle ref vectors embedded in first body | ||
242 | dxJointLimitMotor limot1; // limit+motor info for axis 1 | ||
243 | dxJointLimitMotor limot2; // limit+motor info for axis 2 | ||
244 | dReal susp_erp,susp_cfm; // suspension parameters (erp,cfm) | ||
245 | }; | ||
246 | extern struct dxJoint::Vtable __dhinge2_vtable; | ||
247 | |||
248 | |||
249 | // angular motor | ||
250 | |||
251 | struct dxJointAMotor : public dxJoint { | ||
252 | int num; // number of axes (0..3) | ||
253 | int mode; // a dAMotorXXX constant | ||
254 | int rel[3]; // what the axes are relative to (global,b1,b2) | ||
255 | dVector3 axis[3]; // three axes | ||
256 | dxJointLimitMotor limot[3]; // limit+motor info for axes | ||
257 | dReal angle[3]; // user-supplied angles for axes | ||
258 | // these vectors are used for calculating euler angles | ||
259 | dVector3 reference1; // original axis[2], relative to body 1 | ||
260 | dVector3 reference2; // original axis[0], relative to body 2 | ||
261 | }; | ||
262 | extern struct dxJoint::Vtable __damotor_vtable; | ||
263 | |||
264 | |||
265 | // fixed | ||
266 | |||
267 | struct dxJointFixed : public dxJoint { | ||
268 | dQuaternion qrel; // initial relative rotation body1 -> body2 | ||
269 | dVector3 offset; // relative offset between the bodies | ||
270 | }; | ||
271 | extern struct dxJoint::Vtable __dfixed_vtable; | ||
272 | |||
273 | |||
274 | // null joint, for testing only | ||
275 | |||
276 | struct dxJointNull : public dxJoint { | ||
277 | }; | ||
278 | extern struct dxJoint::Vtable __dnull_vtable; | ||
279 | |||
280 | |||
281 | |||
282 | #endif | ||
diff --git a/libraries/ode-0.9/contrib/BreakableJoints/objects.h b/libraries/ode-0.9/contrib/BreakableJoints/objects.h new file mode 100644 index 0000000..de08391 --- /dev/null +++ b/libraries/ode-0.9/contrib/BreakableJoints/objects.h | |||
@@ -0,0 +1,252 @@ | |||
1 | /************************************************************************* | ||
2 | * * | ||
3 | * Open Dynamics Engine, Copyright (C) 2001,2002 Russell L. Smith. * | ||
4 | * All rights reserved. Email: russ@q12.org Web: www.q12.org * | ||
5 | * * | ||
6 | * This library is free software; you can redistribute it and/or * | ||
7 | * modify it under the terms of EITHER: * | ||
8 | * (1) The GNU Lesser General Public License as published by the Free * | ||
9 | * Software Foundation; either version 2.1 of the License, or (at * | ||
10 | * your option) any later version. The text of the GNU Lesser * | ||
11 | * General Public License is included with this library in the * | ||
12 | * file LICENSE.TXT. * | ||
13 | * (2) The BSD-style license that is included with this library in * | ||
14 | * the file LICENSE-BSD.TXT. * | ||
15 | * * | ||
16 | * This library is distributed in the hope that it will be useful, * | ||
17 | * but WITHOUT ANY WARRANTY; without even the implied warranty of * | ||
18 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the files * | ||
19 | * LICENSE.TXT and LICENSE-BSD.TXT for more details. * | ||
20 | * * | ||
21 | *************************************************************************/ | ||
22 | |||
23 | #ifndef _ODE_OBJECTS_H_ | ||
24 | #define _ODE_OBJECTS_H_ | ||
25 | |||
26 | #include <ode/common.h> | ||
27 | #include <ode/mass.h> | ||
28 | #include <ode/contact.h> | ||
29 | |||
30 | #ifdef __cplusplus | ||
31 | extern "C" { | ||
32 | #endif | ||
33 | |||
34 | /* world */ | ||
35 | |||
36 | dWorldID dWorldCreate(); | ||
37 | void dWorldDestroy (dWorldID); | ||
38 | |||
39 | void dWorldSetGravity (dWorldID, dReal x, dReal y, dReal z); | ||
40 | void dWorldGetGravity (dWorldID, dVector3 gravity); | ||
41 | void dWorldSetERP (dWorldID, dReal erp); | ||
42 | dReal dWorldGetERP (dWorldID); | ||
43 | void dWorldSetCFM (dWorldID, dReal cfm); | ||
44 | dReal dWorldGetCFM (dWorldID); | ||
45 | void dWorldStep (dWorldID, dReal stepsize); | ||
46 | void dWorldImpulseToForce (dWorldID, dReal stepsize, | ||
47 | dReal ix, dReal iy, dReal iz, dVector3 force); | ||
48 | |||
49 | /* StepFast1 functions */ | ||
50 | |||
51 | void dWorldStepFast1(dWorldID, dReal stepsize, int maxiterations); | ||
52 | void dWorldSetAutoEnableDepthSF1(dWorldID, int autoEnableDepth); | ||
53 | |||
54 | int dWorldGetAutoEnableDepthSF1(dWorldID); | ||
55 | |||
56 | void dBodySetAutoDisableThresholdSF1(dBodyID, dReal autoDisableThreshold); | ||
57 | |||
58 | /* These functions are not yet implemented by ODE. */ | ||
59 | /* | ||
60 | dReal dBodyGetAutoDisableThresholdSF1(dBodyID); | ||
61 | |||
62 | void dBodySetAutoDisableStepsSF1(dBodyID, int AutoDisableSteps); | ||
63 | |||
64 | int dBodyGetAutoDisableStepsSF1(dBodyID); | ||
65 | |||
66 | void dBodySetAutoDisableSF1(dBodyID, int doAutoDisable); | ||
67 | |||
68 | int dBodyGetAutoDisableSF1(dBodyID); | ||
69 | */ | ||
70 | |||
71 | /* bodies */ | ||
72 | |||
73 | dBodyID dBodyCreate (dWorldID); | ||
74 | void dBodyDestroy (dBodyID); | ||
75 | |||
76 | void dBodySetData (dBodyID, void *data); | ||
77 | void *dBodyGetData (dBodyID); | ||
78 | |||
79 | void dBodySetPosition (dBodyID, dReal x, dReal y, dReal z); | ||
80 | void dBodySetRotation (dBodyID, const dMatrix3 R); | ||
81 | void dBodySetQuaternion (dBodyID, const dQuaternion q); | ||
82 | void dBodySetLinearVel (dBodyID, dReal x, dReal y, dReal z); | ||
83 | void dBodySetAngularVel (dBodyID, dReal x, dReal y, dReal z); | ||
84 | const dReal * dBodyGetPosition (dBodyID); | ||
85 | const dReal * dBodyGetRotation (dBodyID); /* ptr to 4x3 rot matrix */ | ||
86 | const dReal * dBodyGetQuaternion (dBodyID); | ||
87 | const dReal * dBodyGetLinearVel (dBodyID); | ||
88 | const dReal * dBodyGetAngularVel (dBodyID); | ||
89 | |||
90 | void dBodySetMass (dBodyID, const dMass *mass); | ||
91 | void dBodyGetMass (dBodyID, dMass *mass); | ||
92 | |||
93 | void dBodyAddForce (dBodyID, dReal fx, dReal fy, dReal fz); | ||
94 | void dBodyAddTorque (dBodyID, dReal fx, dReal fy, dReal fz); | ||
95 | void dBodyAddRelForce (dBodyID, dReal fx, dReal fy, dReal fz); | ||
96 | void dBodyAddRelTorque (dBodyID, dReal fx, dReal fy, dReal fz); | ||
97 | void dBodyAddForceAtPos (dBodyID, dReal fx, dReal fy, dReal fz, | ||
98 | dReal px, dReal py, dReal pz); | ||
99 | void dBodyAddForceAtRelPos (dBodyID, dReal fx, dReal fy, dReal fz, | ||
100 | dReal px, dReal py, dReal pz); | ||
101 | void dBodyAddRelForceAtPos (dBodyID, dReal fx, dReal fy, dReal fz, | ||
102 | dReal px, dReal py, dReal pz); | ||
103 | void dBodyAddRelForceAtRelPos (dBodyID, dReal fx, dReal fy, dReal fz, | ||
104 | dReal px, dReal py, dReal pz); | ||
105 | |||
106 | const dReal * dBodyGetForce (dBodyID); | ||
107 | const dReal * dBodyGetTorque (dBodyID); | ||
108 | void dBodySetForce (dBodyID b, dReal x, dReal y, dReal z); | ||
109 | void dBodySetTorque (dBodyID b, dReal x, dReal y, dReal z); | ||
110 | |||
111 | void dBodyGetRelPointPos (dBodyID, dReal px, dReal py, dReal pz, | ||
112 | dVector3 result); | ||
113 | void dBodyGetRelPointVel (dBodyID, dReal px, dReal py, dReal pz, | ||
114 | dVector3 result); | ||
115 | void dBodyGetPointVel (dBodyID, dReal px, dReal py, dReal pz, | ||
116 | dVector3 result); | ||
117 | void dBodyGetPosRelPoint (dBodyID, dReal px, dReal py, dReal pz, | ||
118 | dVector3 result); | ||
119 | void dBodyVectorToWorld (dBodyID, dReal px, dReal py, dReal pz, | ||
120 | dVector3 result); | ||
121 | void dBodyVectorFromWorld (dBodyID, dReal px, dReal py, dReal pz, | ||
122 | dVector3 result); | ||
123 | |||
124 | void dBodySetFiniteRotationMode (dBodyID, int mode); | ||
125 | void dBodySetFiniteRotationAxis (dBodyID, dReal x, dReal y, dReal z); | ||
126 | |||
127 | int dBodyGetFiniteRotationMode (dBodyID); | ||
128 | void dBodyGetFiniteRotationAxis (dBodyID, dVector3 result); | ||
129 | |||
130 | int dBodyGetNumJoints (dBodyID b); | ||
131 | dJointID dBodyGetJoint (dBodyID, int index); | ||
132 | |||
133 | void dBodyEnable (dBodyID); | ||
134 | void dBodyDisable (dBodyID); | ||
135 | int dBodyIsEnabled (dBodyID); | ||
136 | |||
137 | void dBodySetGravityMode (dBodyID b, int mode); | ||
138 | int dBodyGetGravityMode (dBodyID b); | ||
139 | |||
140 | |||
141 | /* joints */ | ||
142 | |||
143 | dJointID dJointCreateBall (dWorldID, dJointGroupID); | ||
144 | dJointID dJointCreateHinge (dWorldID, dJointGroupID); | ||
145 | dJointID dJointCreateSlider (dWorldID, dJointGroupID); | ||
146 | dJointID dJointCreateContact (dWorldID, dJointGroupID, const dContact *); | ||
147 | dJointID dJointCreateHinge2 (dWorldID, dJointGroupID); | ||
148 | dJointID dJointCreateUniversal (dWorldID, dJointGroupID); | ||
149 | dJointID dJointCreateFixed (dWorldID, dJointGroupID); | ||
150 | dJointID dJointCreateNull (dWorldID, dJointGroupID); | ||
151 | dJointID dJointCreateAMotor (dWorldID, dJointGroupID); | ||
152 | |||
153 | void dJointDestroy (dJointID); | ||
154 | |||
155 | dJointGroupID dJointGroupCreate (int max_size); | ||
156 | void dJointGroupDestroy (dJointGroupID); | ||
157 | void dJointGroupEmpty (dJointGroupID); | ||
158 | |||
159 | void dJointAttach (dJointID, dBodyID body1, dBodyID body2); | ||
160 | void dJointSetData (dJointID, void *data); | ||
161 | void *dJointGetData (dJointID); | ||
162 | int dJointGetType (dJointID); | ||
163 | dBodyID dJointGetBody (dJointID, int index); | ||
164 | |||
165 | void dJointSetFeedback (dJointID, dJointFeedback *); | ||
166 | dJointFeedback *dJointGetFeedback (dJointID); | ||
167 | |||
168 | /******************** breakable joint contribution ***********************/ | ||
169 | void dJointSetBreakable (dJointID, int b); | ||
170 | void dJointSetBreakCallback (dJointID, dJointBreakCallback *callbackFunc); | ||
171 | void dJointSetBreakMode (dJointID, int mode); | ||
172 | int dJointGetBreakMode (dJointID); | ||
173 | void dJointSetBreakForce (dJointID, int body, dReal x, dReal y, dReal z); | ||
174 | void dJointSetBreakTorque (dJointID, int body, dReal x, dReal y, dReal z); | ||
175 | int dJointIsBreakable (dJointID); | ||
176 | void dJointGetBreakForce (dJointID, int body, dReal *force); | ||
177 | void dJointGetBreakTorque (dJointID, int body, dReal *torque); | ||
178 | /*************************************************************************/ | ||
179 | |||
180 | void dJointSetBallAnchor (dJointID, dReal x, dReal y, dReal z); | ||
181 | void dJointSetHingeAnchor (dJointID, dReal x, dReal y, dReal z); | ||
182 | void dJointSetHingeAxis (dJointID, dReal x, dReal y, dReal z); | ||
183 | void dJointSetHingeParam (dJointID, int parameter, dReal value); | ||
184 | void dJointAddHingeTorque(dJointID joint, dReal torque); | ||
185 | void dJointSetSliderAxis (dJointID, dReal x, dReal y, dReal z); | ||
186 | void dJointSetSliderParam (dJointID, int parameter, dReal value); | ||
187 | void dJointAddSliderForce(dJointID joint, dReal force); | ||
188 | void dJointSetHinge2Anchor (dJointID, dReal x, dReal y, dReal z); | ||
189 | void dJointSetHinge2Axis1 (dJointID, dReal x, dReal y, dReal z); | ||
190 | void dJointSetHinge2Axis2 (dJointID, dReal x, dReal y, dReal z); | ||
191 | void dJointSetHinge2Param (dJointID, int parameter, dReal value); | ||
192 | void dJointAddHinge2Torques(dJointID joint, dReal torque1, dReal torque2); | ||
193 | void dJointSetUniversalAnchor (dJointID, dReal x, dReal y, dReal z); | ||
194 | void dJointSetUniversalAxis1 (dJointID, dReal x, dReal y, dReal z); | ||
195 | void dJointSetUniversalAxis2 (dJointID, dReal x, dReal y, dReal z); | ||
196 | void dJointSetUniversalParam (dJointID, int parameter, dReal value); | ||
197 | void dJointAddUniversalTorques(dJointID joint, dReal torque1, dReal torque2); | ||
198 | void dJointSetFixed (dJointID); | ||
199 | void dJointSetAMotorNumAxes (dJointID, int num); | ||
200 | void dJointSetAMotorAxis (dJointID, int anum, int rel, | ||
201 | dReal x, dReal y, dReal z); | ||
202 | void dJointSetAMotorAngle (dJointID, int anum, dReal angle); | ||
203 | void dJointSetAMotorParam (dJointID, int parameter, dReal value); | ||
204 | void dJointSetAMotorMode (dJointID, int mode); | ||
205 | void dJointAddAMotorTorques (dJointID, dReal torque1, dReal torque2, dReal torque3); | ||
206 | |||
207 | void dJointGetBallAnchor (dJointID, dVector3 result); | ||
208 | void dJointGetBallAnchor2 (dJointID, dVector3 result); | ||
209 | void dJointGetHingeAnchor (dJointID, dVector3 result); | ||
210 | void dJointGetHingeAnchor2 (dJointID, dVector3 result); | ||
211 | void dJointGetHingeAxis (dJointID, dVector3 result); | ||
212 | dReal dJointGetHingeParam (dJointID, int parameter); | ||
213 | dReal dJointGetHingeAngle (dJointID); | ||
214 | dReal dJointGetHingeAngleRate (dJointID); | ||
215 | dReal dJointGetSliderPosition (dJointID); | ||
216 | dReal dJointGetSliderPositionRate (dJointID); | ||
217 | void dJointGetSliderAxis (dJointID, dVector3 result); | ||
218 | dReal dJointGetSliderParam (dJointID, int parameter); | ||
219 | void dJointGetHinge2Anchor (dJointID, dVector3 result); | ||
220 | void dJointGetHinge2Anchor2 (dJointID, dVector3 result); | ||
221 | void dJointGetHinge2Axis1 (dJointID, dVector3 result); | ||
222 | void dJointGetHinge2Axis2 (dJointID, dVector3 result); | ||
223 | dReal dJointGetHinge2Param (dJointID, int parameter); | ||
224 | dReal dJointGetHinge2Angle1 (dJointID); | ||
225 | dReal dJointGetHinge2Angle1Rate (dJointID); | ||
226 | dReal dJointGetHinge2Angle2Rate (dJointID); | ||
227 | void dJointGetUniversalAnchor (dJointID, dVector3 result); | ||
228 | void dJointGetUniversalAnchor2 (dJointID, dVector3 result); | ||
229 | void dJointGetUniversalAxis1 (dJointID, dVector3 result); | ||
230 | void dJointGetUniversalAxis2 (dJointID, dVector3 result); | ||
231 | dReal dJointGetUniversalParam (dJointID, int parameter); | ||
232 | dReal dJointGetUniversalAngle1 (dJointID); | ||
233 | dReal dJointGetUniversalAngle2 (dJointID); | ||
234 | dReal dJointGetUniversalAngle1Rate (dJointID); | ||
235 | dReal dJointGetUniversalAngle2Rate (dJointID); | ||
236 | int dJointGetAMotorNumAxes (dJointID); | ||
237 | void dJointGetAMotorAxis (dJointID, int anum, dVector3 result); | ||
238 | int dJointGetAMotorAxisRel (dJointID, int anum); | ||
239 | dReal dJointGetAMotorAngle (dJointID, int anum); | ||
240 | dReal dJointGetAMotorAngleRate (dJointID, int anum); | ||
241 | dReal dJointGetAMotorParam (dJointID, int parameter); | ||
242 | int dJointGetAMotorMode (dJointID); | ||
243 | |||
244 | int dAreConnected (dBodyID, dBodyID); | ||
245 | int dAreConnectedExcluding (dBodyID, dBodyID, int joint_type); | ||
246 | |||
247 | |||
248 | #ifdef __cplusplus | ||
249 | } | ||
250 | #endif | ||
251 | |||
252 | #endif | ||
diff --git a/libraries/ode-0.9/contrib/BreakableJoints/ode.cpp b/libraries/ode-0.9/contrib/BreakableJoints/ode.cpp new file mode 100644 index 0000000..7137960 --- /dev/null +++ b/libraries/ode-0.9/contrib/BreakableJoints/ode.cpp | |||
@@ -0,0 +1,1404 @@ | |||
1 | /************************************************************************* | ||
2 | * * | ||
3 | * Open Dynamics Engine, Copyright (C) 2001,2002 Russell L. Smith. * | ||
4 | * All rights reserved. Email: russ@q12.org Web: www.q12.org * | ||
5 | * * | ||
6 | * This library is free software; you can redistribute it and/or * | ||
7 | * modify it under the terms of EITHER: * | ||
8 | * (1) The GNU Lesser General Public License as published by the Free * | ||
9 | * Software Foundation; either version 2.1 of the License, or (at * | ||
10 | * your option) any later version. The text of the GNU Lesser * | ||
11 | * General Public License is included with this library in the * | ||
12 | * file LICENSE.TXT. * | ||
13 | * (2) The BSD-style license that is included with this library in * | ||
14 | * the file LICENSE-BSD.TXT. * | ||
15 | * * | ||
16 | * This library is distributed in the hope that it will be useful, * | ||
17 | * but WITHOUT ANY WARRANTY; without even the implied warranty of * | ||
18 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the files * | ||
19 | * LICENSE.TXT and LICENSE-BSD.TXT for more details. * | ||
20 | * * | ||
21 | *************************************************************************/ | ||
22 | |||
23 | #ifdef _MSC_VER | ||
24 | #pragma warning(disable:4291) // for VC++, no complaints about "no matching operator delete found" | ||
25 | #endif | ||
26 | |||
27 | // this source file is mostly concerned with the data structures, not the | ||
28 | // numerics. | ||
29 | |||
30 | #include "objects.h" | ||
31 | #include <ode/ode.h> | ||
32 | #include "joint.h" | ||
33 | #include <ode/odemath.h> | ||
34 | #include <ode/matrix.h> | ||
35 | #include "step.h" | ||
36 | #include <ode/memory.h> | ||
37 | #include <ode/error.h> | ||
38 | |||
39 | // misc defines | ||
40 | #define ALLOCA dALLOCA16 | ||
41 | |||
42 | //**************************************************************************** | ||
43 | // utility | ||
44 | |||
45 | static inline void initObject (dObject *obj, dxWorld *w) | ||
46 | { | ||
47 | obj->world = w; | ||
48 | obj->next = 0; | ||
49 | obj->tome = 0; | ||
50 | obj->userdata = 0; | ||
51 | obj->tag = 0; | ||
52 | } | ||
53 | |||
54 | |||
55 | // add an object `obj' to the list who's head pointer is pointed to by `first'. | ||
56 | |||
57 | static inline void addObjectToList (dObject *obj, dObject **first) | ||
58 | { | ||
59 | obj->next = *first; | ||
60 | obj->tome = first; | ||
61 | if (*first) (*first)->tome = &obj->next; | ||
62 | (*first) = obj; | ||
63 | } | ||
64 | |||
65 | |||
66 | // remove the object from the linked list | ||
67 | |||
68 | static inline void removeObjectFromList (dObject *obj) | ||
69 | { | ||
70 | if (obj->next) obj->next->tome = obj->tome; | ||
71 | *(obj->tome) = obj->next; | ||
72 | // safeguard | ||
73 | obj->next = 0; | ||
74 | obj->tome = 0; | ||
75 | } | ||
76 | |||
77 | |||
78 | // remove the joint from neighbour lists of all connected bodies | ||
79 | |||
80 | static void removeJointReferencesFromAttachedBodies (dxJoint *j) | ||
81 | { | ||
82 | for (int i=0; i<2; i++) { | ||
83 | dxBody *body = j->node[i].body; | ||
84 | if (body) { | ||
85 | dxJointNode *n = body->firstjoint; | ||
86 | dxJointNode *last = 0; | ||
87 | while (n) { | ||
88 | if (n->joint == j) { | ||
89 | if (last) last->next = n->next; | ||
90 | else body->firstjoint = n->next; | ||
91 | break; | ||
92 | } | ||
93 | last = n; | ||
94 | n = n->next; | ||
95 | } | ||
96 | } | ||
97 | } | ||
98 | j->node[0].body = 0; | ||
99 | j->node[0].next = 0; | ||
100 | j->node[1].body = 0; | ||
101 | j->node[1].next = 0; | ||
102 | } | ||
103 | |||
104 | //**************************************************************************** | ||
105 | // island processing | ||
106 | |||
107 | // this groups all joints and bodies in a world into islands. all objects | ||
108 | // in an island are reachable by going through connected bodies and joints. | ||
109 | // each island can be simulated separately. | ||
110 | // note that joints that are not attached to anything will not be included | ||
111 | // in any island, an so they do not affect the simulation. | ||
112 | // | ||
113 | // this function starts new island from unvisited bodies. however, it will | ||
114 | // never start a new islands from a disabled body. thus islands of disabled | ||
115 | // bodies will not be included in the simulation. disabled bodies are | ||
116 | // re-enabled if they are found to be part of an active island. | ||
117 | |||
118 | static void processIslands (dxWorld *world, dReal stepsize) | ||
119 | { | ||
120 | dxBody *b,*bb,**body; | ||
121 | dxJoint *j,**joint; | ||
122 | |||
123 | // nothing to do if no bodies | ||
124 | if (world->nb <= 0) return; | ||
125 | |||
126 | // make arrays for body and joint lists (for a single island) to go into | ||
127 | body = (dxBody**) ALLOCA (world->nb * sizeof(dxBody*)); | ||
128 | joint = (dxJoint**) ALLOCA (world->nj * sizeof(dxJoint*)); | ||
129 | int bcount = 0; // number of bodies in `body' | ||
130 | int jcount = 0; // number of joints in `joint' | ||
131 | |||
132 | // set all body/joint tags to 0 | ||
133 | for (b=world->firstbody; b; b=(dxBody*)b->next) b->tag = 0; | ||
134 | for (j=world->firstjoint; j; j=(dxJoint*)j->next) j->tag = 0; | ||
135 | |||
136 | // allocate a stack of unvisited bodies in the island. the maximum size of | ||
137 | // the stack can be the lesser of the number of bodies or joints, because | ||
138 | // new bodies are only ever added to the stack by going through untagged | ||
139 | // joints. all the bodies in the stack must be tagged! | ||
140 | int stackalloc = (world->nj < world->nb) ? world->nj : world->nb; | ||
141 | dxBody **stack = (dxBody**) ALLOCA (stackalloc * sizeof(dxBody*)); | ||
142 | |||
143 | for (bb=world->firstbody; bb; bb=(dxBody*)bb->next) { | ||
144 | // get bb = the next enabled, untagged body, and tag it | ||
145 | if (bb->tag || (bb->flags & dxBodyDisabled)) continue; | ||
146 | bb->tag = 1; | ||
147 | |||
148 | // tag all bodies and joints starting from bb. | ||
149 | int stacksize = 0; | ||
150 | b = bb; | ||
151 | body[0] = bb; | ||
152 | bcount = 1; | ||
153 | jcount = 0; | ||
154 | goto quickstart; | ||
155 | while (stacksize > 0) { | ||
156 | b = stack[--stacksize]; // pop body off stack | ||
157 | body[bcount++] = b; // put body on body list | ||
158 | quickstart: | ||
159 | |||
160 | // traverse and tag all body's joints, add untagged connected bodies | ||
161 | // to stack | ||
162 | for (dxJointNode *n=b->firstjoint; n; n=n->next) { | ||
163 | if (!n->joint->tag) { | ||
164 | n->joint->tag = 1; | ||
165 | joint[jcount++] = n->joint; | ||
166 | if (n->body && !n->body->tag) { | ||
167 | n->body->tag = 1; | ||
168 | stack[stacksize++] = n->body; | ||
169 | } | ||
170 | } | ||
171 | } | ||
172 | dIASSERT(stacksize <= world->nb); | ||
173 | dIASSERT(stacksize <= world->nj); | ||
174 | } | ||
175 | |||
176 | // now do something with body and joint lists | ||
177 | dInternalStepIsland (world,body,bcount,joint,jcount,stepsize); | ||
178 | |||
179 | // what we've just done may have altered the body/joint tag values. | ||
180 | // we must make sure that these tags are nonzero. | ||
181 | // also make sure all bodies are in the enabled state. | ||
182 | int i; | ||
183 | for (i=0; i<bcount; i++) { | ||
184 | body[i]->tag = 1; | ||
185 | body[i]->flags &= ~dxBodyDisabled; | ||
186 | } | ||
187 | for (i=0; i<jcount; i++) joint[i]->tag = 1; | ||
188 | } | ||
189 | |||
190 | // if debugging, check that all objects (except for disabled bodies, | ||
191 | // unconnected joints, and joints that are connected to disabled bodies) | ||
192 | // were tagged. | ||
193 | # ifndef dNODEBUG | ||
194 | for (b=world->firstbody; b; b=(dxBody*)b->next) { | ||
195 | if (b->flags & dxBodyDisabled) { | ||
196 | if (b->tag) dDebug (0,"disabled body tagged"); | ||
197 | } | ||
198 | else { | ||
199 | if (!b->tag) dDebug (0,"enabled body not tagged"); | ||
200 | } | ||
201 | } | ||
202 | for (j=world->firstjoint; j; j=(dxJoint*)j->next) { | ||
203 | if ((j->node[0].body && (j->node[0].body->flags & dxBodyDisabled)==0) || | ||
204 | (j->node[1].body && (j->node[1].body->flags & dxBodyDisabled)==0)) { | ||
205 | if (!j->tag) dDebug (0,"attached enabled joint not tagged"); | ||
206 | } | ||
207 | else { | ||
208 | if (j->tag) dDebug (0,"unattached or disabled joint tagged"); | ||
209 | } | ||
210 | } | ||
211 | # endif | ||
212 | /******************** breakable joint contribution ***********************/ | ||
213 | dxJoint* nextJ; | ||
214 | if (!world->firstjoint) | ||
215 | nextJ = 0; | ||
216 | else | ||
217 | nextJ = (dxJoint*)world->firstjoint->next; | ||
218 | for (j=world->firstjoint; j; j=nextJ) { | ||
219 | nextJ = (dxJoint*)j->next; | ||
220 | // check if joint is breakable and broken | ||
221 | if (j->breakInfo && j->breakInfo->flags & dJOINT_BROKEN) { | ||
222 | // detach (break) the joint | ||
223 | dJointAttach (j, 0, 0); | ||
224 | // call the callback function if it is set | ||
225 | if (j->breakInfo->callback) j->breakInfo->callback (j); | ||
226 | // finally destroy the joint if the dJOINT_DELETE_ON_BREAK is set | ||
227 | if (j->breakInfo->flags & dJOINT_DELETE_ON_BREAK) dJointDestroy (j); | ||
228 | } | ||
229 | } | ||
230 | /*************************************************************************/ | ||
231 | } | ||
232 | |||
233 | //**************************************************************************** | ||
234 | // debugging | ||
235 | |||
236 | // see if an object list loops on itself (if so, it's bad). | ||
237 | |||
238 | static int listHasLoops (dObject *first) | ||
239 | { | ||
240 | if (first==0 || first->next==0) return 0; | ||
241 | dObject *a=first,*b=first->next; | ||
242 | int skip=0; | ||
243 | while (b) { | ||
244 | if (a==b) return 1; | ||
245 | b = b->next; | ||
246 | if (skip) a = a->next; | ||
247 | skip ^= 1; | ||
248 | } | ||
249 | return 0; | ||
250 | } | ||
251 | |||
252 | |||
253 | // check the validity of the world data structures | ||
254 | |||
255 | static void checkWorld (dxWorld *w) | ||
256 | { | ||
257 | dxBody *b; | ||
258 | dxJoint *j; | ||
259 | |||
260 | // check there are no loops | ||
261 | if (listHasLoops (w->firstbody)) dDebug (0,"body list has loops"); | ||
262 | if (listHasLoops (w->firstjoint)) dDebug (0,"joint list has loops"); | ||
263 | |||
264 | // check lists are well formed (check `tome' pointers) | ||
265 | for (b=w->firstbody; b; b=(dxBody*)b->next) { | ||
266 | if (b->next && b->next->tome != &b->next) | ||
267 | dDebug (0,"bad tome pointer in body list"); | ||
268 | } | ||
269 | for (j=w->firstjoint; j; j=(dxJoint*)j->next) { | ||
270 | if (j->next && j->next->tome != &j->next) | ||
271 | dDebug (0,"bad tome pointer in joint list"); | ||
272 | } | ||
273 | |||
274 | // check counts | ||
275 | int n = 0; | ||
276 | for (b=w->firstbody; b; b=(dxBody*)b->next) n++; | ||
277 | if (w->nb != n) dDebug (0,"body count incorrect"); | ||
278 | n = 0; | ||
279 | for (j=w->firstjoint; j; j=(dxJoint*)j->next) n++; | ||
280 | if (w->nj != n) dDebug (0,"joint count incorrect"); | ||
281 | |||
282 | // set all tag values to a known value | ||
283 | static int count = 0; | ||
284 | count++; | ||
285 | for (b=w->firstbody; b; b=(dxBody*)b->next) b->tag = count; | ||
286 | for (j=w->firstjoint; j; j=(dxJoint*)j->next) j->tag = count; | ||
287 | |||
288 | // check all body/joint world pointers are ok | ||
289 | for (b=w->firstbody; b; b=(dxBody*)b->next) if (b->world != w) | ||
290 | dDebug (0,"bad world pointer in body list"); | ||
291 | for (j=w->firstjoint; j; j=(dxJoint*)j->next) if (j->world != w) | ||
292 | dDebug (0,"bad world pointer in joint list"); | ||
293 | |||
294 | /* | ||
295 | // check for half-connected joints - actually now these are valid | ||
296 | for (j=w->firstjoint; j; j=(dxJoint*)j->next) { | ||
297 | if (j->node[0].body || j->node[1].body) { | ||
298 | if (!(j->node[0].body && j->node[1].body)) | ||
299 | dDebug (0,"half connected joint found"); | ||
300 | } | ||
301 | } | ||
302 | */ | ||
303 | |||
304 | // check that every joint node appears in the joint lists of both bodies it | ||
305 | // attaches | ||
306 | for (j=w->firstjoint; j; j=(dxJoint*)j->next) { | ||
307 | for (int i=0; i<2; i++) { | ||
308 | if (j->node[i].body) { | ||
309 | int ok = 0; | ||
310 | for (dxJointNode *n=j->node[i].body->firstjoint; n; n=n->next) { | ||
311 | if (n->joint == j) ok = 1; | ||
312 | } | ||
313 | if (ok==0) dDebug (0,"joint not in joint list of attached body"); | ||
314 | } | ||
315 | } | ||
316 | } | ||
317 | |||
318 | // check all body joint lists (correct body ptrs) | ||
319 | for (b=w->firstbody; b; b=(dxBody*)b->next) { | ||
320 | for (dxJointNode *n=b->firstjoint; n; n=n->next) { | ||
321 | if (&n->joint->node[0] == n) { | ||
322 | if (n->joint->node[1].body != b) | ||
323 | dDebug (0,"bad body pointer in joint node of body list (1)"); | ||
324 | } | ||
325 | else { | ||
326 | if (n->joint->node[0].body != b) | ||
327 | dDebug (0,"bad body pointer in joint node of body list (2)"); | ||
328 | } | ||
329 | if (n->joint->tag != count) dDebug (0,"bad joint node pointer in body"); | ||
330 | } | ||
331 | } | ||
332 | |||
333 | // check all body pointers in joints, check they are distinct | ||
334 | for (j=w->firstjoint; j; j=(dxJoint*)j->next) { | ||
335 | if (j->node[0].body && (j->node[0].body == j->node[1].body)) | ||
336 | dDebug (0,"non-distinct body pointers in joint"); | ||
337 | if ((j->node[0].body && j->node[0].body->tag != count) || | ||
338 | (j->node[1].body && j->node[1].body->tag != count)) | ||
339 | dDebug (0,"bad body pointer in joint"); | ||
340 | } | ||
341 | } | ||
342 | |||
343 | |||
344 | void dWorldCheck (dxWorld *w) | ||
345 | { | ||
346 | checkWorld (w); | ||
347 | } | ||
348 | |||
349 | //**************************************************************************** | ||
350 | // body | ||
351 | |||
352 | dxBody *dBodyCreate (dxWorld *w) | ||
353 | { | ||
354 | dAASSERT (w); | ||
355 | dxBody *b = new dxBody; | ||
356 | initObject (b,w); | ||
357 | b->firstjoint = 0; | ||
358 | b->flags = 0; | ||
359 | b->geom = 0; | ||
360 | dMassSetParameters (&b->mass,1,0,0,0,1,1,1,0,0,0); | ||
361 | dSetZero (b->invI,4*3); | ||
362 | b->invI[0] = 1; | ||
363 | b->invI[5] = 1; | ||
364 | b->invI[10] = 1; | ||
365 | b->invMass = 1; | ||
366 | dSetZero (b->pos,4); | ||
367 | dSetZero (b->q,4); | ||
368 | b->q[0] = 1; | ||
369 | dRSetIdentity (b->R); | ||
370 | dSetZero (b->lvel,4); | ||
371 | dSetZero (b->avel,4); | ||
372 | dSetZero (b->facc,4); | ||
373 | dSetZero (b->tacc,4); | ||
374 | dSetZero (b->finite_rot_axis,4); | ||
375 | addObjectToList (b,(dObject **) &w->firstbody); | ||
376 | w->nb++; | ||
377 | return b; | ||
378 | } | ||
379 | |||
380 | |||
381 | void dBodyDestroy (dxBody *b) | ||
382 | { | ||
383 | dAASSERT (b); | ||
384 | |||
385 | // all geoms that link to this body must be notified that the body is about | ||
386 | // to disappear. note that the call to dGeomSetBody(geom,0) will result in | ||
387 | // dGeomGetBodyNext() returning 0 for the body, so we must get the next body | ||
388 | // before setting the body to 0. | ||
389 | dxGeom *next_geom = 0; | ||
390 | for (dxGeom *geom = b->geom; geom; geom = next_geom) { | ||
391 | next_geom = dGeomGetBodyNext (geom); | ||
392 | dGeomSetBody (geom,0); | ||
393 | } | ||
394 | |||
395 | // detach all neighbouring joints, then delete this body. | ||
396 | dxJointNode *n = b->firstjoint; | ||
397 | while (n) { | ||
398 | // sneaky trick to speed up removal of joint references (black magic) | ||
399 | n->joint->node[(n == n->joint->node)].body = 0; | ||
400 | |||
401 | dxJointNode *next = n->next; | ||
402 | n->next = 0; | ||
403 | removeJointReferencesFromAttachedBodies (n->joint); | ||
404 | n = next; | ||
405 | } | ||
406 | removeObjectFromList (b); | ||
407 | b->world->nb--; | ||
408 | delete b; | ||
409 | } | ||
410 | |||
411 | |||
412 | void dBodySetData (dBodyID b, void *data) | ||
413 | { | ||
414 | dAASSERT (b); | ||
415 | b->userdata = data; | ||
416 | } | ||
417 | |||
418 | |||
419 | void *dBodyGetData (dBodyID b) | ||
420 | { | ||
421 | dAASSERT (b); | ||
422 | return b->userdata; | ||
423 | } | ||
424 | |||
425 | |||
426 | void dBodySetPosition (dBodyID b, dReal x, dReal y, dReal z) | ||
427 | { | ||
428 | dAASSERT (b); | ||
429 | b->pos[0] = x; | ||
430 | b->pos[1] = y; | ||
431 | b->pos[2] = z; | ||
432 | |||
433 | // notify all attached geoms that this body has moved | ||
434 | for (dxGeom *geom = b->geom; geom; geom = dGeomGetBodyNext (geom)) | ||
435 | dGeomMoved (geom); | ||
436 | } | ||
437 | |||
438 | |||
439 | void dBodySetRotation (dBodyID b, const dMatrix3 R) | ||
440 | { | ||
441 | dAASSERT (b && R); | ||
442 | dQuaternion q; | ||
443 | dRtoQ (R,q); | ||
444 | dNormalize4 (q); | ||
445 | b->q[0] = q[0]; | ||
446 | b->q[1] = q[1]; | ||
447 | b->q[2] = q[2]; | ||
448 | b->q[3] = q[3]; | ||
449 | dQtoR (b->q,b->R); | ||
450 | |||
451 | // notify all attached geoms that this body has moved | ||
452 | for (dxGeom *geom = b->geom; geom; geom = dGeomGetBodyNext (geom)) | ||
453 | dGeomMoved (geom); | ||
454 | } | ||
455 | |||
456 | |||
457 | void dBodySetQuaternion (dBodyID b, const dQuaternion q) | ||
458 | { | ||
459 | dAASSERT (b && q); | ||
460 | b->q[0] = q[0]; | ||
461 | b->q[1] = q[1]; | ||
462 | b->q[2] = q[2]; | ||
463 | b->q[3] = q[3]; | ||
464 | dNormalize4 (b->q); | ||
465 | dQtoR (b->q,b->R); | ||
466 | |||
467 | // notify all attached geoms that this body has moved | ||
468 | for (dxGeom *geom = b->geom; geom; geom = dGeomGetBodyNext (geom)) | ||
469 | dGeomMoved (geom); | ||
470 | } | ||
471 | |||
472 | |||
473 | void dBodySetLinearVel (dBodyID b, dReal x, dReal y, dReal z) | ||
474 | { | ||
475 | dAASSERT (b); | ||
476 | b->lvel[0] = x; | ||
477 | b->lvel[1] = y; | ||
478 | b->lvel[2] = z; | ||
479 | } | ||
480 | |||
481 | |||
482 | void dBodySetAngularVel (dBodyID b, dReal x, dReal y, dReal z) | ||
483 | { | ||
484 | dAASSERT (b); | ||
485 | b->avel[0] = x; | ||
486 | b->avel[1] = y; | ||
487 | b->avel[2] = z; | ||
488 | } | ||
489 | |||
490 | |||
491 | const dReal * dBodyGetPosition (dBodyID b) | ||
492 | { | ||
493 | dAASSERT (b); | ||
494 | return b->pos; | ||
495 | } | ||
496 | |||
497 | |||
498 | const dReal * dBodyGetRotation (dBodyID b) | ||
499 | { | ||
500 | dAASSERT (b); | ||
501 | return b->R; | ||
502 | } | ||
503 | |||
504 | |||
505 | const dReal * dBodyGetQuaternion (dBodyID b) | ||
506 | { | ||
507 | dAASSERT (b); | ||
508 | return b->q; | ||
509 | } | ||
510 | |||
511 | |||
512 | const dReal * dBodyGetLinearVel (dBodyID b) | ||
513 | { | ||
514 | dAASSERT (b); | ||
515 | return b->lvel; | ||
516 | } | ||
517 | |||
518 | |||
519 | const dReal * dBodyGetAngularVel (dBodyID b) | ||
520 | { | ||
521 | dAASSERT (b); | ||
522 | return b->avel; | ||
523 | } | ||
524 | |||
525 | |||
526 | void dBodySetMass (dBodyID b, const dMass *mass) | ||
527 | { | ||
528 | dAASSERT (b && mass); | ||
529 | memcpy (&b->mass,mass,sizeof(dMass)); | ||
530 | if (dInvertPDMatrix (b->mass.I,b->invI,3)==0) { | ||
531 | dDEBUGMSG ("inertia must be positive definite"); | ||
532 | dRSetIdentity (b->invI); | ||
533 | } | ||
534 | b->invMass = dRecip(b->mass.mass); | ||
535 | } | ||
536 | |||
537 | |||
538 | void dBodyGetMass (dBodyID b, dMass *mass) | ||
539 | { | ||
540 | dAASSERT (b && mass); | ||
541 | memcpy (mass,&b->mass,sizeof(dMass)); | ||
542 | } | ||
543 | |||
544 | |||
545 | void dBodyAddForce (dBodyID b, dReal fx, dReal fy, dReal fz) | ||
546 | { | ||
547 | dAASSERT (b); | ||
548 | b->facc[0] += fx; | ||
549 | b->facc[1] += fy; | ||
550 | b->facc[2] += fz; | ||
551 | } | ||
552 | |||
553 | |||
554 | void dBodyAddTorque (dBodyID b, dReal fx, dReal fy, dReal fz) | ||
555 | { | ||
556 | dAASSERT (b); | ||
557 | b->tacc[0] += fx; | ||
558 | b->tacc[1] += fy; | ||
559 | b->tacc[2] += fz; | ||
560 | } | ||
561 | |||
562 | |||
563 | void dBodyAddRelForce (dBodyID b, dReal fx, dReal fy, dReal fz) | ||
564 | { | ||
565 | dAASSERT (b); | ||
566 | dVector3 t1,t2; | ||
567 | t1[0] = fx; | ||
568 | t1[1] = fy; | ||
569 | t1[2] = fz; | ||
570 | t1[3] = 0; | ||
571 | dMULTIPLY0_331 (t2,b->R,t1); | ||
572 | b->facc[0] += t2[0]; | ||
573 | b->facc[1] += t2[1]; | ||
574 | b->facc[2] += t2[2]; | ||
575 | } | ||
576 | |||
577 | |||
578 | void dBodyAddRelTorque (dBodyID b, dReal fx, dReal fy, dReal fz) | ||
579 | { | ||
580 | dAASSERT (b); | ||
581 | dVector3 t1,t2; | ||
582 | t1[0] = fx; | ||
583 | t1[1] = fy; | ||
584 | t1[2] = fz; | ||
585 | t1[3] = 0; | ||
586 | dMULTIPLY0_331 (t2,b->R,t1); | ||
587 | b->tacc[0] += t2[0]; | ||
588 | b->tacc[1] += t2[1]; | ||
589 | b->tacc[2] += t2[2]; | ||
590 | } | ||
591 | |||
592 | |||
593 | void dBodyAddForceAtPos (dBodyID b, dReal fx, dReal fy, dReal fz, | ||
594 | dReal px, dReal py, dReal pz) | ||
595 | { | ||
596 | dAASSERT (b); | ||
597 | b->facc[0] += fx; | ||
598 | b->facc[1] += fy; | ||
599 | b->facc[2] += fz; | ||
600 | dVector3 f,q; | ||
601 | f[0] = fx; | ||
602 | f[1] = fy; | ||
603 | f[2] = fz; | ||
604 | q[0] = px - b->pos[0]; | ||
605 | q[1] = py - b->pos[1]; | ||
606 | q[2] = pz - b->pos[2]; | ||
607 | dCROSS (b->tacc,+=,q,f); | ||
608 | } | ||
609 | |||
610 | |||
611 | void dBodyAddForceAtRelPos (dBodyID b, dReal fx, dReal fy, dReal fz, | ||
612 | dReal px, dReal py, dReal pz) | ||
613 | { | ||
614 | dAASSERT (b); | ||
615 | dVector3 prel,f,p; | ||
616 | f[0] = fx; | ||
617 | f[1] = fy; | ||
618 | f[2] = fz; | ||
619 | f[3] = 0; | ||
620 | prel[0] = px; | ||
621 | prel[1] = py; | ||
622 | prel[2] = pz; | ||
623 | prel[3] = 0; | ||
624 | dMULTIPLY0_331 (p,b->R,prel); | ||
625 | b->facc[0] += f[0]; | ||
626 | b->facc[1] += f[1]; | ||
627 | b->facc[2] += f[2]; | ||
628 | dCROSS (b->tacc,+=,p,f); | ||
629 | } | ||
630 | |||
631 | |||
632 | void dBodyAddRelForceAtPos (dBodyID b, dReal fx, dReal fy, dReal fz, | ||
633 | dReal px, dReal py, dReal pz) | ||
634 | { | ||
635 | dAASSERT (b); | ||
636 | dVector3 frel,f; | ||
637 | frel[0] = fx; | ||
638 | frel[1] = fy; | ||
639 | frel[2] = fz; | ||
640 | frel[3] = 0; | ||
641 | dMULTIPLY0_331 (f,b->R,frel); | ||
642 | b->facc[0] += f[0]; | ||
643 | b->facc[1] += f[1]; | ||
644 | b->facc[2] += f[2]; | ||
645 | dVector3 q; | ||
646 | q[0] = px - b->pos[0]; | ||
647 | q[1] = py - b->pos[1]; | ||
648 | q[2] = pz - b->pos[2]; | ||
649 | dCROSS (b->tacc,+=,q,f); | ||
650 | } | ||
651 | |||
652 | |||
653 | void dBodyAddRelForceAtRelPos (dBodyID b, dReal fx, dReal fy, dReal fz, | ||
654 | dReal px, dReal py, dReal pz) | ||
655 | { | ||
656 | dAASSERT (b); | ||
657 | dVector3 frel,prel,f,p; | ||
658 | frel[0] = fx; | ||
659 | frel[1] = fy; | ||
660 | frel[2] = fz; | ||
661 | frel[3] = 0; | ||
662 | prel[0] = px; | ||
663 | prel[1] = py; | ||
664 | prel[2] = pz; | ||
665 | prel[3] = 0; | ||
666 | dMULTIPLY0_331 (f,b->R,frel); | ||
667 | dMULTIPLY0_331 (p,b->R,prel); | ||
668 | b->facc[0] += f[0]; | ||
669 | b->facc[1] += f[1]; | ||
670 | b->facc[2] += f[2]; | ||
671 | dCROSS (b->tacc,+=,p,f); | ||
672 | } | ||
673 | |||
674 | |||
675 | const dReal * dBodyGetForce (dBodyID b) | ||
676 | { | ||
677 | dAASSERT (b); | ||
678 | return b->facc; | ||
679 | } | ||
680 | |||
681 | |||
682 | const dReal * dBodyGetTorque (dBodyID b) | ||
683 | { | ||
684 | dAASSERT (b); | ||
685 | return b->tacc; | ||
686 | } | ||
687 | |||
688 | |||
689 | void dBodySetForce (dBodyID b, dReal x, dReal y, dReal z) | ||
690 | { | ||
691 | dAASSERT (b); | ||
692 | b->facc[0] = x; | ||
693 | b->facc[1] = y; | ||
694 | b->facc[2] = z; | ||
695 | } | ||
696 | |||
697 | |||
698 | void dBodySetTorque (dBodyID b, dReal x, dReal y, dReal z) | ||
699 | { | ||
700 | dAASSERT (b); | ||
701 | b->tacc[0] = x; | ||
702 | b->tacc[1] = y; | ||
703 | b->tacc[2] = z; | ||
704 | } | ||
705 | |||
706 | |||
707 | void dBodyGetRelPointPos (dBodyID b, dReal px, dReal py, dReal pz, | ||
708 | dVector3 result) | ||
709 | { | ||
710 | dAASSERT (b); | ||
711 | dVector3 prel,p; | ||
712 | prel[0] = px; | ||
713 | prel[1] = py; | ||
714 | prel[2] = pz; | ||
715 | prel[3] = 0; | ||
716 | dMULTIPLY0_331 (p,b->R,prel); | ||
717 | result[0] = p[0] + b->pos[0]; | ||
718 | result[1] = p[1] + b->pos[1]; | ||
719 | result[2] = p[2] + b->pos[2]; | ||
720 | } | ||
721 | |||
722 | |||
723 | void dBodyGetRelPointVel (dBodyID b, dReal px, dReal py, dReal pz, | ||
724 | dVector3 result) | ||
725 | { | ||
726 | dAASSERT (b); | ||
727 | dVector3 prel,p; | ||
728 | prel[0] = px; | ||
729 | prel[1] = py; | ||
730 | prel[2] = pz; | ||
731 | prel[3] = 0; | ||
732 | dMULTIPLY0_331 (p,b->R,prel); | ||
733 | result[0] = b->lvel[0]; | ||
734 | result[1] = b->lvel[1]; | ||
735 | result[2] = b->lvel[2]; | ||
736 | dCROSS (result,+=,b->avel,p); | ||
737 | } | ||
738 | |||
739 | |||
740 | void dBodyGetPointVel (dBodyID b, dReal px, dReal py, dReal pz, | ||
741 | dVector3 result) | ||
742 | { | ||
743 | dAASSERT (b); | ||
744 | dVector3 p; | ||
745 | p[0] = px - b->pos[0]; | ||
746 | p[1] = py - b->pos[1]; | ||
747 | p[2] = pz - b->pos[2]; | ||
748 | p[3] = 0; | ||
749 | result[0] = b->lvel[0]; | ||
750 | result[1] = b->lvel[1]; | ||
751 | result[2] = b->lvel[2]; | ||
752 | dCROSS (result,+=,b->avel,p); | ||
753 | } | ||
754 | |||
755 | |||
756 | void dBodyGetPosRelPoint (dBodyID b, dReal px, dReal py, dReal pz, | ||
757 | dVector3 result) | ||
758 | { | ||
759 | dAASSERT (b); | ||
760 | dVector3 prel; | ||
761 | prel[0] = px - b->pos[0]; | ||
762 | prel[1] = py - b->pos[1]; | ||
763 | prel[2] = pz - b->pos[2]; | ||
764 | prel[3] = 0; | ||
765 | dMULTIPLY1_331 (result,b->R,prel); | ||
766 | } | ||
767 | |||
768 | |||
769 | void dBodyVectorToWorld (dBodyID b, dReal px, dReal py, dReal pz, | ||
770 | dVector3 result) | ||
771 | { | ||
772 | dAASSERT (b); | ||
773 | dVector3 p; | ||
774 | p[0] = px; | ||
775 | p[1] = py; | ||
776 | p[2] = pz; | ||
777 | p[3] = 0; | ||
778 | dMULTIPLY0_331 (result,b->R,p); | ||
779 | } | ||
780 | |||
781 | |||
782 | void dBodyVectorFromWorld (dBodyID b, dReal px, dReal py, dReal pz, | ||
783 | dVector3 result) | ||
784 | { | ||
785 | dAASSERT (b); | ||
786 | dVector3 p; | ||
787 | p[0] = px; | ||
788 | p[1] = py; | ||
789 | p[2] = pz; | ||
790 | p[3] = 0; | ||
791 | dMULTIPLY1_331 (result,b->R,p); | ||
792 | } | ||
793 | |||
794 | |||
795 | void dBodySetFiniteRotationMode (dBodyID b, int mode) | ||
796 | { | ||
797 | dAASSERT (b); | ||
798 | b->flags &= ~(dxBodyFlagFiniteRotation | dxBodyFlagFiniteRotationAxis); | ||
799 | if (mode) { | ||
800 | b->flags |= dxBodyFlagFiniteRotation; | ||
801 | if (b->finite_rot_axis[0] != 0 || b->finite_rot_axis[1] != 0 || | ||
802 | b->finite_rot_axis[2] != 0) { | ||
803 | b->flags |= dxBodyFlagFiniteRotationAxis; | ||
804 | } | ||
805 | } | ||
806 | } | ||
807 | |||
808 | |||
809 | void dBodySetFiniteRotationAxis (dBodyID b, dReal x, dReal y, dReal z) | ||
810 | { | ||
811 | dAASSERT (b); | ||
812 | b->finite_rot_axis[0] = x; | ||
813 | b->finite_rot_axis[1] = y; | ||
814 | b->finite_rot_axis[2] = z; | ||
815 | if (x != 0 || y != 0 || z != 0) { | ||
816 | dNormalize3 (b->finite_rot_axis); | ||
817 | b->flags |= dxBodyFlagFiniteRotationAxis; | ||
818 | } | ||
819 | else { | ||
820 | b->flags &= ~dxBodyFlagFiniteRotationAxis; | ||
821 | } | ||
822 | } | ||
823 | |||
824 | |||
825 | int dBodyGetFiniteRotationMode (dBodyID b) | ||
826 | { | ||
827 | dAASSERT (b); | ||
828 | return ((b->flags & dxBodyFlagFiniteRotation) != 0); | ||
829 | } | ||
830 | |||
831 | |||
832 | void dBodyGetFiniteRotationAxis (dBodyID b, dVector3 result) | ||
833 | { | ||
834 | dAASSERT (b); | ||
835 | result[0] = b->finite_rot_axis[0]; | ||
836 | result[1] = b->finite_rot_axis[1]; | ||
837 | result[2] = b->finite_rot_axis[2]; | ||
838 | } | ||
839 | |||
840 | |||
841 | int dBodyGetNumJoints (dBodyID b) | ||
842 | { | ||
843 | dAASSERT (b); | ||
844 | int count=0; | ||
845 | for (dxJointNode *n=b->firstjoint; n; n=n->next, count++); | ||
846 | return count; | ||
847 | } | ||
848 | |||
849 | |||
850 | dJointID dBodyGetJoint (dBodyID b, int index) | ||
851 | { | ||
852 | dAASSERT (b); | ||
853 | int i=0; | ||
854 | for (dxJointNode *n=b->firstjoint; n; n=n->next, i++) { | ||
855 | if (i == index) return n->joint; | ||
856 | } | ||
857 | return 0; | ||
858 | } | ||
859 | |||
860 | |||
861 | void dBodyEnable (dBodyID b) | ||
862 | { | ||
863 | dAASSERT (b); | ||
864 | b->flags &= ~dxBodyDisabled; | ||
865 | } | ||
866 | |||
867 | |||
868 | void dBodyDisable (dBodyID b) | ||
869 | { | ||
870 | dAASSERT (b); | ||
871 | b->flags |= dxBodyDisabled; | ||
872 | } | ||
873 | |||
874 | |||
875 | int dBodyIsEnabled (dBodyID b) | ||
876 | { | ||
877 | dAASSERT (b); | ||
878 | return ((b->flags & dxBodyDisabled) == 0); | ||
879 | } | ||
880 | |||
881 | |||
882 | void dBodySetGravityMode (dBodyID b, int mode) | ||
883 | { | ||
884 | dAASSERT (b); | ||
885 | if (mode) b->flags &= ~dxBodyNoGravity; | ||
886 | else b->flags |= dxBodyNoGravity; | ||
887 | } | ||
888 | |||
889 | |||
890 | int dBodyGetGravityMode (dBodyID b) | ||
891 | { | ||
892 | dAASSERT (b); | ||
893 | return ((b->flags & dxBodyNoGravity) == 0); | ||
894 | } | ||
895 | |||
896 | //**************************************************************************** | ||
897 | // joints | ||
898 | |||
899 | static void dJointInit (dxWorld *w, dxJoint *j) | ||
900 | { | ||
901 | dIASSERT (w && j); | ||
902 | initObject (j,w); | ||
903 | j->vtable = 0; | ||
904 | j->flags = 0; | ||
905 | j->node[0].joint = j; | ||
906 | j->node[0].body = 0; | ||
907 | j->node[0].next = 0; | ||
908 | j->node[1].joint = j; | ||
909 | j->node[1].body = 0; | ||
910 | j->node[1].next = 0; | ||
911 | addObjectToList (j,(dObject **) &w->firstjoint); | ||
912 | w->nj++; | ||
913 | } | ||
914 | |||
915 | |||
916 | static dxJoint *createJoint (dWorldID w, dJointGroupID group, | ||
917 | dxJoint::Vtable *vtable) | ||
918 | { | ||
919 | dIASSERT (w && vtable); | ||
920 | dxJoint *j; | ||
921 | if (group) { | ||
922 | j = (dxJoint*) group->stack.alloc (vtable->size); | ||
923 | group->num++; | ||
924 | } | ||
925 | else j = (dxJoint*) dAlloc (vtable->size); | ||
926 | dJointInit (w,j); | ||
927 | j->vtable = vtable; | ||
928 | if (group) j->flags |= dJOINT_INGROUP; | ||
929 | if (vtable->init) vtable->init (j); | ||
930 | j->feedback = 0; | ||
931 | /******************** breakable joint contribution ***********************/ | ||
932 | j->breakInfo = 0; | ||
933 | /*************************************************************************/ | ||
934 | return j; | ||
935 | } | ||
936 | |||
937 | |||
938 | dxJoint * dJointCreateBall (dWorldID w, dJointGroupID group) | ||
939 | { | ||
940 | dAASSERT (w); | ||
941 | return createJoint (w,group,&__dball_vtable); | ||
942 | } | ||
943 | |||
944 | |||
945 | dxJoint * dJointCreateHinge (dWorldID w, dJointGroupID group) | ||
946 | { | ||
947 | dAASSERT (w); | ||
948 | return createJoint (w,group,&__dhinge_vtable); | ||
949 | } | ||
950 | |||
951 | |||
952 | dxJoint * dJointCreateSlider (dWorldID w, dJointGroupID group) | ||
953 | { | ||
954 | dAASSERT (w); | ||
955 | return createJoint (w,group,&__dslider_vtable); | ||
956 | } | ||
957 | |||
958 | |||
959 | dxJoint * dJointCreateContact (dWorldID w, dJointGroupID group, | ||
960 | const dContact *c) | ||
961 | { | ||
962 | dAASSERT (w && c); | ||
963 | dxJointContact *j = (dxJointContact *) | ||
964 | createJoint (w,group,&__dcontact_vtable); | ||
965 | j->contact = *c; | ||
966 | return j; | ||
967 | } | ||
968 | |||
969 | |||
970 | dxJoint * dJointCreateHinge2 (dWorldID w, dJointGroupID group) | ||
971 | { | ||
972 | dAASSERT (w); | ||
973 | return createJoint (w,group,&__dhinge2_vtable); | ||
974 | } | ||
975 | |||
976 | |||
977 | dxJoint * dJointCreateUniversal (dWorldID w, dJointGroupID group) | ||
978 | { | ||
979 | dAASSERT (w); | ||
980 | return createJoint (w,group,&__duniversal_vtable); | ||
981 | } | ||
982 | |||
983 | |||
984 | dxJoint * dJointCreateFixed (dWorldID w, dJointGroupID group) | ||
985 | { | ||
986 | dAASSERT (w); | ||
987 | return createJoint (w,group,&__dfixed_vtable); | ||
988 | } | ||
989 | |||
990 | |||
991 | dxJoint * dJointCreateNull (dWorldID w, dJointGroupID group) | ||
992 | { | ||
993 | dAASSERT (w); | ||
994 | return createJoint (w,group,&__dnull_vtable); | ||
995 | } | ||
996 | |||
997 | |||
998 | dxJoint * dJointCreateAMotor (dWorldID w, dJointGroupID group) | ||
999 | { | ||
1000 | dAASSERT (w); | ||
1001 | return createJoint (w,group,&__damotor_vtable); | ||
1002 | } | ||
1003 | |||
1004 | |||
1005 | void dJointDestroy (dxJoint *j) | ||
1006 | { | ||
1007 | dAASSERT (j); | ||
1008 | if (j->flags & dJOINT_INGROUP) return; | ||
1009 | removeJointReferencesFromAttachedBodies (j); | ||
1010 | removeObjectFromList (j); | ||
1011 | /******************** breakable joint contribution ***********************/ | ||
1012 | if (j->breakInfo) delete j->breakInfo; | ||
1013 | /*************************************************************************/ | ||
1014 | j->world->nj--; | ||
1015 | dFree (j,j->vtable->size); | ||
1016 | } | ||
1017 | |||
1018 | |||
1019 | dJointGroupID dJointGroupCreate (int max_size) | ||
1020 | { | ||
1021 | // not any more ... dUASSERT (max_size > 0,"max size must be > 0"); | ||
1022 | dxJointGroup *group = new dxJointGroup; | ||
1023 | group->num = 0; | ||
1024 | return group; | ||
1025 | } | ||
1026 | |||
1027 | |||
1028 | void dJointGroupDestroy (dJointGroupID group) | ||
1029 | { | ||
1030 | dAASSERT (group); | ||
1031 | dJointGroupEmpty (group); | ||
1032 | delete group; | ||
1033 | } | ||
1034 | |||
1035 | |||
1036 | void dJointGroupEmpty (dJointGroupID group) | ||
1037 | { | ||
1038 | // the joints in this group are detached starting from the most recently | ||
1039 | // added (at the top of the stack). this helps ensure that the various | ||
1040 | // linked lists are not traversed too much, as the joints will hopefully | ||
1041 | // be at the start of those lists. | ||
1042 | // if any group joints have their world pointer set to 0, their world was | ||
1043 | // previously destroyed. no special handling is required for these joints. | ||
1044 | |||
1045 | dAASSERT (group); | ||
1046 | int i; | ||
1047 | dxJoint **jlist = (dxJoint**) ALLOCA (group->num * sizeof(dxJoint*)); | ||
1048 | dxJoint *j = (dxJoint*) group->stack.rewind(); | ||
1049 | for (i=0; i < group->num; i++) { | ||
1050 | jlist[i] = j; | ||
1051 | j = (dxJoint*) (group->stack.next (j->vtable->size)); | ||
1052 | } | ||
1053 | for (i=group->num-1; i >= 0; i--) { | ||
1054 | if (jlist[i]->world) { | ||
1055 | removeJointReferencesFromAttachedBodies (jlist[i]); | ||
1056 | removeObjectFromList (jlist[i]); | ||
1057 | jlist[i]->world->nj--; | ||
1058 | } | ||
1059 | } | ||
1060 | group->num = 0; | ||
1061 | group->stack.freeAll(); | ||
1062 | } | ||
1063 | |||
1064 | |||
1065 | void dJointAttach (dxJoint *joint, dxBody *body1, dxBody *body2) | ||
1066 | { | ||
1067 | // check arguments | ||
1068 | dUASSERT (joint,"bad joint argument"); | ||
1069 | dUASSERT (body1 == 0 || body1 != body2,"can't have body1==body2"); | ||
1070 | dxWorld *world = joint->world; | ||
1071 | dUASSERT ( (!body1 || body1->world == world) && | ||
1072 | (!body2 || body2->world == world), | ||
1073 | "joint and bodies must be in same world"); | ||
1074 | |||
1075 | // check if the joint can not be attached to just one body | ||
1076 | dUASSERT (!((joint->flags & dJOINT_TWOBODIES) && | ||
1077 | ((body1 != 0) ^ (body2 != 0))), | ||
1078 | "joint can not be attached to just one body"); | ||
1079 | |||
1080 | // remove any existing body attachments | ||
1081 | if (joint->node[0].body || joint->node[1].body) { | ||
1082 | removeJointReferencesFromAttachedBodies (joint); | ||
1083 | } | ||
1084 | |||
1085 | // if a body is zero, make sure that it is body2, so 0 --> node[1].body | ||
1086 | if (body1==0) { | ||
1087 | body1 = body2; | ||
1088 | body2 = 0; | ||
1089 | joint->flags |= dJOINT_REVERSE; | ||
1090 | } | ||
1091 | else { | ||
1092 | joint->flags &= (~dJOINT_REVERSE); | ||
1093 | } | ||
1094 | |||
1095 | // attach to new bodies | ||
1096 | joint->node[0].body = body1; | ||
1097 | joint->node[1].body = body2; | ||
1098 | if (body1) { | ||
1099 | joint->node[1].next = body1->firstjoint; | ||
1100 | body1->firstjoint = &joint->node[1]; | ||
1101 | } | ||
1102 | else joint->node[1].next = 0; | ||
1103 | if (body2) { | ||
1104 | joint->node[0].next = body2->firstjoint; | ||
1105 | body2->firstjoint = &joint->node[0]; | ||
1106 | } | ||
1107 | else { | ||
1108 | joint->node[0].next = 0; | ||
1109 | } | ||
1110 | } | ||
1111 | |||
1112 | |||
1113 | void dJointSetData (dxJoint *joint, void *data) | ||
1114 | { | ||
1115 | dAASSERT (joint); | ||
1116 | joint->userdata = data; | ||
1117 | } | ||
1118 | |||
1119 | |||
1120 | void *dJointGetData (dxJoint *joint) | ||
1121 | { | ||
1122 | dAASSERT (joint); | ||
1123 | return joint->userdata; | ||
1124 | } | ||
1125 | |||
1126 | |||
1127 | int dJointGetType (dxJoint *joint) | ||
1128 | { | ||
1129 | dAASSERT (joint); | ||
1130 | return joint->vtable->typenum; | ||
1131 | } | ||
1132 | |||
1133 | |||
1134 | dBodyID dJointGetBody (dxJoint *joint, int index) | ||
1135 | { | ||
1136 | dAASSERT (joint); | ||
1137 | if (index >= 0 && index < 2) return joint->node[index].body; | ||
1138 | else return 0; | ||
1139 | } | ||
1140 | |||
1141 | |||
1142 | void dJointSetFeedback (dxJoint *joint, dJointFeedback *f) | ||
1143 | { | ||
1144 | dAASSERT (joint); | ||
1145 | joint->feedback = f; | ||
1146 | } | ||
1147 | |||
1148 | |||
1149 | dJointFeedback *dJointGetFeedback (dxJoint *joint) | ||
1150 | { | ||
1151 | dAASSERT (joint); | ||
1152 | return joint->feedback; | ||
1153 | } | ||
1154 | |||
1155 | |||
1156 | int dAreConnected (dBodyID b1, dBodyID b2) | ||
1157 | { | ||
1158 | dAASSERT (b1 && b2); | ||
1159 | // look through b1's neighbour list for b2 | ||
1160 | for (dxJointNode *n=b1->firstjoint; n; n=n->next) { | ||
1161 | if (n->body == b2) return 1; | ||
1162 | } | ||
1163 | return 0; | ||
1164 | } | ||
1165 | |||
1166 | |||
1167 | int dAreConnectedExcluding (dBodyID b1, dBodyID b2, int joint_type) | ||
1168 | { | ||
1169 | dAASSERT (b1 && b2); | ||
1170 | // look through b1's neighbour list for b2 | ||
1171 | for (dxJointNode *n=b1->firstjoint; n; n=n->next) { | ||
1172 | if (dJointGetType (n->joint) != joint_type && n->body == b2) return 1; | ||
1173 | } | ||
1174 | return 0; | ||
1175 | } | ||
1176 | |||
1177 | //**************************************************************************** | ||
1178 | // world | ||
1179 | |||
1180 | dxWorld * dWorldCreate() | ||
1181 | { | ||
1182 | dxWorld *w = new dxWorld; | ||
1183 | w->firstbody = 0; | ||
1184 | w->firstjoint = 0; | ||
1185 | w->nb = 0; | ||
1186 | w->nj = 0; | ||
1187 | dSetZero (w->gravity,4); | ||
1188 | w->global_erp = REAL(0.2); | ||
1189 | #if defined(dSINGLE) | ||
1190 | w->global_cfm = 1e-5f; | ||
1191 | #elif defined(dDOUBLE) | ||
1192 | w->global_cfm = 1e-10; | ||
1193 | #else | ||
1194 | #error dSINGLE or dDOUBLE must be defined | ||
1195 | #endif | ||
1196 | return w; | ||
1197 | } | ||
1198 | |||
1199 | |||
1200 | void dWorldDestroy (dxWorld *w) | ||
1201 | { | ||
1202 | // delete all bodies and joints | ||
1203 | dAASSERT (w); | ||
1204 | dxBody *nextb, *b = w->firstbody; | ||
1205 | while (b) { | ||
1206 | nextb = (dxBody*) b->next; | ||
1207 | delete b; | ||
1208 | b = nextb; | ||
1209 | } | ||
1210 | dxJoint *nextj, *j = w->firstjoint; | ||
1211 | while (j) { | ||
1212 | nextj = (dxJoint*)j->next; | ||
1213 | if (j->flags & dJOINT_INGROUP) { | ||
1214 | // the joint is part of a group, so "deactivate" it instead | ||
1215 | j->world = 0; | ||
1216 | j->node[0].body = 0; | ||
1217 | j->node[0].next = 0; | ||
1218 | j->node[1].body = 0; | ||
1219 | j->node[1].next = 0; | ||
1220 | dMessage (0,"warning: destroying world containing grouped joints"); | ||
1221 | } | ||
1222 | else { | ||
1223 | dFree (j,j->vtable->size); | ||
1224 | } | ||
1225 | j = nextj; | ||
1226 | } | ||
1227 | delete w; | ||
1228 | } | ||
1229 | |||
1230 | |||
1231 | void dWorldSetGravity (dWorldID w, dReal x, dReal y, dReal z) | ||
1232 | { | ||
1233 | dAASSERT (w); | ||
1234 | w->gravity[0] = x; | ||
1235 | w->gravity[1] = y; | ||
1236 | w->gravity[2] = z; | ||
1237 | } | ||
1238 | |||
1239 | |||
1240 | void dWorldGetGravity (dWorldID w, dVector3 g) | ||
1241 | { | ||
1242 | dAASSERT (w); | ||
1243 | g[0] = w->gravity[0]; | ||
1244 | g[1] = w->gravity[1]; | ||
1245 | g[2] = w->gravity[2]; | ||
1246 | } | ||
1247 | |||
1248 | |||
1249 | void dWorldSetERP (dWorldID w, dReal erp) | ||
1250 | { | ||
1251 | dAASSERT (w); | ||
1252 | w->global_erp = erp; | ||
1253 | } | ||
1254 | |||
1255 | |||
1256 | dReal dWorldGetERP (dWorldID w) | ||
1257 | { | ||
1258 | dAASSERT (w); | ||
1259 | return w->global_erp; | ||
1260 | } | ||
1261 | |||
1262 | |||
1263 | void dWorldSetCFM (dWorldID w, dReal cfm) | ||
1264 | { | ||
1265 | dAASSERT (w); | ||
1266 | w->global_cfm = cfm; | ||
1267 | } | ||
1268 | |||
1269 | |||
1270 | dReal dWorldGetCFM (dWorldID w) | ||
1271 | { | ||
1272 | dAASSERT (w); | ||
1273 | return w->global_cfm; | ||
1274 | } | ||
1275 | |||
1276 | |||
1277 | void dWorldStep (dWorldID w, dReal stepsize) | ||
1278 | { | ||
1279 | dUASSERT (w,"bad world argument"); | ||
1280 | dUASSERT (stepsize > 0,"stepsize must be > 0"); | ||
1281 | processIslands (w,stepsize); | ||
1282 | } | ||
1283 | |||
1284 | |||
1285 | void dWorldImpulseToForce (dWorldID w, dReal stepsize, | ||
1286 | dReal ix, dReal iy, dReal iz, | ||
1287 | dVector3 force) | ||
1288 | { | ||
1289 | dAASSERT (w); | ||
1290 | stepsize = dRecip(stepsize); | ||
1291 | force[0] = stepsize * ix; | ||
1292 | force[1] = stepsize * iy; | ||
1293 | force[2] = stepsize * iz; | ||
1294 | // @@@ force[3] = 0; | ||
1295 | } | ||
1296 | |||
1297 | //**************************************************************************** | ||
1298 | // testing | ||
1299 | |||
1300 | #define NUM 100 | ||
1301 | |||
1302 | #define DO(x) | ||
1303 | |||
1304 | |||
1305 | extern "C" void dTestDataStructures() | ||
1306 | { | ||
1307 | int i; | ||
1308 | DO(printf ("testDynamicsStuff()\n")); | ||
1309 | |||
1310 | dBodyID body [NUM]; | ||
1311 | int nb = 0; | ||
1312 | dJointID joint [NUM]; | ||
1313 | int nj = 0; | ||
1314 | |||
1315 | for (i=0; i<NUM; i++) body[i] = 0; | ||
1316 | for (i=0; i<NUM; i++) joint[i] = 0; | ||
1317 | |||
1318 | DO(printf ("creating world\n")); | ||
1319 | dWorldID w = dWorldCreate(); | ||
1320 | checkWorld (w); | ||
1321 | |||
1322 | for (;;) { | ||
1323 | if (nb < NUM && dRandReal() > 0.5) { | ||
1324 | DO(printf ("creating body\n")); | ||
1325 | body[nb] = dBodyCreate (w); | ||
1326 | DO(printf ("\t--> %p\n",body[nb])); | ||
1327 | nb++; | ||
1328 | checkWorld (w); | ||
1329 | DO(printf ("%d BODIES, %d JOINTS\n",nb,nj)); | ||
1330 | } | ||
1331 | if (nj < NUM && nb > 2 && dRandReal() > 0.5) { | ||
1332 | dBodyID b1 = body [dRand() % nb]; | ||
1333 | dBodyID b2 = body [dRand() % nb]; | ||
1334 | if (b1 != b2) { | ||
1335 | DO(printf ("creating joint, attaching to %p,%p\n",b1,b2)); | ||
1336 | joint[nj] = dJointCreateBall (w,0); | ||
1337 | DO(printf ("\t-->%p\n",joint[nj])); | ||
1338 | checkWorld (w); | ||
1339 | dJointAttach (joint[nj],b1,b2); | ||
1340 | nj++; | ||
1341 | checkWorld (w); | ||
1342 | DO(printf ("%d BODIES, %d JOINTS\n",nb,nj)); | ||
1343 | } | ||
1344 | } | ||
1345 | if (nj > 0 && nb > 2 && dRandReal() > 0.5) { | ||
1346 | dBodyID b1 = body [dRand() % nb]; | ||
1347 | dBodyID b2 = body [dRand() % nb]; | ||
1348 | if (b1 != b2) { | ||
1349 | int k = dRand() % nj; | ||
1350 | DO(printf ("reattaching joint %p\n",joint[k])); | ||
1351 | dJointAttach (joint[k],b1,b2); | ||
1352 | checkWorld (w); | ||
1353 | DO(printf ("%d BODIES, %d JOINTS\n",nb,nj)); | ||
1354 | } | ||
1355 | } | ||
1356 | if (nb > 0 && dRandReal() > 0.5) { | ||
1357 | int k = dRand() % nb; | ||
1358 | DO(printf ("destroying body %p\n",body[k])); | ||
1359 | dBodyDestroy (body[k]); | ||
1360 | checkWorld (w); | ||
1361 | for (; k < (NUM-1); k++) body[k] = body[k+1]; | ||
1362 | nb--; | ||
1363 | DO(printf ("%d BODIES, %d JOINTS\n",nb,nj)); | ||
1364 | } | ||
1365 | if (nj > 0 && dRandReal() > 0.5) { | ||
1366 | int k = dRand() % nj; | ||
1367 | DO(printf ("destroying joint %p\n",joint[k])); | ||
1368 | dJointDestroy (joint[k]); | ||
1369 | checkWorld (w); | ||
1370 | for (; k < (NUM-1); k++) joint[k] = joint[k+1]; | ||
1371 | nj--; | ||
1372 | DO(printf ("%d BODIES, %d JOINTS\n",nb,nj)); | ||
1373 | } | ||
1374 | } | ||
1375 | |||
1376 | /* | ||
1377 | printf ("creating world\n"); | ||
1378 | dWorldID w = dWorldCreate(); | ||
1379 | checkWorld (w); | ||
1380 | printf ("creating body\n"); | ||
1381 | dBodyID b1 = dBodyCreate (w); | ||
1382 | checkWorld (w); | ||
1383 | printf ("creating body\n"); | ||
1384 | dBodyID b2 = dBodyCreate (w); | ||
1385 | checkWorld (w); | ||
1386 | printf ("creating joint\n"); | ||
1387 | dJointID j = dJointCreateBall (w); | ||
1388 | checkWorld (w); | ||
1389 | printf ("attaching joint\n"); | ||
1390 | dJointAttach (j,b1,b2); | ||
1391 | checkWorld (w); | ||
1392 | printf ("destroying joint\n"); | ||
1393 | dJointDestroy (j); | ||
1394 | checkWorld (w); | ||
1395 | printf ("destroying body\n"); | ||
1396 | dBodyDestroy (b1); | ||
1397 | checkWorld (w); | ||
1398 | printf ("destroying body\n"); | ||
1399 | dBodyDestroy (b2); | ||
1400 | checkWorld (w); | ||
1401 | printf ("destroying world\n"); | ||
1402 | dWorldDestroy (w); | ||
1403 | */ | ||
1404 | } | ||
diff --git a/libraries/ode-0.9/contrib/BreakableJoints/step.cpp b/libraries/ode-0.9/contrib/BreakableJoints/step.cpp new file mode 100644 index 0000000..38aed6c --- /dev/null +++ b/libraries/ode-0.9/contrib/BreakableJoints/step.cpp | |||
@@ -0,0 +1,1170 @@ | |||
1 | /************************************************************************* | ||
2 | * * | ||
3 | * Open Dynamics Engine, Copyright (C) 2001,2002 Russell L. Smith. * | ||
4 | * All rights reserved. Email: russ@q12.org Web: www.q12.org * | ||
5 | * * | ||
6 | * This library is free software; you can redistribute it and/or * | ||
7 | * modify it under the terms of EITHER: * | ||
8 | * (1) The GNU Lesser General Public License as published by the Free * | ||
9 | * Software Foundation; either version 2.1 of the License, or (at * | ||
10 | * your option) any later version. The text of the GNU Lesser * | ||
11 | * General Public License is included with this library in the * | ||
12 | * file LICENSE.TXT. * | ||
13 | * (2) The BSD-style license that is included with this library in * | ||
14 | * the file LICENSE-BSD.TXT. * | ||
15 | * * | ||
16 | * This library is distributed in the hope that it will be useful, * | ||
17 | * but WITHOUT ANY WARRANTY; without even the implied warranty of * | ||
18 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the files * | ||
19 | * LICENSE.TXT and LICENSE-BSD.TXT for more details. * | ||
20 | * * | ||
21 | *************************************************************************/ | ||
22 | |||
23 | #include "objects.h" | ||
24 | #include "joint.h" | ||
25 | #include <ode/config.h> | ||
26 | #include <ode/odemath.h> | ||
27 | #include <ode/rotation.h> | ||
28 | #include <ode/timer.h> | ||
29 | #include <ode/error.h> | ||
30 | #include <ode/matrix.h> | ||
31 | #include "lcp.h" | ||
32 | |||
33 | //**************************************************************************** | ||
34 | // misc defines | ||
35 | |||
36 | #define FAST_FACTOR | ||
37 | //#define TIMING | ||
38 | |||
39 | #define ALLOCA dALLOCA16 | ||
40 | |||
41 | //**************************************************************************** | ||
42 | // debugging - comparison of various vectors and matrices produced by the | ||
43 | // slow and fast versions of the stepper. | ||
44 | |||
45 | //#define COMPARE_METHODS | ||
46 | |||
47 | #ifdef COMPARE_METHODS | ||
48 | #include "testing.h" | ||
49 | dMatrixComparison comparator; | ||
50 | #endif | ||
51 | |||
52 | //**************************************************************************** | ||
53 | // special matrix multipliers | ||
54 | |||
55 | // this assumes the 4th and 8th rows of B and C are zero. | ||
56 | |||
57 | static void Multiply2_p8r (dReal *A, dReal *B, dReal *C, | ||
58 | int p, int r, int Askip) | ||
59 | { | ||
60 | int i,j; | ||
61 | dReal sum,*bb,*cc; | ||
62 | dIASSERT (p>0 && r>0 && A && B && C); | ||
63 | bb = B; | ||
64 | for (i=p; i; i--) { | ||
65 | cc = C; | ||
66 | for (j=r; j; j--) { | ||
67 | sum = bb[0]*cc[0]; | ||
68 | sum += bb[1]*cc[1]; | ||
69 | sum += bb[2]*cc[2]; | ||
70 | sum += bb[4]*cc[4]; | ||
71 | sum += bb[5]*cc[5]; | ||
72 | sum += bb[6]*cc[6]; | ||
73 | *(A++) = sum; | ||
74 | cc += 8; | ||
75 | } | ||
76 | A += Askip - r; | ||
77 | bb += 8; | ||
78 | } | ||
79 | } | ||
80 | |||
81 | |||
82 | // this assumes the 4th and 8th rows of B and C are zero. | ||
83 | |||
84 | static void MultiplyAdd2_p8r (dReal *A, dReal *B, dReal *C, | ||
85 | int p, int r, int Askip) | ||
86 | { | ||
87 | int i,j; | ||
88 | dReal sum,*bb,*cc; | ||
89 | dIASSERT (p>0 && r>0 && A && B && C); | ||
90 | bb = B; | ||
91 | for (i=p; i; i--) { | ||
92 | cc = C; | ||
93 | for (j=r; j; j--) { | ||
94 | sum = bb[0]*cc[0]; | ||
95 | sum += bb[1]*cc[1]; | ||
96 | sum += bb[2]*cc[2]; | ||
97 | sum += bb[4]*cc[4]; | ||
98 | sum += bb[5]*cc[5]; | ||
99 | sum += bb[6]*cc[6]; | ||
100 | *(A++) += sum; | ||
101 | cc += 8; | ||
102 | } | ||
103 | A += Askip - r; | ||
104 | bb += 8; | ||
105 | } | ||
106 | } | ||
107 | |||
108 | |||
109 | // this assumes the 4th and 8th rows of B are zero. | ||
110 | |||
111 | static void Multiply0_p81 (dReal *A, dReal *B, dReal *C, int p) | ||
112 | { | ||
113 | int i; | ||
114 | dIASSERT (p>0 && A && B && C); | ||
115 | dReal sum; | ||
116 | for (i=p; i; i--) { | ||
117 | sum = B[0]*C[0]; | ||
118 | sum += B[1]*C[1]; | ||
119 | sum += B[2]*C[2]; | ||
120 | sum += B[4]*C[4]; | ||
121 | sum += B[5]*C[5]; | ||
122 | sum += B[6]*C[6]; | ||
123 | *(A++) = sum; | ||
124 | B += 8; | ||
125 | } | ||
126 | } | ||
127 | |||
128 | |||
129 | // this assumes the 4th and 8th rows of B are zero. | ||
130 | |||
131 | static void MultiplyAdd0_p81 (dReal *A, dReal *B, dReal *C, int p) | ||
132 | { | ||
133 | int i; | ||
134 | dIASSERT (p>0 && A && B && C); | ||
135 | dReal sum; | ||
136 | for (i=p; i; i--) { | ||
137 | sum = B[0]*C[0]; | ||
138 | sum += B[1]*C[1]; | ||
139 | sum += B[2]*C[2]; | ||
140 | sum += B[4]*C[4]; | ||
141 | sum += B[5]*C[5]; | ||
142 | sum += B[6]*C[6]; | ||
143 | *(A++) += sum; | ||
144 | B += 8; | ||
145 | } | ||
146 | } | ||
147 | |||
148 | |||
149 | // this assumes the 4th and 8th rows of B are zero. | ||
150 | |||
151 | static void MultiplyAdd1_8q1 (dReal *A, dReal *B, dReal *C, int q) | ||
152 | { | ||
153 | int k; | ||
154 | dReal sum; | ||
155 | dIASSERT (q>0 && A && B && C); | ||
156 | sum = 0; | ||
157 | for (k=0; k<q; k++) sum += B[k*8] * C[k]; | ||
158 | A[0] += sum; | ||
159 | sum = 0; | ||
160 | for (k=0; k<q; k++) sum += B[1+k*8] * C[k]; | ||
161 | A[1] += sum; | ||
162 | sum = 0; | ||
163 | for (k=0; k<q; k++) sum += B[2+k*8] * C[k]; | ||
164 | A[2] += sum; | ||
165 | sum = 0; | ||
166 | for (k=0; k<q; k++) sum += B[4+k*8] * C[k]; | ||
167 | A[4] += sum; | ||
168 | sum = 0; | ||
169 | for (k=0; k<q; k++) sum += B[5+k*8] * C[k]; | ||
170 | A[5] += sum; | ||
171 | sum = 0; | ||
172 | for (k=0; k<q; k++) sum += B[6+k*8] * C[k]; | ||
173 | A[6] += sum; | ||
174 | } | ||
175 | |||
176 | |||
177 | // this assumes the 4th and 8th rows of B are zero. | ||
178 | |||
179 | static void Multiply1_8q1 (dReal *A, dReal *B, dReal *C, int q) | ||
180 | { | ||
181 | int k; | ||
182 | dReal sum; | ||
183 | dIASSERT (q>0 && A && B && C); | ||
184 | sum = 0; | ||
185 | for (k=0; k<q; k++) sum += B[k*8] * C[k]; | ||
186 | A[0] = sum; | ||
187 | sum = 0; | ||
188 | for (k=0; k<q; k++) sum += B[1+k*8] * C[k]; | ||
189 | A[1] = sum; | ||
190 | sum = 0; | ||
191 | for (k=0; k<q; k++) sum += B[2+k*8] * C[k]; | ||
192 | A[2] = sum; | ||
193 | sum = 0; | ||
194 | for (k=0; k<q; k++) sum += B[4+k*8] * C[k]; | ||
195 | A[4] = sum; | ||
196 | sum = 0; | ||
197 | for (k=0; k<q; k++) sum += B[5+k*8] * C[k]; | ||
198 | A[5] = sum; | ||
199 | sum = 0; | ||
200 | for (k=0; k<q; k++) sum += B[6+k*8] * C[k]; | ||
201 | A[6] = sum; | ||
202 | } | ||
203 | |||
204 | //**************************************************************************** | ||
205 | // body rotation | ||
206 | |||
207 | // return sin(x)/x. this has a singularity at 0 so special handling is needed | ||
208 | // for small arguments. | ||
209 | |||
210 | static inline dReal sinc (dReal x) | ||
211 | { | ||
212 | // if |x| < 1e-4 then use a taylor series expansion. this two term expansion | ||
213 | // is actually accurate to one LS bit within this range if double precision | ||
214 | // is being used - so don't worry! | ||
215 | if (dFabs(x) < 1.0e-4) return REAL(1.0) - x*x*REAL(0.166666666666666666667); | ||
216 | else return dSin(x)/x; | ||
217 | } | ||
218 | |||
219 | |||
220 | // given a body b, apply its linear and angular rotation over the time | ||
221 | // interval h, thereby adjusting its position and orientation. | ||
222 | |||
223 | static inline void moveAndRotateBody (dxBody *b, dReal h) | ||
224 | { | ||
225 | int j; | ||
226 | |||
227 | // handle linear velocity | ||
228 | for (j=0; j<3; j++) b->pos[j] += h * b->lvel[j]; | ||
229 | |||
230 | if (b->flags & dxBodyFlagFiniteRotation) { | ||
231 | dVector3 irv; // infitesimal rotation vector | ||
232 | dQuaternion q; // quaternion for finite rotation | ||
233 | |||
234 | if (b->flags & dxBodyFlagFiniteRotationAxis) { | ||
235 | // split the angular velocity vector into a component along the finite | ||
236 | // rotation axis, and a component orthogonal to it. | ||
237 | dVector3 frv,irv; // finite rotation vector | ||
238 | dReal k = dDOT (b->finite_rot_axis,b->avel); | ||
239 | frv[0] = b->finite_rot_axis[0] * k; | ||
240 | frv[1] = b->finite_rot_axis[1] * k; | ||
241 | frv[2] = b->finite_rot_axis[2] * k; | ||
242 | irv[0] = b->avel[0] - frv[0]; | ||
243 | irv[1] = b->avel[1] - frv[1]; | ||
244 | irv[2] = b->avel[2] - frv[2]; | ||
245 | |||
246 | // make a rotation quaternion q that corresponds to frv * h. | ||
247 | // compare this with the full-finite-rotation case below. | ||
248 | h *= REAL(0.5); | ||
249 | dReal theta = k * h; | ||
250 | q[0] = dCos(theta); | ||
251 | dReal s = sinc(theta) * h; | ||
252 | q[1] = frv[0] * s; | ||
253 | q[2] = frv[1] * s; | ||
254 | q[3] = frv[2] * s; | ||
255 | } | ||
256 | else { | ||
257 | // make a rotation quaternion q that corresponds to w * h | ||
258 | dReal wlen = dSqrt (b->avel[0]*b->avel[0] + b->avel[1]*b->avel[1] + | ||
259 | b->avel[2]*b->avel[2]); | ||
260 | h *= REAL(0.5); | ||
261 | dReal theta = wlen * h; | ||
262 | q[0] = dCos(theta); | ||
263 | dReal s = sinc(theta) * h; | ||
264 | q[1] = b->avel[0] * s; | ||
265 | q[2] = b->avel[1] * s; | ||
266 | q[3] = b->avel[2] * s; | ||
267 | } | ||
268 | |||
269 | // do the finite rotation | ||
270 | dQuaternion q2; | ||
271 | dQMultiply0 (q2,q,b->q); | ||
272 | for (j=0; j<4; j++) b->q[j] = q2[j]; | ||
273 | |||
274 | // do the infitesimal rotation if required | ||
275 | if (b->flags & dxBodyFlagFiniteRotationAxis) { | ||
276 | dReal dq[4]; | ||
277 | dWtoDQ (irv,b->q,dq); | ||
278 | for (j=0; j<4; j++) b->q[j] += h * dq[j]; | ||
279 | } | ||
280 | } | ||
281 | else { | ||
282 | // the normal way - do an infitesimal rotation | ||
283 | dReal dq[4]; | ||
284 | dWtoDQ (b->avel,b->q,dq); | ||
285 | for (j=0; j<4; j++) b->q[j] += h * dq[j]; | ||
286 | } | ||
287 | |||
288 | // normalize the quaternion and convert it to a rotation matrix | ||
289 | dNormalize4 (b->q); | ||
290 | dQtoR (b->q,b->R); | ||
291 | |||
292 | // notify all attached geoms that this body has moved | ||
293 | for (dxGeom *geom = b->geom; geom; geom = dGeomGetBodyNext (geom)) | ||
294 | dGeomMoved (geom); | ||
295 | } | ||
296 | |||
297 | //**************************************************************************** | ||
298 | // the slow, but sure way | ||
299 | // note that this does not do any joint feedback! | ||
300 | |||
301 | // given lists of bodies and joints that form an island, perform a first | ||
302 | // order timestep. | ||
303 | // | ||
304 | // `body' is the body array, `nb' is the size of the array. | ||
305 | // `_joint' is the body array, `nj' is the size of the array. | ||
306 | |||
307 | void dInternalStepIsland_x1 (dxWorld *world, dxBody * const *body, int nb, | ||
308 | dxJoint * const *_joint, int nj, dReal stepsize) | ||
309 | { | ||
310 | int i,j,k; | ||
311 | int n6 = 6*nb; | ||
312 | |||
313 | # ifdef TIMING | ||
314 | dTimerStart("preprocessing"); | ||
315 | # endif | ||
316 | |||
317 | // number all bodies in the body list - set their tag values | ||
318 | for (i=0; i<nb; i++) body[i]->tag = i; | ||
319 | |||
320 | // make a local copy of the joint array, because we might want to modify it. | ||
321 | // (the "dxJoint *const*" declaration says we're allowed to modify the joints | ||
322 | // but not the joint array, because the caller might need it unchanged). | ||
323 | dxJoint **joint = (dxJoint**) ALLOCA (nj * sizeof(dxJoint*)); | ||
324 | memcpy (joint,_joint,nj * sizeof(dxJoint*)); | ||
325 | |||
326 | // for all bodies, compute the inertia tensor and its inverse in the global | ||
327 | // frame, and compute the rotational force and add it to the torque | ||
328 | // accumulator. | ||
329 | // @@@ check computation of rotational force. | ||
330 | dReal *I = (dReal*) ALLOCA (3*nb*4 * sizeof(dReal)); | ||
331 | dReal *invI = (dReal*) ALLOCA (3*nb*4 * sizeof(dReal)); | ||
332 | |||
333 | //dSetZero (I,3*nb*4); | ||
334 | //dSetZero (invI,3*nb*4); | ||
335 | for (i=0; i<nb; i++) { | ||
336 | dReal tmp[12]; | ||
337 | // compute inertia tensor in global frame | ||
338 | dMULTIPLY2_333 (tmp,body[i]->mass.I,body[i]->R); | ||
339 | dMULTIPLY0_333 (I+i*12,body[i]->R,tmp); | ||
340 | // compute inverse inertia tensor in global frame | ||
341 | dMULTIPLY2_333 (tmp,body[i]->invI,body[i]->R); | ||
342 | dMULTIPLY0_333 (invI+i*12,body[i]->R,tmp); | ||
343 | // compute rotational force | ||
344 | dMULTIPLY0_331 (tmp,I+i*12,body[i]->avel); | ||
345 | dCROSS (body[i]->tacc,-=,body[i]->avel,tmp); | ||
346 | } | ||
347 | |||
348 | // add the gravity force to all bodies | ||
349 | for (i=0; i<nb; i++) { | ||
350 | if ((body[i]->flags & dxBodyNoGravity)==0) { | ||
351 | body[i]->facc[0] += body[i]->mass.mass * world->gravity[0]; | ||
352 | body[i]->facc[1] += body[i]->mass.mass * world->gravity[1]; | ||
353 | body[i]->facc[2] += body[i]->mass.mass * world->gravity[2]; | ||
354 | } | ||
355 | } | ||
356 | |||
357 | // get m = total constraint dimension, nub = number of unbounded variables. | ||
358 | // create constraint offset array and number-of-rows array for all joints. | ||
359 | // the constraints are re-ordered as follows: the purely unbounded | ||
360 | // constraints, the mixed unbounded + LCP constraints, and last the purely | ||
361 | // LCP constraints. | ||
362 | // | ||
363 | // joints with m=0 are inactive and are removed from the joints array | ||
364 | // entirely, so that the code that follows does not consider them. | ||
365 | int m = 0; | ||
366 | dxJoint::Info1 *info = (dxJoint::Info1*) ALLOCA (nj*sizeof(dxJoint::Info1)); | ||
367 | int *ofs = (int*) ALLOCA (nj*sizeof(int)); | ||
368 | for (i=0, j=0; j<nj; j++) { // i=dest, j=src | ||
369 | joint[j]->vtable->getInfo1 (joint[j],info+i); | ||
370 | dIASSERT (info[i].m >= 0 && info[i].m <= 6 && | ||
371 | info[i].nub >= 0 && info[i].nub <= info[i].m); | ||
372 | if (info[i].m > 0) { | ||
373 | joint[i] = joint[j]; | ||
374 | i++; | ||
375 | } | ||
376 | } | ||
377 | nj = i; | ||
378 | |||
379 | // the purely unbounded constraints | ||
380 | for (i=0; i<nj; i++) if (info[i].nub == info[i].m) { | ||
381 | ofs[i] = m; | ||
382 | m += info[i].m; | ||
383 | } | ||
384 | int nub = m; | ||
385 | // the mixed unbounded + LCP constraints | ||
386 | for (i=0; i<nj; i++) if (info[i].nub > 0 && info[i].nub < info[i].m) { | ||
387 | ofs[i] = m; | ||
388 | m += info[i].m; | ||
389 | } | ||
390 | // the purely LCP constraints | ||
391 | for (i=0; i<nj; i++) if (info[i].nub == 0) { | ||
392 | ofs[i] = m; | ||
393 | m += info[i].m; | ||
394 | } | ||
395 | |||
396 | // create (6*nb,6*nb) inverse mass matrix `invM', and fill it with mass | ||
397 | // parameters | ||
398 | # ifdef TIMING | ||
399 | dTimerNow ("create mass matrix"); | ||
400 | # endif | ||
401 | int nskip = dPAD (n6); | ||
402 | dReal *invM = (dReal*) ALLOCA (n6*nskip*sizeof(dReal)); | ||
403 | dSetZero (invM,n6*nskip); | ||
404 | for (i=0; i<nb; i++) { | ||
405 | dReal *MM = invM+(i*6)*nskip+(i*6); | ||
406 | MM[0] = body[i]->invMass; | ||
407 | MM[nskip+1] = body[i]->invMass; | ||
408 | MM[2*nskip+2] = body[i]->invMass; | ||
409 | MM += 3*nskip+3; | ||
410 | for (j=0; j<3; j++) for (k=0; k<3; k++) { | ||
411 | MM[j*nskip+k] = invI[i*12+j*4+k]; | ||
412 | } | ||
413 | } | ||
414 | |||
415 | // assemble some body vectors: fe = external forces, v = velocities | ||
416 | dReal *fe = (dReal*) ALLOCA (n6 * sizeof(dReal)); | ||
417 | dReal *v = (dReal*) ALLOCA (n6 * sizeof(dReal)); | ||
418 | //dSetZero (fe,n6); | ||
419 | //dSetZero (v,n6); | ||
420 | for (i=0; i<nb; i++) { | ||
421 | for (j=0; j<3; j++) fe[i*6+j] = body[i]->facc[j]; | ||
422 | for (j=0; j<3; j++) fe[i*6+3+j] = body[i]->tacc[j]; | ||
423 | for (j=0; j<3; j++) v[i*6+j] = body[i]->lvel[j]; | ||
424 | for (j=0; j<3; j++) v[i*6+3+j] = body[i]->avel[j]; | ||
425 | } | ||
426 | |||
427 | // this will be set to the velocity update | ||
428 | dReal *vnew = (dReal*) ALLOCA (n6 * sizeof(dReal)); | ||
429 | dSetZero (vnew,n6); | ||
430 | |||
431 | // if there are constraints, compute cforce | ||
432 | if (m > 0) { | ||
433 | // create a constraint equation right hand side vector `c', a constraint | ||
434 | // force mixing vector `cfm', and LCP low and high bound vectors, and an | ||
435 | // 'findex' vector. | ||
436 | dReal *c = (dReal*) ALLOCA (m*sizeof(dReal)); | ||
437 | dReal *cfm = (dReal*) ALLOCA (m*sizeof(dReal)); | ||
438 | dReal *lo = (dReal*) ALLOCA (m*sizeof(dReal)); | ||
439 | dReal *hi = (dReal*) ALLOCA (m*sizeof(dReal)); | ||
440 | int *findex = (int*) alloca (m*sizeof(int)); | ||
441 | dSetZero (c,m); | ||
442 | dSetValue (cfm,m,world->global_cfm); | ||
443 | dSetValue (lo,m,-dInfinity); | ||
444 | dSetValue (hi,m, dInfinity); | ||
445 | for (i=0; i<m; i++) findex[i] = -1; | ||
446 | |||
447 | // create (m,6*nb) jacobian mass matrix `J', and fill it with constraint | ||
448 | // data. also fill the c vector. | ||
449 | # ifdef TIMING | ||
450 | dTimerNow ("create J"); | ||
451 | # endif | ||
452 | dReal *J = (dReal*) ALLOCA (m*nskip*sizeof(dReal)); | ||
453 | dSetZero (J,m*nskip); | ||
454 | dxJoint::Info2 Jinfo; | ||
455 | Jinfo.rowskip = nskip; | ||
456 | Jinfo.fps = dRecip(stepsize); | ||
457 | Jinfo.erp = world->global_erp; | ||
458 | for (i=0; i<nj; i++) { | ||
459 | Jinfo.J1l = J + nskip*ofs[i] + 6*joint[i]->node[0].body->tag; | ||
460 | Jinfo.J1a = Jinfo.J1l + 3; | ||
461 | if (joint[i]->node[1].body) { | ||
462 | Jinfo.J2l = J + nskip*ofs[i] + 6*joint[i]->node[1].body->tag; | ||
463 | Jinfo.J2a = Jinfo.J2l + 3; | ||
464 | } | ||
465 | else { | ||
466 | Jinfo.J2l = 0; | ||
467 | Jinfo.J2a = 0; | ||
468 | } | ||
469 | Jinfo.c = c + ofs[i]; | ||
470 | Jinfo.cfm = cfm + ofs[i]; | ||
471 | Jinfo.lo = lo + ofs[i]; | ||
472 | Jinfo.hi = hi + ofs[i]; | ||
473 | Jinfo.findex = findex + ofs[i]; | ||
474 | joint[i]->vtable->getInfo2 (joint[i],&Jinfo); | ||
475 | // adjust returned findex values for global index numbering | ||
476 | for (j=0; j<info[i].m; j++) { | ||
477 | if (findex[ofs[i] + j] >= 0) findex[ofs[i] + j] += ofs[i]; | ||
478 | } | ||
479 | } | ||
480 | |||
481 | // compute A = J*invM*J' | ||
482 | # ifdef TIMING | ||
483 | dTimerNow ("compute A"); | ||
484 | # endif | ||
485 | dReal *JinvM = (dReal*) ALLOCA (m*nskip*sizeof(dReal)); | ||
486 | //dSetZero (JinvM,m*nskip); | ||
487 | dMultiply0 (JinvM,J,invM,m,n6,n6); | ||
488 | int mskip = dPAD(m); | ||
489 | dReal *A = (dReal*) ALLOCA (m*mskip*sizeof(dReal)); | ||
490 | //dSetZero (A,m*mskip); | ||
491 | dMultiply2 (A,JinvM,J,m,n6,m); | ||
492 | |||
493 | // add cfm to the diagonal of A | ||
494 | for (i=0; i<m; i++) A[i*mskip+i] += cfm[i] * Jinfo.fps; | ||
495 | |||
496 | # ifdef COMPARE_METHODS | ||
497 | comparator.nextMatrix (A,m,m,1,"A"); | ||
498 | # endif | ||
499 | |||
500 | // compute `rhs', the right hand side of the equation J*a=c | ||
501 | # ifdef TIMING | ||
502 | dTimerNow ("compute rhs"); | ||
503 | # endif | ||
504 | dReal *tmp1 = (dReal*) ALLOCA (n6 * sizeof(dReal)); | ||
505 | //dSetZero (tmp1,n6); | ||
506 | dMultiply0 (tmp1,invM,fe,n6,n6,1); | ||
507 | for (i=0; i<n6; i++) tmp1[i] += v[i]/stepsize; | ||
508 | dReal *rhs = (dReal*) ALLOCA (m * sizeof(dReal)); | ||
509 | //dSetZero (rhs,m); | ||
510 | dMultiply0 (rhs,J,tmp1,m,n6,1); | ||
511 | for (i=0; i<m; i++) rhs[i] = c[i]/stepsize - rhs[i]; | ||
512 | |||
513 | # ifdef COMPARE_METHODS | ||
514 | comparator.nextMatrix (c,m,1,0,"c"); | ||
515 | comparator.nextMatrix (rhs,m,1,0,"rhs"); | ||
516 | # endif | ||
517 | |||
518 | // solve the LCP problem and get lambda. | ||
519 | // this will destroy A but that's okay | ||
520 | # ifdef TIMING | ||
521 | dTimerNow ("solving LCP problem"); | ||
522 | # endif | ||
523 | dReal *lambda = (dReal*) ALLOCA (m * sizeof(dReal)); | ||
524 | dReal *residual = (dReal*) ALLOCA (m * sizeof(dReal)); | ||
525 | dSolveLCP (m,A,lambda,rhs,residual,nub,lo,hi,findex); | ||
526 | |||
527 | // OLD WAY - direct factor and solve | ||
528 | // | ||
529 | // // factorize A (L*L'=A) | ||
530 | //# ifdef TIMING | ||
531 | // dTimerNow ("factorize A"); | ||
532 | //# endif | ||
533 | // dReal *L = (dReal*) ALLOCA (m*mskip*sizeof(dReal)); | ||
534 | // memcpy (L,A,m*mskip*sizeof(dReal)); | ||
535 | // if (dFactorCholesky (L,m)==0) dDebug (0,"A is not positive definite"); | ||
536 | // | ||
537 | // // compute lambda | ||
538 | //# ifdef TIMING | ||
539 | // dTimerNow ("compute lambda"); | ||
540 | //# endif | ||
541 | // dReal *lambda = (dReal*) ALLOCA (m * sizeof(dReal)); | ||
542 | // memcpy (lambda,rhs,m * sizeof(dReal)); | ||
543 | // dSolveCholesky (L,lambda,m); | ||
544 | |||
545 | # ifdef COMPARE_METHODS | ||
546 | comparator.nextMatrix (lambda,m,1,0,"lambda"); | ||
547 | # endif | ||
548 | |||
549 | // compute the velocity update `vnew' | ||
550 | # ifdef TIMING | ||
551 | dTimerNow ("compute velocity update"); | ||
552 | # endif | ||
553 | dMultiply1 (tmp1,J,lambda,n6,m,1); | ||
554 | for (i=0; i<n6; i++) tmp1[i] += fe[i]; | ||
555 | dMultiply0 (vnew,invM,tmp1,n6,n6,1); | ||
556 | for (i=0; i<n6; i++) vnew[i] = v[i] + stepsize*vnew[i]; | ||
557 | |||
558 | // see if the constraint has worked: compute J*vnew and make sure it equals | ||
559 | // `c' (to within a certain tolerance). | ||
560 | # ifdef TIMING | ||
561 | dTimerNow ("verify constraint equation"); | ||
562 | # endif | ||
563 | dMultiply0 (tmp1,J,vnew,m,n6,1); | ||
564 | dReal err = 0; | ||
565 | for (i=0; i<m; i++) err += dFabs(tmp1[i]-c[i]); | ||
566 | printf ("%.6e\n",err); | ||
567 | } | ||
568 | else { | ||
569 | // no constraints | ||
570 | dMultiply0 (vnew,invM,fe,n6,n6,1); | ||
571 | for (i=0; i<n6; i++) vnew[i] = v[i] + stepsize*vnew[i]; | ||
572 | } | ||
573 | |||
574 | # ifdef COMPARE_METHODS | ||
575 | comparator.nextMatrix (vnew,n6,1,0,"vnew"); | ||
576 | # endif | ||
577 | |||
578 | // apply the velocity update to the bodies | ||
579 | # ifdef TIMING | ||
580 | dTimerNow ("update velocity"); | ||
581 | # endif | ||
582 | for (i=0; i<nb; i++) { | ||
583 | for (j=0; j<3; j++) body[i]->lvel[j] = vnew[i*6+j]; | ||
584 | for (j=0; j<3; j++) body[i]->avel[j] = vnew[i*6+3+j]; | ||
585 | } | ||
586 | |||
587 | // update the position and orientation from the new linear/angular velocity | ||
588 | // (over the given timestep) | ||
589 | # ifdef TIMING | ||
590 | dTimerNow ("update position"); | ||
591 | # endif | ||
592 | for (i=0; i<nb; i++) moveAndRotateBody (body[i],stepsize); | ||
593 | |||
594 | # ifdef TIMING | ||
595 | dTimerNow ("tidy up"); | ||
596 | # endif | ||
597 | |||
598 | // zero all force accumulators | ||
599 | for (i=0; i<nb; i++) { | ||
600 | body[i]->facc[0] = 0; | ||
601 | body[i]->facc[1] = 0; | ||
602 | body[i]->facc[2] = 0; | ||
603 | body[i]->facc[3] = 0; | ||
604 | body[i]->tacc[0] = 0; | ||
605 | body[i]->tacc[1] = 0; | ||
606 | body[i]->tacc[2] = 0; | ||
607 | body[i]->tacc[3] = 0; | ||
608 | } | ||
609 | |||
610 | # ifdef TIMING | ||
611 | dTimerEnd(); | ||
612 | if (m > 0) dTimerReport (stdout,1); | ||
613 | # endif | ||
614 | } | ||
615 | |||
616 | //**************************************************************************** | ||
617 | // an optimized version of dInternalStepIsland1() | ||
618 | |||
619 | void dInternalStepIsland_x2 (dxWorld *world, dxBody * const *body, int nb, | ||
620 | dxJoint * const *_joint, int nj, dReal stepsize) | ||
621 | { | ||
622 | int i,j,k; | ||
623 | # ifdef TIMING | ||
624 | dTimerStart("preprocessing"); | ||
625 | # endif | ||
626 | |||
627 | dReal stepsize1 = dRecip(stepsize); | ||
628 | |||
629 | // number all bodies in the body list - set their tag values | ||
630 | for (i=0; i<nb; i++) body[i]->tag = i; | ||
631 | |||
632 | // make a local copy of the joint array, because we might want to modify it. | ||
633 | // (the "dxJoint *const*" declaration says we're allowed to modify the joints | ||
634 | // but not the joint array, because the caller might need it unchanged). | ||
635 | dxJoint **joint = (dxJoint**) ALLOCA (nj * sizeof(dxJoint*)); | ||
636 | memcpy (joint,_joint,nj * sizeof(dxJoint*)); | ||
637 | |||
638 | // for all bodies, compute the inertia tensor and its inverse in the global | ||
639 | // frame, and compute the rotational force and add it to the torque | ||
640 | // accumulator. I and invI are vertically stacked 3x4 matrices, one per body. | ||
641 | // @@@ check computation of rotational force. | ||
642 | dReal *I = (dReal*) ALLOCA (3*nb*4 * sizeof(dReal)); | ||
643 | dReal *invI = (dReal*) ALLOCA (3*nb*4 * sizeof(dReal)); | ||
644 | |||
645 | //dSetZero (I,3*nb*4); | ||
646 | //dSetZero (invI,3*nb*4); | ||
647 | for (i=0; i<nb; i++) { | ||
648 | dReal tmp[12]; | ||
649 | // compute inertia tensor in global frame | ||
650 | dMULTIPLY2_333 (tmp,body[i]->mass.I,body[i]->R); | ||
651 | dMULTIPLY0_333 (I+i*12,body[i]->R,tmp); | ||
652 | // compute inverse inertia tensor in global frame | ||
653 | dMULTIPLY2_333 (tmp,body[i]->invI,body[i]->R); | ||
654 | dMULTIPLY0_333 (invI+i*12,body[i]->R,tmp); | ||
655 | // compute rotational force | ||
656 | dMULTIPLY0_331 (tmp,I+i*12,body[i]->avel); | ||
657 | dCROSS (body[i]->tacc,-=,body[i]->avel,tmp); | ||
658 | } | ||
659 | |||
660 | // add the gravity force to all bodies | ||
661 | for (i=0; i<nb; i++) { | ||
662 | if ((body[i]->flags & dxBodyNoGravity)==0) { | ||
663 | body[i]->facc[0] += body[i]->mass.mass * world->gravity[0]; | ||
664 | body[i]->facc[1] += body[i]->mass.mass * world->gravity[1]; | ||
665 | body[i]->facc[2] += body[i]->mass.mass * world->gravity[2]; | ||
666 | } | ||
667 | } | ||
668 | |||
669 | // get m = total constraint dimension, nub = number of unbounded variables. | ||
670 | // create constraint offset array and number-of-rows array for all joints. | ||
671 | // the constraints are re-ordered as follows: the purely unbounded | ||
672 | // constraints, the mixed unbounded + LCP constraints, and last the purely | ||
673 | // LCP constraints. this assists the LCP solver to put all unbounded | ||
674 | // variables at the start for a quick factorization. | ||
675 | // | ||
676 | // joints with m=0 are inactive and are removed from the joints array | ||
677 | // entirely, so that the code that follows does not consider them. | ||
678 | // also number all active joints in the joint list (set their tag values). | ||
679 | // inactive joints receive a tag value of -1. | ||
680 | |||
681 | int m = 0; | ||
682 | dxJoint::Info1 *info = (dxJoint::Info1*) ALLOCA (nj*sizeof(dxJoint::Info1)); | ||
683 | int *ofs = (int*) ALLOCA (nj*sizeof(int)); | ||
684 | for (i=0, j=0; j<nj; j++) { // i=dest, j=src | ||
685 | joint[j]->vtable->getInfo1 (joint[j],info+i); | ||
686 | dIASSERT (info[i].m >= 0 && info[i].m <= 6 && | ||
687 | info[i].nub >= 0 && info[i].nub <= info[i].m); | ||
688 | if (info[i].m > 0) { | ||
689 | joint[i] = joint[j]; | ||
690 | joint[i]->tag = i; | ||
691 | i++; | ||
692 | } | ||
693 | else { | ||
694 | joint[j]->tag = -1; | ||
695 | } | ||
696 | } | ||
697 | nj = i; | ||
698 | |||
699 | // the purely unbounded constraints | ||
700 | for (i=0; i<nj; i++) if (info[i].nub == info[i].m) { | ||
701 | ofs[i] = m; | ||
702 | m += info[i].m; | ||
703 | } | ||
704 | int nub = m; | ||
705 | // the mixed unbounded + LCP constraints | ||
706 | for (i=0; i<nj; i++) if (info[i].nub > 0 && info[i].nub < info[i].m) { | ||
707 | ofs[i] = m; | ||
708 | m += info[i].m; | ||
709 | } | ||
710 | // the purely LCP constraints | ||
711 | for (i=0; i<nj; i++) if (info[i].nub == 0) { | ||
712 | ofs[i] = m; | ||
713 | m += info[i].m; | ||
714 | } | ||
715 | |||
716 | // this will be set to the force due to the constraints | ||
717 | dReal *cforce = (dReal*) ALLOCA (nb*8 * sizeof(dReal)); | ||
718 | dSetZero (cforce,nb*8); | ||
719 | |||
720 | // if there are constraints, compute cforce | ||
721 | if (m > 0) { | ||
722 | // create a constraint equation right hand side vector `c', a constraint | ||
723 | // force mixing vector `cfm', and LCP low and high bound vectors, and an | ||
724 | // 'findex' vector. | ||
725 | dReal *c = (dReal*) ALLOCA (m*sizeof(dReal)); | ||
726 | dReal *cfm = (dReal*) ALLOCA (m*sizeof(dReal)); | ||
727 | dReal *lo = (dReal*) ALLOCA (m*sizeof(dReal)); | ||
728 | dReal *hi = (dReal*) ALLOCA (m*sizeof(dReal)); | ||
729 | int *findex = (int*) alloca (m*sizeof(int)); | ||
730 | dSetZero (c,m); | ||
731 | dSetValue (cfm,m,world->global_cfm); | ||
732 | dSetValue (lo,m,-dInfinity); | ||
733 | dSetValue (hi,m, dInfinity); | ||
734 | for (i=0; i<m; i++) findex[i] = -1; | ||
735 | |||
736 | // get jacobian data from constraints. a (2*m)x8 matrix will be created | ||
737 | // to store the two jacobian blocks from each constraint. it has this | ||
738 | // format: | ||
739 | // | ||
740 | // l l l 0 a a a 0 \ . | ||
741 | // l l l 0 a a a 0 }-- jacobian body 1 block for joint 0 (3 rows) | ||
742 | // l l l 0 a a a 0 / | ||
743 | // l l l 0 a a a 0 \ . | ||
744 | // l l l 0 a a a 0 }-- jacobian body 2 block for joint 0 (3 rows) | ||
745 | // l l l 0 a a a 0 / | ||
746 | // l l l 0 a a a 0 }--- jacobian body 1 block for joint 1 (1 row) | ||
747 | // l l l 0 a a a 0 }--- jacobian body 2 block for joint 1 (1 row) | ||
748 | // etc... | ||
749 | // | ||
750 | // (lll) = linear jacobian data | ||
751 | // (aaa) = angular jacobian data | ||
752 | // | ||
753 | # ifdef TIMING | ||
754 | dTimerNow ("create J"); | ||
755 | # endif | ||
756 | dReal *J = (dReal*) ALLOCA (2*m*8*sizeof(dReal)); | ||
757 | dSetZero (J,2*m*8); | ||
758 | dxJoint::Info2 Jinfo; | ||
759 | Jinfo.rowskip = 8; | ||
760 | Jinfo.fps = stepsize1; | ||
761 | Jinfo.erp = world->global_erp; | ||
762 | for (i=0; i<nj; i++) { | ||
763 | Jinfo.J1l = J + 2*8*ofs[i]; | ||
764 | Jinfo.J1a = Jinfo.J1l + 4; | ||
765 | Jinfo.J2l = Jinfo.J1l + 8*info[i].m; | ||
766 | Jinfo.J2a = Jinfo.J2l + 4; | ||
767 | Jinfo.c = c + ofs[i]; | ||
768 | Jinfo.cfm = cfm + ofs[i]; | ||
769 | Jinfo.lo = lo + ofs[i]; | ||
770 | Jinfo.hi = hi + ofs[i]; | ||
771 | Jinfo.findex = findex + ofs[i]; | ||
772 | joint[i]->vtable->getInfo2 (joint[i],&Jinfo); | ||
773 | // adjust returned findex values for global index numbering | ||
774 | for (j=0; j<info[i].m; j++) { | ||
775 | if (findex[ofs[i] + j] >= 0) findex[ofs[i] + j] += ofs[i]; | ||
776 | } | ||
777 | } | ||
778 | |||
779 | // compute A = J*invM*J'. first compute JinvM = J*invM. this has the same | ||
780 | // format as J so we just go through the constraints in J multiplying by | ||
781 | // the appropriate scalars and matrices. | ||
782 | # ifdef TIMING | ||
783 | dTimerNow ("compute A"); | ||
784 | # endif | ||
785 | dReal *JinvM = (dReal*) ALLOCA (2*m*8*sizeof(dReal)); | ||
786 | dSetZero (JinvM,2*m*8); | ||
787 | for (i=0; i<nj; i++) { | ||
788 | int b = joint[i]->node[0].body->tag; | ||
789 | dReal body_invMass = body[b]->invMass; | ||
790 | dReal *body_invI = invI + b*12; | ||
791 | dReal *Jsrc = J + 2*8*ofs[i]; | ||
792 | dReal *Jdst = JinvM + 2*8*ofs[i]; | ||
793 | for (j=info[i].m-1; j>=0; j--) { | ||
794 | for (k=0; k<3; k++) Jdst[k] = Jsrc[k] * body_invMass; | ||
795 | dMULTIPLY0_133 (Jdst+4,Jsrc+4,body_invI); | ||
796 | Jsrc += 8; | ||
797 | Jdst += 8; | ||
798 | } | ||
799 | if (joint[i]->node[1].body) { | ||
800 | b = joint[i]->node[1].body->tag; | ||
801 | body_invMass = body[b]->invMass; | ||
802 | body_invI = invI + b*12; | ||
803 | for (j=info[i].m-1; j>=0; j--) { | ||
804 | for (k=0; k<3; k++) Jdst[k] = Jsrc[k] * body_invMass; | ||
805 | dMULTIPLY0_133 (Jdst+4,Jsrc+4,body_invI); | ||
806 | Jsrc += 8; | ||
807 | Jdst += 8; | ||
808 | } | ||
809 | } | ||
810 | } | ||
811 | |||
812 | // now compute A = JinvM * J'. A's rows and columns are grouped by joint, | ||
813 | // i.e. in the same way as the rows of J. block (i,j) of A is only nonzero | ||
814 | // if joints i and j have at least one body in common. this fact suggests | ||
815 | // the algorithm used to fill A: | ||
816 | // | ||
817 | // for b = all bodies | ||
818 | // n = number of joints attached to body b | ||
819 | // for i = 1..n | ||
820 | // for j = i+1..n | ||
821 | // ii = actual joint number for i | ||
822 | // jj = actual joint number for j | ||
823 | // // (ii,jj) will be set to all pairs of joints around body b | ||
824 | // compute blockwise: A(ii,jj) += JinvM(ii) * J(jj)' | ||
825 | // | ||
826 | // this algorithm catches all pairs of joints that have at least one body | ||
827 | // in common. it does not compute the diagonal blocks of A however - | ||
828 | // another similar algorithm does that. | ||
829 | |||
830 | int mskip = dPAD(m); | ||
831 | dReal *A = (dReal*) ALLOCA (m*mskip*sizeof(dReal)); | ||
832 | dSetZero (A,m*mskip); | ||
833 | for (i=0; i<nb; i++) { | ||
834 | for (dxJointNode *n1=body[i]->firstjoint; n1; n1=n1->next) { | ||
835 | for (dxJointNode *n2=n1->next; n2; n2=n2->next) { | ||
836 | // get joint numbers and ensure ofs[j1] >= ofs[j2] | ||
837 | int j1 = n1->joint->tag; | ||
838 | int j2 = n2->joint->tag; | ||
839 | if (ofs[j1] < ofs[j2]) { | ||
840 | int tmp = j1; | ||
841 | j1 = j2; | ||
842 | j2 = tmp; | ||
843 | } | ||
844 | |||
845 | // if either joint was tagged as -1 then it is an inactive (m=0) | ||
846 | // joint that should not be considered | ||
847 | if (j1==-1 || j2==-1) continue; | ||
848 | |||
849 | // determine if body i is the 1st or 2nd body of joints j1 and j2 | ||
850 | int jb1 = (joint[j1]->node[1].body == body[i]); | ||
851 | int jb2 = (joint[j2]->node[1].body == body[i]); | ||
852 | // jb1/jb2 must be 0 for joints with only one body | ||
853 | dIASSERT(joint[j1]->node[1].body || jb1==0); | ||
854 | dIASSERT(joint[j2]->node[1].body || jb2==0); | ||
855 | |||
856 | // set block of A | ||
857 | MultiplyAdd2_p8r (A + ofs[j1]*mskip + ofs[j2], | ||
858 | JinvM + 2*8*ofs[j1] + jb1*8*info[j1].m, | ||
859 | J + 2*8*ofs[j2] + jb2*8*info[j2].m, | ||
860 | info[j1].m,info[j2].m, mskip); | ||
861 | } | ||
862 | } | ||
863 | } | ||
864 | // compute diagonal blocks of A | ||
865 | for (i=0; i<nj; i++) { | ||
866 | Multiply2_p8r (A + ofs[i]*(mskip+1), | ||
867 | JinvM + 2*8*ofs[i], | ||
868 | J + 2*8*ofs[i], | ||
869 | info[i].m,info[i].m, mskip); | ||
870 | if (joint[i]->node[1].body) { | ||
871 | MultiplyAdd2_p8r (A + ofs[i]*(mskip+1), | ||
872 | JinvM + 2*8*ofs[i] + 8*info[i].m, | ||
873 | J + 2*8*ofs[i] + 8*info[i].m, | ||
874 | info[i].m,info[i].m, mskip); | ||
875 | } | ||
876 | } | ||
877 | |||
878 | // add cfm to the diagonal of A | ||
879 | for (i=0; i<m; i++) A[i*mskip+i] += cfm[i] * stepsize1; | ||
880 | |||
881 | # ifdef COMPARE_METHODS | ||
882 | comparator.nextMatrix (A,m,m,1,"A"); | ||
883 | # endif | ||
884 | |||
885 | // compute the right hand side `rhs' | ||
886 | # ifdef TIMING | ||
887 | dTimerNow ("compute rhs"); | ||
888 | # endif | ||
889 | dReal *tmp1 = (dReal*) ALLOCA (nb*8 * sizeof(dReal)); | ||
890 | //dSetZero (tmp1,nb*8); | ||
891 | // put v/h + invM*fe into tmp1 | ||
892 | for (i=0; i<nb; i++) { | ||
893 | dReal body_invMass = body[i]->invMass; | ||
894 | dReal *body_invI = invI + i*12; | ||
895 | for (j=0; j<3; j++) tmp1[i*8+j] = body[i]->facc[j] * body_invMass + | ||
896 | body[i]->lvel[j] * stepsize1; | ||
897 | dMULTIPLY0_331 (tmp1 + i*8 + 4,body_invI,body[i]->tacc); | ||
898 | for (j=0; j<3; j++) tmp1[i*8+4+j] += body[i]->avel[j] * stepsize1; | ||
899 | } | ||
900 | // put J*tmp1 into rhs | ||
901 | dReal *rhs = (dReal*) ALLOCA (m * sizeof(dReal)); | ||
902 | //dSetZero (rhs,m); | ||
903 | for (i=0; i<nj; i++) { | ||
904 | dReal *JJ = J + 2*8*ofs[i]; | ||
905 | Multiply0_p81 (rhs+ofs[i],JJ, | ||
906 | tmp1 + 8*joint[i]->node[0].body->tag, info[i].m); | ||
907 | if (joint[i]->node[1].body) { | ||
908 | MultiplyAdd0_p81 (rhs+ofs[i],JJ + 8*info[i].m, | ||
909 | tmp1 + 8*joint[i]->node[1].body->tag, info[i].m); | ||
910 | } | ||
911 | } | ||
912 | // complete rhs | ||
913 | for (i=0; i<m; i++) rhs[i] = c[i]*stepsize1 - rhs[i]; | ||
914 | |||
915 | # ifdef COMPARE_METHODS | ||
916 | comparator.nextMatrix (c,m,1,0,"c"); | ||
917 | comparator.nextMatrix (rhs,m,1,0,"rhs"); | ||
918 | # endif | ||
919 | |||
920 | // solve the LCP problem and get lambda. | ||
921 | // this will destroy A but that's okay | ||
922 | # ifdef TIMING | ||
923 | dTimerNow ("solving LCP problem"); | ||
924 | # endif | ||
925 | dReal *lambda = (dReal*) ALLOCA (m * sizeof(dReal)); | ||
926 | dReal *residual = (dReal*) ALLOCA (m * sizeof(dReal)); | ||
927 | dSolveLCP (m,A,lambda,rhs,residual,nub,lo,hi,findex); | ||
928 | |||
929 | // OLD WAY - direct factor and solve | ||
930 | // | ||
931 | // // factorize A (L*L'=A) | ||
932 | //# ifdef TIMING | ||
933 | // dTimerNow ("factorize A"); | ||
934 | //# endif | ||
935 | // dReal *L = (dReal*) ALLOCA (m*mskip*sizeof(dReal)); | ||
936 | // memcpy (L,A,m*mskip*sizeof(dReal)); | ||
937 | //# ifdef FAST_FACTOR | ||
938 | // dFastFactorCholesky (L,m); // does not report non positive definiteness | ||
939 | //# else | ||
940 | // if (dFactorCholesky (L,m)==0) dDebug (0,"A is not positive definite"); | ||
941 | //# endif | ||
942 | // | ||
943 | // // compute lambda | ||
944 | //# ifdef TIMING | ||
945 | // dTimerNow ("compute lambda"); | ||
946 | //# endif | ||
947 | // dReal *lambda = (dReal*) ALLOCA (m * sizeof(dReal)); | ||
948 | // memcpy (lambda,rhs,m * sizeof(dReal)); | ||
949 | // dSolveCholesky (L,lambda,m); | ||
950 | |||
951 | # ifdef COMPARE_METHODS | ||
952 | comparator.nextMatrix (lambda,m,1,0,"lambda"); | ||
953 | # endif | ||
954 | |||
955 | // compute the constraint force `cforce' | ||
956 | # ifdef TIMING | ||
957 | dTimerNow ("compute constraint force"); | ||
958 | # endif | ||
959 | // compute cforce = J'*lambda | ||
960 | for (i=0; i<nj; i++) { | ||
961 | dReal *JJ = J + 2*8*ofs[i]; | ||
962 | dxBody* b1 = joint[i]->node[0].body; | ||
963 | dxBody* b2 = joint[i]->node[1].body; | ||
964 | dJointFeedback *fb = joint[i]->feedback; | ||
965 | |||
966 | /******************** breakable joint contribution ***********************/ | ||
967 | // this saves us a few dereferences | ||
968 | dxJointBreakInfo *jBI = joint[i]->breakInfo; | ||
969 | // we need joint feedback if the joint is breakable or if the user | ||
970 | // requested feedback. | ||
971 | if (jBI||fb) { | ||
972 | // we need feedback on the amount of force that this joint is | ||
973 | // applying to the bodies. we use a slightly slower computation | ||
974 | // that splits out the force components and puts them in the | ||
975 | // feedback structure. | ||
976 | dJointFeedback temp_fb; // temporary storage for joint feedback | ||
977 | dReal data1[8],data2[8]; | ||
978 | Multiply1_8q1 (data1, JJ, lambda+ofs[i], info[i].m); | ||
979 | dReal *cf1 = cforce + 8*b1->tag; | ||
980 | cf1[0] += (temp_fb.f1[0] = data1[0]); | ||
981 | cf1[1] += (temp_fb.f1[1] = data1[1]); | ||
982 | cf1[2] += (temp_fb.f1[2] = data1[2]); | ||
983 | cf1[4] += (temp_fb.t1[0] = data1[4]); | ||
984 | cf1[5] += (temp_fb.t1[1] = data1[5]); | ||
985 | cf1[6] += (temp_fb.t1[2] = data1[6]); | ||
986 | if (b2) { | ||
987 | Multiply1_8q1 (data2, JJ + 8*info[i].m, lambda+ofs[i], info[i].m); | ||
988 | dReal *cf2 = cforce + 8*b2->tag; | ||
989 | cf2[0] += (temp_fb.f2[0] = data2[0]); | ||
990 | cf2[1] += (temp_fb.f2[1] = data2[1]); | ||
991 | cf2[2] += (temp_fb.f2[2] = data2[2]); | ||
992 | cf2[4] += (temp_fb.t2[0] = data2[4]); | ||
993 | cf2[5] += (temp_fb.t2[1] = data2[5]); | ||
994 | cf2[6] += (temp_fb.t2[2] = data2[6]); | ||
995 | } | ||
996 | // if the user requested so we must copy the feedback information to | ||
997 | // the feedback struct that the user suplied. | ||
998 | if (fb) { | ||
999 | // copy temp_fb to fb | ||
1000 | fb->f1[0] = temp_fb.f1[0]; | ||
1001 | fb->f1[1] = temp_fb.f1[1]; | ||
1002 | fb->f1[2] = temp_fb.f1[2]; | ||
1003 | fb->t1[0] = temp_fb.t1[0]; | ||
1004 | fb->t1[1] = temp_fb.t1[1]; | ||
1005 | fb->t1[2] = temp_fb.t1[2]; | ||
1006 | if (b2) { | ||
1007 | fb->f2[0] = temp_fb.f2[0]; | ||
1008 | fb->f2[1] = temp_fb.f2[1]; | ||
1009 | fb->f2[2] = temp_fb.f2[2]; | ||
1010 | fb->t2[0] = temp_fb.t2[0]; | ||
1011 | fb->t2[1] = temp_fb.t2[1]; | ||
1012 | fb->t2[2] = temp_fb.t2[2]; | ||
1013 | } | ||
1014 | } | ||
1015 | // if the joint is breakable we need to check the breaking conditions | ||
1016 | if (jBI) { | ||
1017 | dReal relCF1[3]; | ||
1018 | dReal relCT1[3]; | ||
1019 | // multiply the force and torque vectors by the rotation matrix of body 1 | ||
1020 | dMULTIPLY1_331 (&relCF1[0],b1->R,&temp_fb.f1[0]); | ||
1021 | dMULTIPLY1_331 (&relCT1[0],b1->R,&temp_fb.t1[0]); | ||
1022 | if (jBI->flags & dJOINT_BREAK_AT_B1_FORCE) { | ||
1023 | // check if the force is to high | ||
1024 | for (int i = 0; i < 3; i++) { | ||
1025 | if (relCF1[i] > jBI->b1MaxF[i]) { | ||
1026 | jBI->flags |= dJOINT_BROKEN; | ||
1027 | goto doneCheckingBreaks; | ||
1028 | } | ||
1029 | } | ||
1030 | } | ||
1031 | if (jBI->flags & dJOINT_BREAK_AT_B1_TORQUE) { | ||
1032 | // check if the torque is to high | ||
1033 | for (int i = 0; i < 3; i++) { | ||
1034 | if (relCT1[i] > jBI->b1MaxT[i]) { | ||
1035 | jBI->flags |= dJOINT_BROKEN; | ||
1036 | goto doneCheckingBreaks; | ||
1037 | } | ||
1038 | } | ||
1039 | } | ||
1040 | if (b2) { | ||
1041 | dReal relCF2[3]; | ||
1042 | dReal relCT2[3]; | ||
1043 | // multiply the force and torque vectors by the rotation matrix of body 2 | ||
1044 | dMULTIPLY1_331 (&relCF2[0],b2->R,&temp_fb.f2[0]); | ||
1045 | dMULTIPLY1_331 (&relCT2[0],b2->R,&temp_fb.t2[0]); | ||
1046 | if (jBI->flags & dJOINT_BREAK_AT_B2_FORCE) { | ||
1047 | // check if the force is to high | ||
1048 | for (int i = 0; i < 3; i++) { | ||
1049 | if (relCF2[i] > jBI->b2MaxF[i]) { | ||
1050 | jBI->flags |= dJOINT_BROKEN; | ||
1051 | goto doneCheckingBreaks; | ||
1052 | } | ||
1053 | } | ||
1054 | } | ||
1055 | if (jBI->flags & dJOINT_BREAK_AT_B2_TORQUE) { | ||
1056 | // check if the torque is to high | ||
1057 | for (int i = 0; i < 3; i++) { | ||
1058 | if (relCT2[i] > jBI->b2MaxT[i]) { | ||
1059 | jBI->flags |= dJOINT_BROKEN; | ||
1060 | goto doneCheckingBreaks; | ||
1061 | } | ||
1062 | } | ||
1063 | } | ||
1064 | } | ||
1065 | doneCheckingBreaks: | ||
1066 | ; | ||
1067 | } | ||
1068 | } | ||
1069 | /*************************************************************************/ | ||
1070 | else { | ||
1071 | // no feedback is required, let's compute cforce the faster way | ||
1072 | MultiplyAdd1_8q1 (cforce + 8*b1->tag,JJ, lambda+ofs[i], info[i].m); | ||
1073 | if (b2) { | ||
1074 | MultiplyAdd1_8q1 (cforce + 8*b2->tag, | ||
1075 | JJ + 8*info[i].m, lambda+ofs[i], info[i].m); | ||
1076 | } | ||
1077 | } | ||
1078 | } | ||
1079 | } | ||
1080 | |||
1081 | // compute the velocity update | ||
1082 | # ifdef TIMING | ||
1083 | dTimerNow ("compute velocity update"); | ||
1084 | # endif | ||
1085 | |||
1086 | // add fe to cforce | ||
1087 | for (i=0; i<nb; i++) { | ||
1088 | for (j=0; j<3; j++) cforce[i*8+j] += body[i]->facc[j]; | ||
1089 | for (j=0; j<3; j++) cforce[i*8+4+j] += body[i]->tacc[j]; | ||
1090 | } | ||
1091 | // multiply cforce by stepsize | ||
1092 | for (i=0; i < nb*8; i++) cforce[i] *= stepsize; | ||
1093 | // add invM * cforce to the body velocity | ||
1094 | for (i=0; i<nb; i++) { | ||
1095 | dReal body_invMass = body[i]->invMass; | ||
1096 | dReal *body_invI = invI + i*12; | ||
1097 | for (j=0; j<3; j++) body[i]->lvel[j] += body_invMass * cforce[i*8+j]; | ||
1098 | dMULTIPLYADD0_331 (body[i]->avel,body_invI,cforce+i*8+4); | ||
1099 | } | ||
1100 | |||
1101 | // update the position and orientation from the new linear/angular velocity | ||
1102 | // (over the given timestep) | ||
1103 | # ifdef TIMING | ||
1104 | dTimerNow ("update position"); | ||
1105 | # endif | ||
1106 | for (i=0; i<nb; i++) moveAndRotateBody (body[i],stepsize); | ||
1107 | |||
1108 | # ifdef COMPARE_METHODS | ||
1109 | dReal *tmp_vnew = (dReal*) ALLOCA (nb*6*sizeof(dReal)); | ||
1110 | for (i=0; i<nb; i++) { | ||
1111 | for (j=0; j<3; j++) tmp_vnew[i*6+j] = body[i]->lvel[j]; | ||
1112 | for (j=0; j<3; j++) tmp_vnew[i*6+3+j] = body[i]->avel[j]; | ||
1113 | } | ||
1114 | comparator.nextMatrix (tmp_vnew,nb*6,1,0,"vnew"); | ||
1115 | # endif | ||
1116 | |||
1117 | # ifdef TIMING | ||
1118 | dTimerNow ("tidy up"); | ||
1119 | # endif | ||
1120 | |||
1121 | // zero all force accumulators | ||
1122 | for (i=0; i<nb; i++) { | ||
1123 | body[i]->facc[0] = 0; | ||
1124 | body[i]->facc[1] = 0; | ||
1125 | body[i]->facc[2] = 0; | ||
1126 | body[i]->facc[3] = 0; | ||
1127 | body[i]->tacc[0] = 0; | ||
1128 | body[i]->tacc[1] = 0; | ||
1129 | body[i]->tacc[2] = 0; | ||
1130 | body[i]->tacc[3] = 0; | ||
1131 | } | ||
1132 | |||
1133 | # ifdef TIMING | ||
1134 | dTimerEnd(); | ||
1135 | if (m > 0) dTimerReport (stdout,1); | ||
1136 | # endif | ||
1137 | } | ||
1138 | |||
1139 | //**************************************************************************** | ||
1140 | |||
1141 | void dInternalStepIsland (dxWorld *world, dxBody * const *body, int nb, | ||
1142 | dxJoint * const *joint, int nj, dReal stepsize) | ||
1143 | { | ||
1144 | # ifndef COMPARE_METHODS | ||
1145 | dInternalStepIsland_x2 (world,body,nb,joint,nj,stepsize); | ||
1146 | # endif | ||
1147 | |||
1148 | # ifdef COMPARE_METHODS | ||
1149 | int i; | ||
1150 | |||
1151 | // save body state | ||
1152 | dxBody *state = (dxBody*) ALLOCA (nb*sizeof(dxBody)); | ||
1153 | for (i=0; i<nb; i++) memcpy (state+i,body[i],sizeof(dxBody)); | ||
1154 | |||
1155 | // take slow step | ||
1156 | comparator.reset(); | ||
1157 | dInternalStepIsland_x1 (world,body,nb,joint,nj,stepsize); | ||
1158 | comparator.end(); | ||
1159 | |||
1160 | // restore state | ||
1161 | for (i=0; i<nb; i++) memcpy (body[i],state+i,sizeof(dxBody)); | ||
1162 | |||
1163 | // take fast step | ||
1164 | dInternalStepIsland_x2 (world,body,nb,joint,nj,stepsize); | ||
1165 | comparator.end(); | ||
1166 | |||
1167 | //comparator.dump(); | ||
1168 | //_exit (1); | ||
1169 | # endif | ||
1170 | } | ||
diff --git a/libraries/ode-0.9/contrib/BreakableJoints/stepfast.cpp b/libraries/ode-0.9/contrib/BreakableJoints/stepfast.cpp new file mode 100755 index 0000000..a0eb9ae --- /dev/null +++ b/libraries/ode-0.9/contrib/BreakableJoints/stepfast.cpp | |||
@@ -0,0 +1,1212 @@ | |||
1 | /************************************************************************* | ||
2 | * * | ||
3 | * Open Dynamics Engine, Copyright (C) 2001,2002 Russell L. Smith. * | ||
4 | * All rights reserved. Email: russ@q12.org Web: www.q12.org * | ||
5 | * * | ||
6 | * Fast iterative solver, David Whittaker. Email: david@csworkbench.com * | ||
7 | * * | ||
8 | * This library is free software; you can redistribute it and/or * | ||
9 | * modify it under the terms of EITHER: * | ||
10 | * (1) The GNU Lesser General Public License as published by the Free * | ||
11 | * Software Foundation; either version 2.1 of the License, or (at * | ||
12 | * your option) any later version. The text of the GNU Lesser * | ||
13 | * General Public License is included with this library in the * | ||
14 | * file LICENSE.TXT. * | ||
15 | * (2) The BSD-style license that is included with this library in * | ||
16 | * the file LICENSE-BSD.TXT. * | ||
17 | * * | ||
18 | * This library is distributed in the hope that it will be useful, * | ||
19 | * but WITHOUT ANY WARRANTY; without even the implied warranty of * | ||
20 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the files * | ||
21 | * LICENSE.TXT and LICENSE-BSD.TXT for more details. * | ||
22 | * * | ||
23 | *************************************************************************/ | ||
24 | |||
25 | // This is the StepFast code by David Whittaker. This code is faster, but | ||
26 | // sometimes less stable than, the original "big matrix" code. | ||
27 | // Refer to the user's manual for more information. | ||
28 | // Note that this source file duplicates a lot of stuff from step.cpp, | ||
29 | // eventually we should move the common code to a third file. | ||
30 | |||
31 | #include "objects.h" | ||
32 | #include "joint.h" | ||
33 | #include <ode/config.h> | ||
34 | #include <ode/objects.h> | ||
35 | #include <ode/odemath.h> | ||
36 | #include <ode/rotation.h> | ||
37 | #include <ode/timer.h> | ||
38 | #include <ode/error.h> | ||
39 | #include <ode/matrix.h> | ||
40 | #include "lcp.h" | ||
41 | #include "step.h" | ||
42 | |||
43 | |||
44 | // misc defines | ||
45 | |||
46 | #define ALLOCA dALLOCA16 | ||
47 | |||
48 | #define RANDOM_JOINT_ORDER | ||
49 | //#define FAST_FACTOR //use a factorization approximation to the LCP solver (fast, theoretically less accurate) | ||
50 | #define SLOW_LCP //use the old LCP solver | ||
51 | //#define NO_ISLANDS //does not perform island creation code (3~4% of simulation time), body disabling doesn't work | ||
52 | //#define TIMING | ||
53 | |||
54 | |||
55 | static int autoEnableDepth = 2; | ||
56 | |||
57 | void dWorldSetAutoEnableDepthSF1 (dxWorld *world, int autodepth) | ||
58 | { | ||
59 | if (autodepth > 0) | ||
60 | autoEnableDepth = autodepth; | ||
61 | else | ||
62 | autoEnableDepth = 0; | ||
63 | } | ||
64 | |||
65 | int dWorldGetAutoEnableDepthSF1 (dxWorld *world) | ||
66 | { | ||
67 | return autoEnableDepth; | ||
68 | } | ||
69 | |||
70 | //little bit of math.... the _sym_ functions assume the return matrix will be symmetric | ||
71 | static void | ||
72 | Multiply2_sym_p8p (dReal * A, dReal * B, dReal * C, int p, int Askip) | ||
73 | { | ||
74 | int i, j; | ||
75 | dReal sum, *aa, *ad, *bb, *cc; | ||
76 | dIASSERT (p > 0 && A && B && C); | ||
77 | bb = B; | ||
78 | for (i = 0; i < p; i++) | ||
79 | { | ||
80 | //aa is going accross the matrix, ad down | ||
81 | aa = ad = A; | ||
82 | cc = C; | ||
83 | for (j = i; j < p; j++) | ||
84 | { | ||
85 | sum = bb[0] * cc[0]; | ||
86 | sum += bb[1] * cc[1]; | ||
87 | sum += bb[2] * cc[2]; | ||
88 | sum += bb[4] * cc[4]; | ||
89 | sum += bb[5] * cc[5]; | ||
90 | sum += bb[6] * cc[6]; | ||
91 | *(aa++) = *ad = sum; | ||
92 | ad += Askip; | ||
93 | cc += 8; | ||
94 | } | ||
95 | bb += 8; | ||
96 | A += Askip + 1; | ||
97 | C += 8; | ||
98 | } | ||
99 | } | ||
100 | |||
101 | static void | ||
102 | MultiplyAdd2_sym_p8p (dReal * A, dReal * B, dReal * C, int p, int Askip) | ||
103 | { | ||
104 | int i, j; | ||
105 | dReal sum, *aa, *ad, *bb, *cc; | ||
106 | dIASSERT (p > 0 && A && B && C); | ||
107 | bb = B; | ||
108 | for (i = 0; i < p; i++) | ||
109 | { | ||
110 | //aa is going accross the matrix, ad down | ||
111 | aa = ad = A; | ||
112 | cc = C; | ||
113 | for (j = i; j < p; j++) | ||
114 | { | ||
115 | sum = bb[0] * cc[0]; | ||
116 | sum += bb[1] * cc[1]; | ||
117 | sum += bb[2] * cc[2]; | ||
118 | sum += bb[4] * cc[4]; | ||
119 | sum += bb[5] * cc[5]; | ||
120 | sum += bb[6] * cc[6]; | ||
121 | *(aa++) += sum; | ||
122 | *ad += sum; | ||
123 | ad += Askip; | ||
124 | cc += 8; | ||
125 | } | ||
126 | bb += 8; | ||
127 | A += Askip + 1; | ||
128 | C += 8; | ||
129 | } | ||
130 | } | ||
131 | |||
132 | |||
133 | // this assumes the 4th and 8th rows of B are zero. | ||
134 | |||
135 | static void | ||
136 | Multiply0_p81 (dReal * A, dReal * B, dReal * C, int p) | ||
137 | { | ||
138 | int i; | ||
139 | dIASSERT (p > 0 && A && B && C); | ||
140 | dReal sum; | ||
141 | for (i = p; i; i--) | ||
142 | { | ||
143 | sum = B[0] * C[0]; | ||
144 | sum += B[1] * C[1]; | ||
145 | sum += B[2] * C[2]; | ||
146 | sum += B[4] * C[4]; | ||
147 | sum += B[5] * C[5]; | ||
148 | sum += B[6] * C[6]; | ||
149 | *(A++) = sum; | ||
150 | B += 8; | ||
151 | } | ||
152 | } | ||
153 | |||
154 | |||
155 | // this assumes the 4th and 8th rows of B are zero. | ||
156 | |||
157 | static void | ||
158 | MultiplyAdd0_p81 (dReal * A, dReal * B, dReal * C, int p) | ||
159 | { | ||
160 | int i; | ||
161 | dIASSERT (p > 0 && A && B && C); | ||
162 | dReal sum; | ||
163 | for (i = p; i; i--) | ||
164 | { | ||
165 | sum = B[0] * C[0]; | ||
166 | sum += B[1] * C[1]; | ||
167 | sum += B[2] * C[2]; | ||
168 | sum += B[4] * C[4]; | ||
169 | sum += B[5] * C[5]; | ||
170 | sum += B[6] * C[6]; | ||
171 | *(A++) += sum; | ||
172 | B += 8; | ||
173 | } | ||
174 | } | ||
175 | |||
176 | |||
177 | // this assumes the 4th and 8th rows of B are zero. | ||
178 | |||
179 | static void | ||
180 | Multiply1_8q1 (dReal * A, dReal * B, dReal * C, int q) | ||
181 | { | ||
182 | int k; | ||
183 | dReal sum; | ||
184 | dIASSERT (q > 0 && A && B && C); | ||
185 | sum = 0; | ||
186 | for (k = 0; k < q; k++) | ||
187 | sum += B[k * 8] * C[k]; | ||
188 | A[0] = sum; | ||
189 | sum = 0; | ||
190 | for (k = 0; k < q; k++) | ||
191 | sum += B[1 + k * 8] * C[k]; | ||
192 | A[1] = sum; | ||
193 | sum = 0; | ||
194 | for (k = 0; k < q; k++) | ||
195 | sum += B[2 + k * 8] * C[k]; | ||
196 | A[2] = sum; | ||
197 | sum = 0; | ||
198 | for (k = 0; k < q; k++) | ||
199 | sum += B[4 + k * 8] * C[k]; | ||
200 | A[4] = sum; | ||
201 | sum = 0; | ||
202 | for (k = 0; k < q; k++) | ||
203 | sum += B[5 + k * 8] * C[k]; | ||
204 | A[5] = sum; | ||
205 | sum = 0; | ||
206 | for (k = 0; k < q; k++) | ||
207 | sum += B[6 + k * 8] * C[k]; | ||
208 | A[6] = sum; | ||
209 | } | ||
210 | |||
211 | //**************************************************************************** | ||
212 | // body rotation | ||
213 | |||
214 | // return sin(x)/x. this has a singularity at 0 so special handling is needed | ||
215 | // for small arguments. | ||
216 | |||
217 | static inline dReal | ||
218 | sinc (dReal x) | ||
219 | { | ||
220 | // if |x| < 1e-4 then use a taylor series expansion. this two term expansion | ||
221 | // is actually accurate to one LS bit within this range if double precision | ||
222 | // is being used - so don't worry! | ||
223 | if (dFabs (x) < 1.0e-4) | ||
224 | return REAL (1.0) - x * x * REAL (0.166666666666666666667); | ||
225 | else | ||
226 | return dSin (x) / x; | ||
227 | } | ||
228 | |||
229 | |||
230 | // given a body b, apply its linear and angular rotation over the time | ||
231 | // interval h, thereby adjusting its position and orientation. | ||
232 | |||
233 | static inline void | ||
234 | moveAndRotateBody (dxBody * b, dReal h) | ||
235 | { | ||
236 | int j; | ||
237 | |||
238 | // handle linear velocity | ||
239 | for (j = 0; j < 3; j++) | ||
240 | b->pos[j] += h * b->lvel[j]; | ||
241 | |||
242 | if (b->flags & dxBodyFlagFiniteRotation) | ||
243 | { | ||
244 | dVector3 irv; // infitesimal rotation vector | ||
245 | dQuaternion q; // quaternion for finite rotation | ||
246 | |||
247 | if (b->flags & dxBodyFlagFiniteRotationAxis) | ||
248 | { | ||
249 | // split the angular velocity vector into a component along the finite | ||
250 | // rotation axis, and a component orthogonal to it. | ||
251 | dVector3 frv, irv; // finite rotation vector | ||
252 | dReal k = dDOT (b->finite_rot_axis, b->avel); | ||
253 | frv[0] = b->finite_rot_axis[0] * k; | ||
254 | frv[1] = b->finite_rot_axis[1] * k; | ||
255 | frv[2] = b->finite_rot_axis[2] * k; | ||
256 | irv[0] = b->avel[0] - frv[0]; | ||
257 | irv[1] = b->avel[1] - frv[1]; | ||
258 | irv[2] = b->avel[2] - frv[2]; | ||
259 | |||
260 | // make a rotation quaternion q that corresponds to frv * h. | ||
261 | // compare this with the full-finite-rotation case below. | ||
262 | h *= REAL (0.5); | ||
263 | dReal theta = k * h; | ||
264 | q[0] = dCos (theta); | ||
265 | dReal s = sinc (theta) * h; | ||
266 | q[1] = frv[0] * s; | ||
267 | q[2] = frv[1] * s; | ||
268 | q[3] = frv[2] * s; | ||
269 | } | ||
270 | else | ||
271 | { | ||
272 | // make a rotation quaternion q that corresponds to w * h | ||
273 | dReal wlen = dSqrt (b->avel[0] * b->avel[0] + b->avel[1] * b->avel[1] + b->avel[2] * b->avel[2]); | ||
274 | h *= REAL (0.5); | ||
275 | dReal theta = wlen * h; | ||
276 | q[0] = dCos (theta); | ||
277 | dReal s = sinc (theta) * h; | ||
278 | q[1] = b->avel[0] * s; | ||
279 | q[2] = b->avel[1] * s; | ||
280 | q[3] = b->avel[2] * s; | ||
281 | } | ||
282 | |||
283 | // do the finite rotation | ||
284 | dQuaternion q2; | ||
285 | dQMultiply0 (q2, q, b->q); | ||
286 | for (j = 0; j < 4; j++) | ||
287 | b->q[j] = q2[j]; | ||
288 | |||
289 | // do the infitesimal rotation if required | ||
290 | if (b->flags & dxBodyFlagFiniteRotationAxis) | ||
291 | { | ||
292 | dReal dq[4]; | ||
293 | dWtoDQ (irv, b->q, dq); | ||
294 | for (j = 0; j < 4; j++) | ||
295 | b->q[j] += h * dq[j]; | ||
296 | } | ||
297 | } | ||
298 | else | ||
299 | { | ||
300 | // the normal way - do an infitesimal rotation | ||
301 | dReal dq[4]; | ||
302 | dWtoDQ (b->avel, b->q, dq); | ||
303 | for (j = 0; j < 4; j++) | ||
304 | b->q[j] += h * dq[j]; | ||
305 | } | ||
306 | |||
307 | // normalize the quaternion and convert it to a rotation matrix | ||
308 | dNormalize4 (b->q); | ||
309 | dQtoR (b->q, b->R); | ||
310 | |||
311 | // notify all attached geoms that this body has moved | ||
312 | for (dxGeom * geom = b->geom; geom; geom = dGeomGetBodyNext (geom)) | ||
313 | dGeomMoved (geom); | ||
314 | } | ||
315 | |||
316 | //**************************************************************************** | ||
317 | //This is an implementation of the iterated/relaxation algorithm. | ||
318 | //Here is a quick overview of the algorithm per Sergi Valverde's posts to the | ||
319 | //mailing list: | ||
320 | // | ||
321 | // for i=0..N-1 do | ||
322 | // for c = 0..C-1 do | ||
323 | // Solve constraint c-th | ||
324 | // Apply forces to constraint bodies | ||
325 | // next | ||
326 | // next | ||
327 | // Integrate bodies | ||
328 | |||
329 | void | ||
330 | dInternalStepFast (dxWorld * world, dxBody * body[2], dReal * GI[2], dReal * GinvI[2], dxJoint * joint, dxJoint::Info1 info, dxJoint::Info2 Jinfo, dReal stepsize) | ||
331 | { | ||
332 | int i, j, k; | ||
333 | # ifdef TIMING | ||
334 | dTimerNow ("constraint preprocessing"); | ||
335 | # endif | ||
336 | |||
337 | dReal stepsize1 = dRecip (stepsize); | ||
338 | |||
339 | int m = info.m; | ||
340 | // nothing to do if no constraints. | ||
341 | if (m <= 0) | ||
342 | return; | ||
343 | |||
344 | int nub = 0; | ||
345 | if (info.nub == info.m) | ||
346 | nub = m; | ||
347 | |||
348 | // compute A = J*invM*J'. first compute JinvM = J*invM. this has the same | ||
349 | // format as J so we just go through the constraints in J multiplying by | ||
350 | // the appropriate scalars and matrices. | ||
351 | # ifdef TIMING | ||
352 | dTimerNow ("compute A"); | ||
353 | # endif | ||
354 | dReal JinvM[2 * 6 * 8]; | ||
355 | //dSetZero (JinvM, 2 * m * 8); | ||
356 | |||
357 | dReal *Jsrc = Jinfo.J1l; | ||
358 | dReal *Jdst = JinvM; | ||
359 | if (body[0]) | ||
360 | { | ||
361 | for (j = m - 1; j >= 0; j--) | ||
362 | { | ||
363 | for (k = 0; k < 3; k++) | ||
364 | Jdst[k] = Jsrc[k] * body[0]->invMass; | ||
365 | dMULTIPLY0_133 (Jdst + 4, Jsrc + 4, GinvI[0]); | ||
366 | Jsrc += 8; | ||
367 | Jdst += 8; | ||
368 | } | ||
369 | } | ||
370 | if (body[1]) | ||
371 | { | ||
372 | Jsrc = Jinfo.J2l; | ||
373 | Jdst = JinvM + 8 * m; | ||
374 | for (j = m - 1; j >= 0; j--) | ||
375 | { | ||
376 | for (k = 0; k < 3; k++) | ||
377 | Jdst[k] = Jsrc[k] * body[1]->invMass; | ||
378 | dMULTIPLY0_133 (Jdst + 4, Jsrc + 4, GinvI[1]); | ||
379 | Jsrc += 8; | ||
380 | Jdst += 8; | ||
381 | } | ||
382 | } | ||
383 | |||
384 | |||
385 | // now compute A = JinvM * J'. | ||
386 | int mskip = dPAD (m); | ||
387 | dReal A[6 * 8]; | ||
388 | //dSetZero (A, 6 * 8); | ||
389 | |||
390 | if (body[0]) | ||
391 | Multiply2_sym_p8p (A, JinvM, Jinfo.J1l, m, mskip); | ||
392 | if (body[1]) | ||
393 | MultiplyAdd2_sym_p8p (A, JinvM + 8 * m, Jinfo.J2l, m, mskip); | ||
394 | |||
395 | // add cfm to the diagonal of A | ||
396 | for (i = 0; i < m; i++) | ||
397 | A[i * mskip + i] += Jinfo.cfm[i] * stepsize1; | ||
398 | |||
399 | // compute the right hand side `rhs' | ||
400 | # ifdef TIMING | ||
401 | dTimerNow ("compute rhs"); | ||
402 | # endif | ||
403 | dReal tmp1[16]; | ||
404 | //dSetZero (tmp1, 16); | ||
405 | // put v/h + invM*fe into tmp1 | ||
406 | for (i = 0; i < 2; i++) | ||
407 | { | ||
408 | if (!body[i]) | ||
409 | continue; | ||
410 | for (j = 0; j < 3; j++) | ||
411 | tmp1[i * 8 + j] = body[i]->facc[j] * body[i]->invMass + body[i]->lvel[j] * stepsize1; | ||
412 | dMULTIPLY0_331 (tmp1 + i * 8 + 4, GinvI[i], body[i]->tacc); | ||
413 | for (j = 0; j < 3; j++) | ||
414 | tmp1[i * 8 + 4 + j] += body[i]->avel[j] * stepsize1; | ||
415 | } | ||
416 | // put J*tmp1 into rhs | ||
417 | dReal rhs[6]; | ||
418 | //dSetZero (rhs, 6); | ||
419 | |||
420 | if (body[0]) | ||
421 | Multiply0_p81 (rhs, Jinfo.J1l, tmp1, m); | ||
422 | if (body[1]) | ||
423 | MultiplyAdd0_p81 (rhs, Jinfo.J2l, tmp1 + 8, m); | ||
424 | |||
425 | // complete rhs | ||
426 | for (i = 0; i < m; i++) | ||
427 | rhs[i] = Jinfo.c[i] * stepsize1 - rhs[i]; | ||
428 | |||
429 | #ifdef SLOW_LCP | ||
430 | // solve the LCP problem and get lambda. | ||
431 | // this will destroy A but that's okay | ||
432 | # ifdef TIMING | ||
433 | dTimerNow ("solving LCP problem"); | ||
434 | # endif | ||
435 | dReal *lambda = (dReal *) ALLOCA (m * sizeof (dReal)); | ||
436 | dReal *residual = (dReal *) ALLOCA (m * sizeof (dReal)); | ||
437 | dReal lo[6], hi[6]; | ||
438 | memcpy (lo, Jinfo.lo, m * sizeof (dReal)); | ||
439 | memcpy (hi, Jinfo.hi, m * sizeof (dReal)); | ||
440 | dSolveLCP (m, A, lambda, rhs, residual, nub, lo, hi, Jinfo.findex); | ||
441 | #endif | ||
442 | |||
443 | // LCP Solver replacement: | ||
444 | // This algorithm goes like this: | ||
445 | // Do a straightforward LDLT factorization of the matrix A, solving for | ||
446 | // A*x = rhs | ||
447 | // For each x[i] that is outside of the bounds of lo[i] and hi[i], | ||
448 | // clamp x[i] into that range. | ||
449 | // Substitute into A the now known x's | ||
450 | // subtract the residual away from the rhs. | ||
451 | // Remove row and column i from L, updating the factorization | ||
452 | // place the known x's at the end of the array, keeping up with location in p | ||
453 | // Repeat until all constraints have been clamped or all are within bounds | ||
454 | // | ||
455 | // This is probably only faster in the single joint case where only one repeat is | ||
456 | // the norm. | ||
457 | |||
458 | #ifdef FAST_FACTOR | ||
459 | // factorize A (L*D*L'=A) | ||
460 | # ifdef TIMING | ||
461 | dTimerNow ("factorize A"); | ||
462 | # endif | ||
463 | dReal d[6]; | ||
464 | dReal L[6 * 8]; | ||
465 | memcpy (L, A, m * mskip * sizeof (dReal)); | ||
466 | dFactorLDLT (L, d, m, mskip); | ||
467 | |||
468 | // compute lambda | ||
469 | # ifdef TIMING | ||
470 | dTimerNow ("compute lambda"); | ||
471 | # endif | ||
472 | |||
473 | int left = m; //constraints left to solve. | ||
474 | int remove[6]; | ||
475 | dReal lambda[6]; | ||
476 | dReal x[6]; | ||
477 | int p[6]; | ||
478 | for (i = 0; i < 6; i++) | ||
479 | p[i] = i; | ||
480 | while (true) | ||
481 | { | ||
482 | memcpy (x, rhs, left * sizeof (dReal)); | ||
483 | dSolveLDLT (L, d, x, left, mskip); | ||
484 | |||
485 | int fixed = 0; | ||
486 | for (i = 0; i < left; i++) | ||
487 | { | ||
488 | j = p[i]; | ||
489 | remove[i] = false; | ||
490 | // This isn't the exact same use of findex as dSolveLCP.... since x[findex] | ||
491 | // may change after I've already clamped x[i], but it should be close | ||
492 | if (Jinfo.findex[j] > -1) | ||
493 | { | ||
494 | dReal f = fabs (Jinfo.hi[j] * x[p[Jinfo.findex[j]]]); | ||
495 | if (x[i] > f) | ||
496 | x[i] = f; | ||
497 | else if (x[i] < -f) | ||
498 | x[i] = -f; | ||
499 | else | ||
500 | continue; | ||
501 | } | ||
502 | else | ||
503 | { | ||
504 | if (x[i] > Jinfo.hi[j]) | ||
505 | x[i] = Jinfo.hi[j]; | ||
506 | else if (x[i] < Jinfo.lo[j]) | ||
507 | x[i] = Jinfo.lo[j]; | ||
508 | else | ||
509 | continue; | ||
510 | } | ||
511 | remove[i] = true; | ||
512 | fixed++; | ||
513 | } | ||
514 | if (fixed == 0 || fixed == left) //no change or all constraints solved | ||
515 | break; | ||
516 | |||
517 | for (i = 0; i < left; i++) //sub in to right hand side. | ||
518 | if (remove[i]) | ||
519 | for (j = 0; j < left; j++) | ||
520 | if (!remove[j]) | ||
521 | rhs[j] -= A[j * mskip + i] * x[i]; | ||
522 | |||
523 | for (int r = left - 1; r >= 0; r--) //eliminate row/col for fixed variables | ||
524 | { | ||
525 | if (remove[r]) | ||
526 | { | ||
527 | //dRemoveLDLT adapted for use without row pointers. | ||
528 | if (r == left - 1) | ||
529 | { | ||
530 | left--; | ||
531 | continue; // deleting last row/col is easy | ||
532 | } | ||
533 | else if (r == 0) | ||
534 | { | ||
535 | dReal a[6]; | ||
536 | for (i = 0; i < left; i++) | ||
537 | a[i] = -A[i * mskip]; | ||
538 | a[0] += REAL (1.0); | ||
539 | dLDLTAddTL (L, d, a, left, mskip); | ||
540 | } | ||
541 | else | ||
542 | { | ||
543 | dReal t[6]; | ||
544 | dReal a[6]; | ||
545 | for (i = 0; i < r; i++) | ||
546 | t[i] = L[r * mskip + i] / d[i]; | ||
547 | for (i = 0; i < left - r; i++) | ||
548 | a[i] = dDot (L + (r + i) * mskip, t, r) - A[(r + i) * mskip + r]; | ||
549 | a[0] += REAL (1.0); | ||
550 | dLDLTAddTL (L + r * mskip + r, d + r, a, left - r, mskip); | ||
551 | } | ||
552 | |||
553 | dRemoveRowCol (L, left, mskip, r); | ||
554 | //end dRemoveLDLT | ||
555 | |||
556 | left--; | ||
557 | if (r < (left - 1)) | ||
558 | { | ||
559 | dReal tx = x[r]; | ||
560 | memmove (d + r, d + r + 1, (left - r) * sizeof (dReal)); | ||
561 | memmove (rhs + r, rhs + r + 1, (left - r) * sizeof (dReal)); | ||
562 | //x will get written over by rhs anyway, no need to move it around | ||
563 | //just store the fixed value we just discovered in it. | ||
564 | x[left] = tx; | ||
565 | for (i = 0; i < m; i++) | ||
566 | if (p[i] > r && p[i] <= left) | ||
567 | p[i]--; | ||
568 | p[r] = left; | ||
569 | } | ||
570 | } | ||
571 | } | ||
572 | } | ||
573 | |||
574 | for (i = 0; i < m; i++) | ||
575 | lambda[i] = x[p[i]]; | ||
576 | # endif | ||
577 | // compute the constraint force `cforce' | ||
578 | # ifdef TIMING | ||
579 | dTimerNow ("compute constraint force"); | ||
580 | #endif | ||
581 | |||
582 | // compute cforce = J'*lambda | ||
583 | dJointFeedback *fb = joint->feedback; | ||
584 | dReal cforce[16]; | ||
585 | //dSetZero (cforce, 16); | ||
586 | |||
587 | /******************** breakable joint contribution ***********************/ | ||
588 | // this saves us a few dereferences | ||
589 | dxJointBreakInfo *jBI = joint->breakInfo; | ||
590 | // we need joint feedback if the joint is breakable or if the user | ||
591 | // requested feedback. | ||
592 | if (jBI||fb) { | ||
593 | // we need feedback on the amount of force that this joint is | ||
594 | // applying to the bodies. we use a slightly slower computation | ||
595 | // that splits out the force components and puts them in the | ||
596 | // feedback structure. | ||
597 | dJointFeedback temp_fb; // temporary storage for joint feedback | ||
598 | dReal data1[8],data2[8]; | ||
599 | if (body[0]) | ||
600 | { | ||
601 | Multiply1_8q1 (data1, Jinfo.J1l, lambda, m); | ||
602 | dReal *cf1 = cforce; | ||
603 | cf1[0] = (temp_fb.f1[0] = data1[0]); | ||
604 | cf1[1] = (temp_fb.f1[1] = data1[1]); | ||
605 | cf1[2] = (temp_fb.f1[2] = data1[2]); | ||
606 | cf1[4] = (temp_fb.t1[0] = data1[4]); | ||
607 | cf1[5] = (temp_fb.t1[1] = data1[5]); | ||
608 | cf1[6] = (temp_fb.t1[2] = data1[6]); | ||
609 | } | ||
610 | if (body[1]) | ||
611 | { | ||
612 | Multiply1_8q1 (data2, Jinfo.J2l, lambda, m); | ||
613 | dReal *cf2 = cforce + 8; | ||
614 | cf2[0] = (temp_fb.f2[0] = data2[0]); | ||
615 | cf2[1] = (temp_fb.f2[1] = data2[1]); | ||
616 | cf2[2] = (temp_fb.f2[2] = data2[2]); | ||
617 | cf2[4] = (temp_fb.t2[0] = data2[4]); | ||
618 | cf2[5] = (temp_fb.t2[1] = data2[5]); | ||
619 | cf2[6] = (temp_fb.t2[2] = data2[6]); | ||
620 | } | ||
621 | // if the user requested so we must copy the feedback information to | ||
622 | // the feedback struct that the user suplied. | ||
623 | if (fb) { | ||
624 | // copy temp_fb to fb | ||
625 | fb->f1[0] = temp_fb.f1[0]; | ||
626 | fb->f1[1] = temp_fb.f1[1]; | ||
627 | fb->f1[2] = temp_fb.f1[2]; | ||
628 | fb->t1[0] = temp_fb.t1[0]; | ||
629 | fb->t1[1] = temp_fb.t1[1]; | ||
630 | fb->t1[2] = temp_fb.t1[2]; | ||
631 | if (body[1]) { | ||
632 | fb->f2[0] = temp_fb.f2[0]; | ||
633 | fb->f2[1] = temp_fb.f2[1]; | ||
634 | fb->f2[2] = temp_fb.f2[2]; | ||
635 | fb->t2[0] = temp_fb.t2[0]; | ||
636 | fb->t2[1] = temp_fb.t2[1]; | ||
637 | fb->t2[2] = temp_fb.t2[2]; | ||
638 | } | ||
639 | } | ||
640 | // if the joint is breakable we need to check the breaking conditions | ||
641 | if (jBI) { | ||
642 | dReal relCF1[3]; | ||
643 | dReal relCT1[3]; | ||
644 | // multiply the force and torque vectors by the rotation matrix of body 1 | ||
645 | dMULTIPLY1_331 (&relCF1[0],body[0]->R,&temp_fb.f1[0]); | ||
646 | dMULTIPLY1_331 (&relCT1[0],body[0]->R,&temp_fb.t1[0]); | ||
647 | if (jBI->flags & dJOINT_BREAK_AT_B1_FORCE) { | ||
648 | // check if the force is to high | ||
649 | for (int i = 0; i < 3; i++) { | ||
650 | if (relCF1[i] > jBI->b1MaxF[i]) { | ||
651 | jBI->flags |= dJOINT_BROKEN; | ||
652 | goto doneCheckingBreaks; | ||
653 | } | ||
654 | } | ||
655 | } | ||
656 | if (jBI->flags & dJOINT_BREAK_AT_B1_TORQUE) { | ||
657 | // check if the torque is to high | ||
658 | for (int i = 0; i < 3; i++) { | ||
659 | if (relCT1[i] > jBI->b1MaxT[i]) { | ||
660 | jBI->flags |= dJOINT_BROKEN; | ||
661 | goto doneCheckingBreaks; | ||
662 | } | ||
663 | } | ||
664 | } | ||
665 | if (body[1]) { | ||
666 | dReal relCF2[3]; | ||
667 | dReal relCT2[3]; | ||
668 | // multiply the force and torque vectors by the rotation matrix of body 2 | ||
669 | dMULTIPLY1_331 (&relCF2[0],body[1]->R,&temp_fb.f2[0]); | ||
670 | dMULTIPLY1_331 (&relCT2[0],body[1]->R,&temp_fb.t2[0]); | ||
671 | if (jBI->flags & dJOINT_BREAK_AT_B2_FORCE) { | ||
672 | // check if the force is to high | ||
673 | for (int i = 0; i < 3; i++) { | ||
674 | if (relCF2[i] > jBI->b2MaxF[i]) { | ||
675 | jBI->flags |= dJOINT_BROKEN; | ||
676 | goto doneCheckingBreaks; | ||
677 | } | ||
678 | } | ||
679 | } | ||
680 | if (jBI->flags & dJOINT_BREAK_AT_B2_TORQUE) { | ||
681 | // check if the torque is to high | ||
682 | for (int i = 0; i < 3; i++) { | ||
683 | if (relCT2[i] > jBI->b2MaxT[i]) { | ||
684 | jBI->flags |= dJOINT_BROKEN; | ||
685 | goto doneCheckingBreaks; | ||
686 | } | ||
687 | } | ||
688 | } | ||
689 | } | ||
690 | doneCheckingBreaks: | ||
691 | ; | ||
692 | } | ||
693 | } | ||
694 | /*************************************************************************/ | ||
695 | else | ||
696 | { | ||
697 | // no feedback is required, let's compute cforce the faster way | ||
698 | if (body[0]) | ||
699 | Multiply1_8q1 (cforce, Jinfo.J1l, lambda, m); | ||
700 | if (body[1]) | ||
701 | Multiply1_8q1 (cforce + 8, Jinfo.J2l, lambda, m); | ||
702 | } | ||
703 | |||
704 | for (i = 0; i < 2; i++) | ||
705 | { | ||
706 | if (!body[i]) | ||
707 | continue; | ||
708 | for (j = 0; j < 3; j++) | ||
709 | { | ||
710 | body[i]->facc[j] += cforce[i * 8 + j]; | ||
711 | body[i]->tacc[j] += cforce[i * 8 + 4 + j]; | ||
712 | } | ||
713 | } | ||
714 | } | ||
715 | |||
716 | void | ||
717 | dInternalStepIslandFast (dxWorld * world, dxBody * const *bodies, int nb, dxJoint * const *_joints, int nj, dReal stepsize, int maxiterations) | ||
718 | { | ||
719 | # ifdef TIMING | ||
720 | dTimerNow ("preprocessing"); | ||
721 | # endif | ||
722 | dxBody *bodyPair[2], *body; | ||
723 | dReal *GIPair[2], *GinvIPair[2]; | ||
724 | dxJoint *joint; | ||
725 | int iter, b, j, i; | ||
726 | dReal ministep = stepsize / maxiterations; | ||
727 | |||
728 | // make a local copy of the joint array, because we might want to modify it. | ||
729 | // (the "dxJoint *const*" declaration says we're allowed to modify the joints | ||
730 | // but not the joint array, because the caller might need it unchanged). | ||
731 | dxJoint **joints = (dxJoint **) ALLOCA (nj * sizeof (dxJoint *)); | ||
732 | memcpy (joints, _joints, nj * sizeof (dxJoint *)); | ||
733 | |||
734 | // get m = total constraint dimension, nub = number of unbounded variables. | ||
735 | // create constraint offset array and number-of-rows array for all joints. | ||
736 | // the constraints are re-ordered as follows: the purely unbounded | ||
737 | // constraints, the mixed unbounded + LCP constraints, and last the purely | ||
738 | // LCP constraints. this assists the LCP solver to put all unbounded | ||
739 | // variables at the start for a quick factorization. | ||
740 | // | ||
741 | // joints with m=0 are inactive and are removed from the joints array | ||
742 | // entirely, so that the code that follows does not consider them. | ||
743 | // also number all active joints in the joint list (set their tag values). | ||
744 | // inactive joints receive a tag value of -1. | ||
745 | |||
746 | int m = 0; | ||
747 | dxJoint::Info1 * info = (dxJoint::Info1 *) ALLOCA (nj * sizeof (dxJoint::Info1)); | ||
748 | int *ofs = (int *) ALLOCA (nj * sizeof (int)); | ||
749 | for (i = 0, j = 0; j < nj; j++) | ||
750 | { // i=dest, j=src | ||
751 | joints[j]->vtable->getInfo1 (joints[j], info + i); | ||
752 | dIASSERT (info[i].m >= 0 && info[i].m <= 6 && info[i].nub >= 0 && info[i].nub <= info[i].m); | ||
753 | if (info[i].m > 0) | ||
754 | { | ||
755 | joints[i] = joints[j]; | ||
756 | joints[i]->tag = i; | ||
757 | i++; | ||
758 | } | ||
759 | else | ||
760 | { | ||
761 | joints[j]->tag = -1; | ||
762 | } | ||
763 | } | ||
764 | nj = i; | ||
765 | |||
766 | // the purely unbounded constraints | ||
767 | for (i = 0; i < nj; i++) | ||
768 | { | ||
769 | ofs[i] = m; | ||
770 | m += info[i].m; | ||
771 | } | ||
772 | dReal *c = NULL; | ||
773 | dReal *cfm = NULL; | ||
774 | dReal *lo = NULL; | ||
775 | dReal *hi = NULL; | ||
776 | int *findex = NULL; | ||
777 | |||
778 | dReal *J = NULL; | ||
779 | dxJoint::Info2 * Jinfo = NULL; | ||
780 | |||
781 | if (m) | ||
782 | { | ||
783 | // create a constraint equation right hand side vector `c', a constraint | ||
784 | // force mixing vector `cfm', and LCP low and high bound vectors, and an | ||
785 | // 'findex' vector. | ||
786 | c = (dReal *) ALLOCA (m * sizeof (dReal)); | ||
787 | cfm = (dReal *) ALLOCA (m * sizeof (dReal)); | ||
788 | lo = (dReal *) ALLOCA (m * sizeof (dReal)); | ||
789 | hi = (dReal *) ALLOCA (m * sizeof (dReal)); | ||
790 | findex = (int *) ALLOCA (m * sizeof (int)); | ||
791 | dSetZero (c, m); | ||
792 | dSetValue (cfm, m, world->global_cfm); | ||
793 | dSetValue (lo, m, -dInfinity); | ||
794 | dSetValue (hi, m, dInfinity); | ||
795 | for (i = 0; i < m; i++) | ||
796 | findex[i] = -1; | ||
797 | |||
798 | // get jacobian data from constraints. a (2*m)x8 matrix will be created | ||
799 | // to store the two jacobian blocks from each constraint. it has this | ||
800 | // format: | ||
801 | // | ||
802 | // l l l 0 a a a 0 \ . | ||
803 | // l l l 0 a a a 0 }-- jacobian body 1 block for joint 0 (3 rows) | ||
804 | // l l l 0 a a a 0 / | ||
805 | // l l l 0 a a a 0 \ . | ||
806 | // l l l 0 a a a 0 }-- jacobian body 2 block for joint 0 (3 rows) | ||
807 | // l l l 0 a a a 0 / | ||
808 | // l l l 0 a a a 0 }--- jacobian body 1 block for joint 1 (1 row) | ||
809 | // l l l 0 a a a 0 }--- jacobian body 2 block for joint 1 (1 row) | ||
810 | // etc... | ||
811 | // | ||
812 | // (lll) = linear jacobian data | ||
813 | // (aaa) = angular jacobian data | ||
814 | // | ||
815 | # ifdef TIMING | ||
816 | dTimerNow ("create J"); | ||
817 | # endif | ||
818 | J = (dReal *) ALLOCA (2 * m * 8 * sizeof (dReal)); | ||
819 | dSetZero (J, 2 * m * 8); | ||
820 | Jinfo = (dxJoint::Info2 *) ALLOCA (nj * sizeof (dxJoint::Info2)); | ||
821 | for (i = 0; i < nj; i++) | ||
822 | { | ||
823 | Jinfo[i].rowskip = 8; | ||
824 | Jinfo[i].fps = dRecip (stepsize); | ||
825 | Jinfo[i].erp = world->global_erp; | ||
826 | Jinfo[i].J1l = J + 2 * 8 * ofs[i]; | ||
827 | Jinfo[i].J1a = Jinfo[i].J1l + 4; | ||
828 | Jinfo[i].J2l = Jinfo[i].J1l + 8 * info[i].m; | ||
829 | Jinfo[i].J2a = Jinfo[i].J2l + 4; | ||
830 | Jinfo[i].c = c + ofs[i]; | ||
831 | Jinfo[i].cfm = cfm + ofs[i]; | ||
832 | Jinfo[i].lo = lo + ofs[i]; | ||
833 | Jinfo[i].hi = hi + ofs[i]; | ||
834 | Jinfo[i].findex = findex + ofs[i]; | ||
835 | //joints[i]->vtable->getInfo2 (joints[i], Jinfo+i); | ||
836 | } | ||
837 | |||
838 | } | ||
839 | |||
840 | dReal *saveFacc = (dReal *) ALLOCA (nb * 4 * sizeof (dReal)); | ||
841 | dReal *saveTacc = (dReal *) ALLOCA (nb * 4 * sizeof (dReal)); | ||
842 | dReal *globalI = (dReal *) ALLOCA (nb * 12 * sizeof (dReal)); | ||
843 | dReal *globalInvI = (dReal *) ALLOCA (nb * 12 * sizeof (dReal)); | ||
844 | for (b = 0; b < nb; b++) | ||
845 | { | ||
846 | for (i = 0; i < 4; i++) | ||
847 | { | ||
848 | saveFacc[b * 4 + i] = bodies[b]->facc[i]; | ||
849 | saveTacc[b * 4 + i] = bodies[b]->tacc[i]; | ||
850 | bodies[b]->tag = b; | ||
851 | } | ||
852 | } | ||
853 | |||
854 | for (iter = 0; iter < maxiterations; iter++) | ||
855 | { | ||
856 | # ifdef TIMING | ||
857 | dTimerNow ("applying inertia and gravity"); | ||
858 | # endif | ||
859 | dReal tmp[12] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; | ||
860 | |||
861 | for (b = 0; b < nb; b++) | ||
862 | { | ||
863 | body = bodies[b]; | ||
864 | |||
865 | // for all bodies, compute the inertia tensor and its inverse in the global | ||
866 | // frame, and compute the rotational force and add it to the torque | ||
867 | // accumulator. I and invI are vertically stacked 3x4 matrices, one per body. | ||
868 | // @@@ check computation of rotational force. | ||
869 | |||
870 | // compute inertia tensor in global frame | ||
871 | dMULTIPLY2_333 (tmp, body->mass.I, body->R); | ||
872 | dMULTIPLY0_333 (globalI + b * 12, body->R, tmp); | ||
873 | // compute inverse inertia tensor in global frame | ||
874 | dMULTIPLY2_333 (tmp, body->invI, body->R); | ||
875 | dMULTIPLY0_333 (globalInvI + b * 12, body->R, tmp); | ||
876 | |||
877 | for (i = 0; i < 4; i++) | ||
878 | body->tacc[i] = saveTacc[b * 4 + i]; | ||
879 | // compute rotational force | ||
880 | dMULTIPLY0_331 (tmp, globalI + b * 12, body->avel); | ||
881 | dCROSS (body->tacc, -=, body->avel, tmp); | ||
882 | |||
883 | // add the gravity force to all bodies | ||
884 | if ((body->flags & dxBodyNoGravity) == 0) | ||
885 | { | ||
886 | body->facc[0] = saveFacc[b * 4 + 0] + body->mass.mass * world->gravity[0]; | ||
887 | body->facc[1] = saveFacc[b * 4 + 1] + body->mass.mass * world->gravity[1]; | ||
888 | body->facc[2] = saveFacc[b * 4 + 2] + body->mass.mass * world->gravity[2]; | ||
889 | body->facc[3] = 0; | ||
890 | } | ||
891 | |||
892 | } | ||
893 | |||
894 | #ifdef RANDOM_JOINT_ORDER | ||
895 | #ifdef TIMING | ||
896 | dTimerNow ("randomizing joint order"); | ||
897 | #endif | ||
898 | //randomize the order of the joints by looping through the array | ||
899 | //and swapping the current joint pointer with a random one before it. | ||
900 | for (j = 0; j < nj; j++) | ||
901 | { | ||
902 | joint = joints[j]; | ||
903 | dxJoint::Info1 i1 = info[j]; | ||
904 | dxJoint::Info2 i2 = Jinfo[j]; | ||
905 | int r = rand () % (j + 1); | ||
906 | joints[j] = joints[r]; | ||
907 | info[j] = info[r]; | ||
908 | Jinfo[j] = Jinfo[r]; | ||
909 | joints[r] = joint; | ||
910 | info[r] = i1; | ||
911 | Jinfo[r] = i2; | ||
912 | } | ||
913 | #endif | ||
914 | |||
915 | //now iterate through the random ordered joint array we created. | ||
916 | for (j = 0; j < nj; j++) | ||
917 | { | ||
918 | #ifdef TIMING | ||
919 | dTimerNow ("setting up joint"); | ||
920 | #endif | ||
921 | joint = joints[j]; | ||
922 | bodyPair[0] = joint->node[0].body; | ||
923 | bodyPair[1] = joint->node[1].body; | ||
924 | |||
925 | if (bodyPair[0] && (bodyPair[0]->flags & dxBodyDisabled)) | ||
926 | bodyPair[0] = 0; | ||
927 | if (bodyPair[1] && (bodyPair[1]->flags & dxBodyDisabled)) | ||
928 | bodyPair[1] = 0; | ||
929 | |||
930 | //if this joint is not connected to any enabled bodies, skip it. | ||
931 | if (!bodyPair[0] && !bodyPair[1]) | ||
932 | continue; | ||
933 | |||
934 | if (bodyPair[0]) | ||
935 | { | ||
936 | GIPair[0] = globalI + bodyPair[0]->tag * 12; | ||
937 | GinvIPair[0] = globalInvI + bodyPair[0]->tag * 12; | ||
938 | } | ||
939 | if (bodyPair[1]) | ||
940 | { | ||
941 | GIPair[1] = globalI + bodyPair[1]->tag * 12; | ||
942 | GinvIPair[1] = globalInvI + bodyPair[1]->tag * 12; | ||
943 | } | ||
944 | |||
945 | joints[j]->vtable->getInfo2 (joints[j], Jinfo + j); | ||
946 | |||
947 | //dInternalStepIslandFast is an exact copy of the old routine with one | ||
948 | //modification: the calculated forces are added back to the facc and tacc | ||
949 | //vectors instead of applying them to the bodies and moving them. | ||
950 | if (info[j].m > 0) | ||
951 | { | ||
952 | dInternalStepFast (world, bodyPair, GIPair, GinvIPair, joint, info[j], Jinfo[j], ministep); | ||
953 | } | ||
954 | } | ||
955 | // } | ||
956 | # ifdef TIMING | ||
957 | dTimerNow ("moving bodies"); | ||
958 | # endif | ||
959 | //Now we can simulate all the free floating bodies, and move them. | ||
960 | for (b = 0; b < nb; b++) | ||
961 | { | ||
962 | body = bodies[b]; | ||
963 | |||
964 | for (i = 0; i < 4; i++) | ||
965 | { | ||
966 | body->facc[i] *= ministep; | ||
967 | body->tacc[i] *= ministep; | ||
968 | } | ||
969 | |||
970 | //apply torque | ||
971 | dMULTIPLYADD0_331 (body->avel, globalInvI + b * 12, body->tacc); | ||
972 | |||
973 | //apply force | ||
974 | for (i = 0; i < 3; i++) | ||
975 | body->lvel[i] += body->invMass * body->facc[i]; | ||
976 | |||
977 | //move It! | ||
978 | moveAndRotateBody (body, ministep); | ||
979 | } | ||
980 | } | ||
981 | for (b = 0; b < nb; b++) | ||
982 | for (j = 0; j < 4; j++) | ||
983 | bodies[b]->facc[j] = bodies[b]->tacc[j] = 0; | ||
984 | } | ||
985 | |||
986 | |||
987 | #ifdef NO_ISLANDS | ||
988 | |||
989 | // Since the iterative algorithm doesn't care about islands of bodies, this is a | ||
990 | // faster algorithm that just sends it all the joints and bodies in one array. | ||
991 | // It's downfall is it's inability to handle disabled bodies as well as the old one. | ||
992 | static void | ||
993 | processIslandsFast (dxWorld * world, dReal stepsize, int maxiterations) | ||
994 | { | ||
995 | // nothing to do if no bodies | ||
996 | if (world->nb <= 0) | ||
997 | return; | ||
998 | |||
999 | # ifdef TIMING | ||
1000 | dTimerStart ("creating joint and body arrays"); | ||
1001 | # endif | ||
1002 | dxBody **bodies, *body; | ||
1003 | dxJoint **joints, *joint; | ||
1004 | joints = (dxJoint **) ALLOCA (world->nj * sizeof (dxJoint *)); | ||
1005 | bodies = (dxBody **) ALLOCA (world->nb * sizeof (dxBody *)); | ||
1006 | |||
1007 | int nj = 0; | ||
1008 | for (joint = world->firstjoint; joint; joint = (dxJoint *) joint->next) | ||
1009 | joints[nj++] = joint; | ||
1010 | |||
1011 | int nb = 0; | ||
1012 | for (body = world->firstbody; body; body = (dxBody *) body->next) | ||
1013 | bodies[nb++] = body; | ||
1014 | |||
1015 | dInternalStepIslandFast (world, bodies, nb, joints, nj, stepsize, maxiterations); | ||
1016 | # ifdef TIMING | ||
1017 | dTimerEnd (); | ||
1018 | dTimerReport (stdout, 1); | ||
1019 | # endif | ||
1020 | } | ||
1021 | |||
1022 | #else | ||
1023 | |||
1024 | //**************************************************************************** | ||
1025 | // island processing | ||
1026 | |||
1027 | // this groups all joints and bodies in a world into islands. all objects | ||
1028 | // in an island are reachable by going through connected bodies and joints. | ||
1029 | // each island can be simulated separately. | ||
1030 | // note that joints that are not attached to anything will not be included | ||
1031 | // in any island, an so they do not affect the simulation. | ||
1032 | // | ||
1033 | // this function starts new island from unvisited bodies. however, it will | ||
1034 | // never start a new islands from a disabled body. thus islands of disabled | ||
1035 | // bodies will not be included in the simulation. disabled bodies are | ||
1036 | // re-enabled if they are found to be part of an active island. | ||
1037 | |||
1038 | static void | ||
1039 | processIslandsFast (dxWorld * world, dReal stepsize, int maxiterations) | ||
1040 | { | ||
1041 | #ifdef TIMING | ||
1042 | dTimerStart ("Island Setup"); | ||
1043 | #endif | ||
1044 | dxBody *b, *bb, **body; | ||
1045 | dxJoint *j, **joint; | ||
1046 | |||
1047 | // nothing to do if no bodies | ||
1048 | if (world->nb <= 0) | ||
1049 | return; | ||
1050 | |||
1051 | // make arrays for body and joint lists (for a single island) to go into | ||
1052 | body = (dxBody **) ALLOCA (world->nb * sizeof (dxBody *)); | ||
1053 | joint = (dxJoint **) ALLOCA (world->nj * sizeof (dxJoint *)); | ||
1054 | int bcount = 0; // number of bodies in `body' | ||
1055 | int jcount = 0; // number of joints in `joint' | ||
1056 | int tbcount = 0; | ||
1057 | int tjcount = 0; | ||
1058 | |||
1059 | // set all body/joint tags to 0 | ||
1060 | for (b = world->firstbody; b; b = (dxBody *) b->next) | ||
1061 | b->tag = 0; | ||
1062 | for (j = world->firstjoint; j; j = (dxJoint *) j->next) | ||
1063 | j->tag = 0; | ||
1064 | |||
1065 | // allocate a stack of unvisited bodies in the island. the maximum size of | ||
1066 | // the stack can be the lesser of the number of bodies or joints, because | ||
1067 | // new bodies are only ever added to the stack by going through untagged | ||
1068 | // joints. all the bodies in the stack must be tagged! | ||
1069 | int stackalloc = (world->nj < world->nb) ? world->nj : world->nb; | ||
1070 | dxBody **stack = (dxBody **) ALLOCA (stackalloc * sizeof (dxBody *)); | ||
1071 | int *autostack = (int *) ALLOCA (stackalloc * sizeof (int)); | ||
1072 | |||
1073 | for (bb = world->firstbody; bb; bb = (dxBody *) bb->next) | ||
1074 | { | ||
1075 | #ifdef TIMING | ||
1076 | dTimerNow ("Island Processing"); | ||
1077 | #endif | ||
1078 | // get bb = the next enabled, untagged body, and tag it | ||
1079 | if (bb->tag || (bb->flags & dxBodyDisabled)) | ||
1080 | continue; | ||
1081 | bb->tag = 1; | ||
1082 | |||
1083 | // tag all bodies and joints starting from bb. | ||
1084 | int stacksize = 0; | ||
1085 | int autoDepth = autoEnableDepth; | ||
1086 | b = bb; | ||
1087 | body[0] = bb; | ||
1088 | bcount = 1; | ||
1089 | jcount = 0; | ||
1090 | goto quickstart; | ||
1091 | while (stacksize > 0) | ||
1092 | { | ||
1093 | b = stack[--stacksize]; // pop body off stack | ||
1094 | autoDepth = autostack[stacksize]; | ||
1095 | body[bcount++] = b; // put body on body list | ||
1096 | quickstart: | ||
1097 | |||
1098 | // traverse and tag all body's joints, add untagged connected bodies | ||
1099 | // to stack | ||
1100 | for (dxJointNode * n = b->firstjoint; n; n = n->next) | ||
1101 | { | ||
1102 | if (!n->joint->tag) | ||
1103 | { | ||
1104 | int thisDepth = autoEnableDepth; | ||
1105 | n->joint->tag = 1; | ||
1106 | joint[jcount++] = n->joint; | ||
1107 | if (n->body && !n->body->tag) | ||
1108 | { | ||
1109 | if (n->body->flags & dxBodyDisabled) | ||
1110 | thisDepth = autoDepth - 1; | ||
1111 | if (thisDepth < 0) | ||
1112 | continue; | ||
1113 | n->body->flags &= ~dxBodyDisabled; | ||
1114 | n->body->tag = 1; | ||
1115 | autostack[stacksize] = thisDepth; | ||
1116 | stack[stacksize++] = n->body; | ||
1117 | } | ||
1118 | } | ||
1119 | } | ||
1120 | dIASSERT (stacksize <= world->nb); | ||
1121 | dIASSERT (stacksize <= world->nj); | ||
1122 | } | ||
1123 | |||
1124 | // now do something with body and joint lists | ||
1125 | dInternalStepIslandFast (world, body, bcount, joint, jcount, stepsize, maxiterations); | ||
1126 | |||
1127 | // what we've just done may have altered the body/joint tag values. | ||
1128 | // we must make sure that these tags are nonzero. | ||
1129 | // also make sure all bodies are in the enabled state. | ||
1130 | int i; | ||
1131 | for (i = 0; i < bcount; i++) | ||
1132 | { | ||
1133 | body[i]->tag = 1; | ||
1134 | body[i]->flags &= ~dxBodyDisabled; | ||
1135 | } | ||
1136 | for (i = 0; i < jcount; i++) | ||
1137 | joint[i]->tag = 1; | ||
1138 | |||
1139 | tbcount += bcount; | ||
1140 | tjcount += jcount; | ||
1141 | } | ||
1142 | |||
1143 | #ifdef TIMING | ||
1144 | dMessage(0, "Total joints processed: %i, bodies: %i", tjcount, tbcount); | ||
1145 | #endif | ||
1146 | |||
1147 | // if debugging, check that all objects (except for disabled bodies, | ||
1148 | // unconnected joints, and joints that are connected to disabled bodies) | ||
1149 | // were tagged. | ||
1150 | # ifndef dNODEBUG | ||
1151 | for (b = world->firstbody; b; b = (dxBody *) b->next) | ||
1152 | { | ||
1153 | if (b->flags & dxBodyDisabled) | ||
1154 | { | ||
1155 | if (b->tag) | ||
1156 | dDebug (0, "disabled body tagged"); | ||
1157 | } | ||
1158 | else | ||
1159 | { | ||
1160 | if (!b->tag) | ||
1161 | dDebug (0, "enabled body not tagged"); | ||
1162 | } | ||
1163 | } | ||
1164 | for (j = world->firstjoint; j; j = (dxJoint *) j->next) | ||
1165 | { | ||
1166 | if ((j->node[0].body && (j->node[0].body->flags & dxBodyDisabled) == 0) || (j->node[1].body && (j->node[1].body->flags & dxBodyDisabled) == 0)) | ||
1167 | { | ||
1168 | if (!j->tag) | ||
1169 | dDebug (0, "attached enabled joint not tagged"); | ||
1170 | } | ||
1171 | else | ||
1172 | { | ||
1173 | if (j->tag) | ||
1174 | dDebug (0, "unattached or disabled joint tagged"); | ||
1175 | } | ||
1176 | } | ||
1177 | # endif | ||
1178 | /******************** breakable joint contribution ***********************/ | ||
1179 | dxJoint* nextJ; | ||
1180 | if (!world->firstjoint) | ||
1181 | nextJ = 0; | ||
1182 | else | ||
1183 | nextJ = (dxJoint*)world->firstjoint->next; | ||
1184 | for (j=world->firstjoint; j; j=nextJ) { | ||
1185 | nextJ = (dxJoint*)j->next; | ||
1186 | // check if joint is breakable and broken | ||
1187 | if (j->breakInfo && j->breakInfo->flags & dJOINT_BROKEN) { | ||
1188 | // detach (break) the joint | ||
1189 | dJointAttach (j, 0, 0); | ||
1190 | // call the callback function if it is set | ||
1191 | if (j->breakInfo->callback) j->breakInfo->callback (j); | ||
1192 | // finally destroy the joint if the dJOINT_DELETE_ON_BREAK is set | ||
1193 | if (j->breakInfo->flags & dJOINT_DELETE_ON_BREAK) dJointDestroy (j); | ||
1194 | } | ||
1195 | } | ||
1196 | /*************************************************************************/ | ||
1197 | |||
1198 | # ifdef TIMING | ||
1199 | dTimerEnd (); | ||
1200 | dTimerReport (stdout, 1); | ||
1201 | # endif | ||
1202 | } | ||
1203 | |||
1204 | #endif | ||
1205 | |||
1206 | |||
1207 | void dWorldStepFast1 (dWorldID w, dReal stepsize, int maxiterations) | ||
1208 | { | ||
1209 | dUASSERT (w, "bad world argument"); | ||
1210 | dUASSERT (stepsize > 0, "stepsize must be > 0"); | ||
1211 | processIslandsFast (w, stepsize, maxiterations); | ||
1212 | } | ||
diff --git a/libraries/ode-0.9/contrib/BreakableJoints/test_breakable.cpp b/libraries/ode-0.9/contrib/BreakableJoints/test_breakable.cpp new file mode 100644 index 0000000..bfed3a3 --- /dev/null +++ b/libraries/ode-0.9/contrib/BreakableJoints/test_breakable.cpp | |||
@@ -0,0 +1,416 @@ | |||
1 | /************************************************************************* | ||
2 | * * | ||
3 | * Open Dynamics Engine, Copyright (C) 2001,2002 Russell L. Smith. * | ||
4 | * All rights reserved. Email: russ@q12.org Web: www.q12.org * | ||
5 | * * | ||
6 | * This library is free software; you can redistribute it and/or * | ||
7 | * modify it under the terms of EITHER: * | ||
8 | * (1) The GNU Lesser General Public License as published by the Free * | ||
9 | * Software Foundation; either version 2.1 of the License, or (at * | ||
10 | * your option) any later version. The text of the GNU Lesser * | ||
11 | * General Public License is included with this library in the * | ||
12 | * file LICENSE.TXT. * | ||
13 | * (2) The BSD-style license that is included with this library in * | ||
14 | * the file LICENSE-BSD.TXT. * | ||
15 | * * | ||
16 | * This library is distributed in the hope that it will be useful, * | ||
17 | * but WITHOUT ANY WARRANTY; without even the implied warranty of * | ||
18 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the files * | ||
19 | * LICENSE.TXT and LICENSE-BSD.TXT for more details. * | ||
20 | * * | ||
21 | *************************************************************************/ | ||
22 | |||
23 | /* | ||
24 | |||
25 | buggy with suspension. | ||
26 | this also shows you how to use geom groups. | ||
27 | |||
28 | */ | ||
29 | |||
30 | |||
31 | #include <stdlib.h> | ||
32 | |||
33 | #include <ode/ode.h> | ||
34 | #include <drawstuff/drawstuff.h> | ||
35 | |||
36 | #ifdef _MSC_VER | ||
37 | #pragma warning(disable:4244 4305) // for VC++, no precision loss complaints | ||
38 | #endif | ||
39 | |||
40 | // select correct drawing functions | ||
41 | |||
42 | #ifdef dDOUBLE | ||
43 | #define dsDrawBox dsDrawBoxD | ||
44 | #define dsDrawSphere dsDrawSphereD | ||
45 | #define dsDrawCylinder dsDrawCylinderD | ||
46 | #define dsDrawCappedCylinder dsDrawCappedCylinderD | ||
47 | #endif | ||
48 | |||
49 | |||
50 | // some constants | ||
51 | |||
52 | #define LENGTH 0.7 // chassis length | ||
53 | #define WIDTH 0.4 // chassis width | ||
54 | #define HEIGHT 0.2 // chassis height | ||
55 | #define RADIUS 0.22 // wheel radius | ||
56 | #define STARTZ 0.4 // starting height of chassis | ||
57 | #define CMASS 1 // chassis mass | ||
58 | #define WMASS 0.2 // wheel mass | ||
59 | |||
60 | // dynamics and collision objects (chassis, 4 wheels, environment, obstacles, chain) | ||
61 | static dWorldID world; | ||
62 | static dSpaceID space; | ||
63 | |||
64 | // chain stuff | ||
65 | static const float chain_radius = 0.1; | ||
66 | static const float chain_mass = 0.1; | ||
67 | static const int chain_num = 10; | ||
68 | static dBodyID chain_body[chain_num]; | ||
69 | static dGeomID chain_geom[chain_num]; | ||
70 | static dJointID chain_joint[chain_num-1]; | ||
71 | |||
72 | // 1 chasses, 4 wheels | ||
73 | static dBodyID body[5]; | ||
74 | // joint[0] is left front wheel, joint[1] is right front wheel | ||
75 | static dJointID joint[4]; | ||
76 | static int joint_exists[4]; | ||
77 | static dJointGroupID contactgroup; | ||
78 | static dGeomID ground; | ||
79 | static dSpaceID car_space; | ||
80 | static dGeomID box[1]; | ||
81 | static dGeomID sphere[4]; | ||
82 | static dGeomID ground_box; | ||
83 | static const int obstacle_num = 25; | ||
84 | static dGeomID obstacle[obstacle_num]; | ||
85 | |||
86 | // things that the user controls | ||
87 | |||
88 | static dReal speed=0,steer=0; // user commands | ||
89 | |||
90 | |||
91 | |||
92 | // this is called by dSpaceCollide when two objects in space are | ||
93 | // potentially colliding. | ||
94 | |||
95 | static void nearCallback (void *data, dGeomID o1, dGeomID o2) | ||
96 | { | ||
97 | int i,n; | ||
98 | |||
99 | // // do not collide objects that are connected | ||
100 | // dBodyID b1 = dGeomGetBody (o1), | ||
101 | // b2 = dGeomGetBody (o2); | ||
102 | // if (b1 && b2 && dAreConnected(b1, b2)) return; | ||
103 | |||
104 | const int N = 10; | ||
105 | dContact contact[N]; | ||
106 | n = dCollide (o1,o2,N,&contact[0].geom,sizeof(dContact)); | ||
107 | if (n > 0) { | ||
108 | for (i=0; i<n; i++) { | ||
109 | contact[i].surface.mode = dContactSlip1 | dContactSlip2 | | ||
110 | dContactSoftERP | dContactSoftCFM | dContactApprox1; | ||
111 | contact[i].surface.mu = dInfinity; | ||
112 | contact[i].surface.slip1 = 0.1; | ||
113 | contact[i].surface.slip2 = 0.1; | ||
114 | contact[i].surface.soft_erp = 0.5; | ||
115 | contact[i].surface.soft_cfm = 0.3; | ||
116 | dJointID c = dJointCreateContact (world,contactgroup,&contact[i]); | ||
117 | dJointAttach (c, | ||
118 | dGeomGetBody(contact[i].geom.g1), | ||
119 | dGeomGetBody(contact[i].geom.g2)); | ||
120 | } | ||
121 | } | ||
122 | } | ||
123 | |||
124 | // callback function for joints that break | ||
125 | static void jointBreakCallback (dJointID j) | ||
126 | { | ||
127 | if (j == joint[0]) joint_exists[0] = 0; | ||
128 | else if (j == joint[1]) joint_exists[1] = 0; | ||
129 | else if (j == joint[2]) joint_exists[2] = 0; | ||
130 | else if (j == joint[3]) joint_exists[3] = 0; | ||
131 | printf ("A joint just broke\n"); | ||
132 | } | ||
133 | |||
134 | // start simulation - set viewpoint | ||
135 | |||
136 | static void start() | ||
137 | { | ||
138 | static float xyz[3] = {0.8317f,-0.9817f,0.8000f}; | ||
139 | static float hpr[3] = {121.0000f,-27.5000f,0.0000f}; | ||
140 | dsSetViewpoint (xyz,hpr); | ||
141 | printf ("Press:\t'a' to increase speed.\n" | ||
142 | "\t'z' to decrease speed.\n" | ||
143 | "\t',' to steer left.\n" | ||
144 | "\t'.' to steer right.\n" | ||
145 | "\t' ' to reset speed and steering.\n"); | ||
146 | } | ||
147 | |||
148 | |||
149 | // called when a key pressed | ||
150 | |||
151 | static void command (int cmd) | ||
152 | { | ||
153 | switch (cmd) { | ||
154 | case 'a': case 'A': | ||
155 | speed += 0.3; | ||
156 | break; | ||
157 | case 'z': case 'Z': | ||
158 | speed -= 0.3; | ||
159 | break; | ||
160 | case ',': | ||
161 | steer -= 0.5; | ||
162 | break; | ||
163 | case '.': | ||
164 | steer += 0.5; | ||
165 | break; | ||
166 | case ' ': | ||
167 | speed = 0; | ||
168 | steer = 0; | ||
169 | break; | ||
170 | } | ||
171 | } | ||
172 | |||
173 | |||
174 | // simulation loop | ||
175 | |||
176 | static void simLoop (int pause) | ||
177 | { | ||
178 | int i; | ||
179 | if (!pause) { | ||
180 | for (i=0; i<2; i++) { | ||
181 | if (joint_exists[i]) { | ||
182 | // motor | ||
183 | dJointSetHinge2Param (joint[i],dParamVel2,-speed); | ||
184 | dJointSetHinge2Param (joint[i],dParamFMax2,0.1); | ||
185 | |||
186 | // steering | ||
187 | dReal v = steer - dJointGetHinge2Angle1 (joint[i]); | ||
188 | if (v > 0.1) v = 0.1; | ||
189 | if (v < -0.1) v = -0.1; | ||
190 | v *= 10.0; | ||
191 | dJointSetHinge2Param (joint[i],dParamVel,v); | ||
192 | dJointSetHinge2Param (joint[i],dParamFMax,0.2); | ||
193 | dJointSetHinge2Param (joint[i],dParamLoStop,-0.75); | ||
194 | dJointSetHinge2Param (joint[i],dParamHiStop,0.75); | ||
195 | dJointSetHinge2Param (joint[i],dParamFudgeFactor,0.1); | ||
196 | } | ||
197 | } | ||
198 | |||
199 | dSpaceCollide (space,0,&nearCallback); | ||
200 | //dWorldStep (world,0.05); | ||
201 | dWorldStepFast1 (world,0.05,5); | ||
202 | |||
203 | // remove all contact joints | ||
204 | dJointGroupEmpty (contactgroup); | ||
205 | } | ||
206 | |||
207 | dsSetColor (0,1,1); | ||
208 | dsSetTexture (DS_WOOD); | ||
209 | dReal sides[3] = {LENGTH,WIDTH,HEIGHT}; | ||
210 | dsDrawBox (dBodyGetPosition(body[0]),dBodyGetRotation(body[0]),sides); | ||
211 | dsSetColor (1,1,1); | ||
212 | for (i=1; i<=4; i++) | ||
213 | dsDrawCylinder (dBodyGetPosition(body[i]), | ||
214 | dBodyGetRotation(body[i]), | ||
215 | 0.2, | ||
216 | RADIUS); | ||
217 | |||
218 | dVector3 ss; | ||
219 | dGeomBoxGetLengths (ground_box,ss); | ||
220 | dsDrawBox (dGeomGetPosition(ground_box),dGeomGetRotation(ground_box),ss); | ||
221 | |||
222 | dsSetColor (1,0,0); | ||
223 | for (i=0; i<obstacle_num; i++) { | ||
224 | dVector3 ss; | ||
225 | dGeomBoxGetLengths (obstacle[i],ss); | ||
226 | dsDrawBox (dGeomGetPosition(obstacle[i]),dGeomGetRotation(obstacle[i]),ss); | ||
227 | } | ||
228 | |||
229 | dsSetColor (1,1,0); | ||
230 | for (i=0; i<chain_num; i++) { | ||
231 | dsDrawSphere (dGeomGetPosition(chain_geom[i]),dGeomGetRotation(chain_geom[i]),chain_radius); | ||
232 | } | ||
233 | |||
234 | /* | ||
235 | printf ("%.10f %.10f %.10f %.10f\n", | ||
236 | dJointGetHingeAngle (joint[1]), | ||
237 | dJointGetHingeAngle (joint[2]), | ||
238 | dJointGetHingeAngleRate (joint[1]), | ||
239 | dJointGetHingeAngleRate (joint[2])); | ||
240 | */ | ||
241 | } | ||
242 | |||
243 | int main (int argc, char **argv) | ||
244 | { | ||
245 | int i; | ||
246 | dMass m; | ||
247 | |||
248 | // setup pointers to drawstuff callback functions | ||
249 | dsFunctions fn; | ||
250 | fn.version = DS_VERSION; | ||
251 | fn.start = &start; | ||
252 | fn.step = &simLoop; | ||
253 | fn.command = &command; | ||
254 | fn.stop = 0; | ||
255 | fn.path_to_textures = "../../drawstuff/textures"; | ||
256 | if(argc==2) | ||
257 | { | ||
258 | fn.path_to_textures = argv[1]; | ||
259 | } | ||
260 | // create world | ||
261 | |||
262 | world = dWorldCreate(); | ||
263 | space = dHashSpaceCreate (0); | ||
264 | contactgroup = dJointGroupCreate (0); | ||
265 | dWorldSetGravity (world,0,0,-0.5); | ||
266 | ground = dCreatePlane (space,0,0,1,0); | ||
267 | |||
268 | // chassis body | ||
269 | body[0] = dBodyCreate (world); | ||
270 | dBodySetPosition (body[0],0,0,STARTZ); | ||
271 | dMassSetBox (&m,1,LENGTH,WIDTH,HEIGHT); | ||
272 | dMassAdjust (&m,CMASS); | ||
273 | dBodySetMass (body[0],&m); | ||
274 | box[0] = dCreateBox (0,LENGTH,WIDTH,HEIGHT); | ||
275 | dGeomSetBody (box[0],body[0]); | ||
276 | |||
277 | // a chain | ||
278 | for (i=0; i<chain_num; i++) { | ||
279 | chain_body[i] = dBodyCreate (world); | ||
280 | dBodySetPosition (chain_body[i],-LENGTH-(i*2*chain_radius),0,STARTZ-HEIGHT*0.5); | ||
281 | dMassSetSphere (&m,1,chain_radius); | ||
282 | dMassAdjust (&m,chain_mass); | ||
283 | dBodySetMass (chain_body[i],&m); | ||
284 | chain_geom[i] = dCreateSphere (space,chain_radius); | ||
285 | dGeomSetBody (chain_geom[i],chain_body[i]); | ||
286 | } | ||
287 | |||
288 | // wheel bodies | ||
289 | for (i=1; i<=4; i++) { | ||
290 | body[i] = dBodyCreate (world); | ||
291 | dQuaternion q; | ||
292 | dQFromAxisAndAngle (q,1,0,0,M_PI*0.5); | ||
293 | dBodySetQuaternion (body[i],q); | ||
294 | dMassSetSphere (&m,1,RADIUS); | ||
295 | dMassAdjust (&m,WMASS); | ||
296 | dBodySetMass (body[i],&m); | ||
297 | sphere[i-1] = dCreateSphere (0,RADIUS); | ||
298 | dGeomSetBody (sphere[i-1],body[i]); | ||
299 | } | ||
300 | dBodySetPosition (body[1], 0.5*LENGTH, WIDTH*1.0, STARTZ-HEIGHT*0.5); | ||
301 | dBodySetPosition (body[2], 0.5*LENGTH, -WIDTH*1.0, STARTZ-HEIGHT*0.5); | ||
302 | dBodySetPosition (body[3], -0.5*LENGTH, WIDTH*1.0, STARTZ-HEIGHT*0.5); | ||
303 | dBodySetPosition (body[4], -0.5*LENGTH, -WIDTH*1.0, STARTZ-HEIGHT*0.5); | ||
304 | |||
305 | // front wheel hinge | ||
306 | /* | ||
307 | joint[0] = dJointCreateHinge2 (world,0); | ||
308 | dJointAttach (joint[0],body[0],body[1]); | ||
309 | const dReal *a = dBodyGetPosition (body[1]); | ||
310 | dJointSetHinge2Anchor (joint[0],a[0],a[1],a[2]); | ||
311 | dJointSetHinge2Axis1 (joint[0],0,0,1); | ||
312 | dJointSetHinge2Axis2 (joint[0],0,1,0); | ||
313 | */ | ||
314 | |||
315 | // front and back wheel hinges | ||
316 | for (i=0; i<4; i++) { | ||
317 | joint[i] = dJointCreateHinge2 (world,0); | ||
318 | joint_exists[i] = 1; | ||
319 | dJointAttach (joint[i],body[0],body[i+1]); | ||
320 | const dReal *a = dBodyGetPosition (body[i+1]); | ||
321 | dJointSetHinge2Anchor (joint[i],a[0],a[1],a[2]); | ||
322 | dJointSetHinge2Axis1 (joint[i],0,0,1); | ||
323 | dJointSetHinge2Axis2 (joint[i],0,1,0); | ||
324 | |||
325 | // the wheels can break | ||
326 | dJointSetBreakable (joint[i], 1); | ||
327 | // the wheels wil break at a specific force | ||
328 | dJointSetBreakMode (joint[i], | ||
329 | dJOINT_BREAK_AT_B1_FORCE | | ||
330 | dJOINT_BREAK_AT_B2_FORCE | | ||
331 | dJOINT_DELETE_ON_BREAK); | ||
332 | // specify the force for the first body connected to the joint ... | ||
333 | dJointSetBreakForce (joint[i], 0, 2.5, 2.5, 2.5); | ||
334 | // and for the second body | ||
335 | dJointSetBreakForce (joint[i], 1, 2.5, 2.5, 2.5); | ||
336 | // set the callback function | ||
337 | dJointSetBreakCallback (joint[i], &jointBreakCallback); | ||
338 | } | ||
339 | |||
340 | // joints for the chain | ||
341 | for (i=0; i<chain_num-1; i++) { | ||
342 | chain_joint[i] = dJointCreateFixed (world,0); | ||
343 | dJointAttach (chain_joint[i],chain_body[i+1],chain_body[i]); | ||
344 | dJointSetFixed (chain_joint[i]); | ||
345 | // the chain can break | ||
346 | dJointSetBreakable (chain_joint[i], 1); | ||
347 | // the chain wil break at a specific force | ||
348 | dJointSetBreakMode (chain_joint[i], | ||
349 | dJOINT_BREAK_AT_B1_FORCE | | ||
350 | dJOINT_BREAK_AT_B2_FORCE | | ||
351 | dJOINT_DELETE_ON_BREAK); | ||
352 | // specify the force for the first body connected to the joint ... | ||
353 | dJointSetBreakForce (chain_joint[i], 0, 0.5, 0.5, 0.5); | ||
354 | // and for the second body | ||
355 | dJointSetBreakForce (chain_joint[i], 1, 0.5, 0.5, 0.5); | ||
356 | // set the callback function | ||
357 | dJointSetBreakCallback (chain_joint[i], &jointBreakCallback); | ||
358 | } | ||
359 | |||
360 | // set joint suspension | ||
361 | for (i=0; i<4; i++) { | ||
362 | dJointSetHinge2Param (joint[i],dParamSuspensionERP,0.4); | ||
363 | dJointSetHinge2Param (joint[i],dParamSuspensionCFM,0.1); | ||
364 | } | ||
365 | |||
366 | // lock back wheels along the steering axis | ||
367 | for (i=1; i<4; i++) { | ||
368 | // set stops to make sure wheels always stay in alignment | ||
369 | dJointSetHinge2Param (joint[i],dParamLoStop,0); | ||
370 | dJointSetHinge2Param (joint[i],dParamHiStop,0); | ||
371 | // the following alternative method is no good as the wheels may get out | ||
372 | // of alignment: | ||
373 | // dJointSetHinge2Param (joint[i],dParamVel,0); | ||
374 | // dJointSetHinge2Param (joint[i],dParamFMax,dInfinity); | ||
375 | } | ||
376 | |||
377 | // create car space and add it to the top level space | ||
378 | car_space = dSimpleSpaceCreate (space); | ||
379 | dSpaceSetCleanup (car_space,0); | ||
380 | dSpaceAdd (car_space,box[0]); | ||
381 | dSpaceAdd (car_space,sphere[0]); | ||
382 | dSpaceAdd (car_space,sphere[1]); | ||
383 | dSpaceAdd (car_space,sphere[2]); | ||
384 | |||
385 | // environment | ||
386 | ground_box = dCreateBox (space,2,1.5,1); | ||
387 | dMatrix3 R; | ||
388 | dRFromAxisAndAngle (R,0,1,0,-0.15); | ||
389 | dGeomSetPosition (ground_box,2,0,-0.34); | ||
390 | dGeomSetRotation (ground_box,R); | ||
391 | |||
392 | // obstacles | ||
393 | for (i=0; i<obstacle_num; i++) { | ||
394 | dReal height = 0.1+(dReal(rand()%10)/10.0); | ||
395 | obstacle[i] = dCreateBox (space,0.2,0.2,height); | ||
396 | dGeomSetPosition ( | ||
397 | obstacle[i], | ||
398 | (rand()%20)-10, | ||
399 | (rand()%20)-10, | ||
400 | height/2.0); | ||
401 | } | ||
402 | |||
403 | // run simulation | ||
404 | dsSimulationLoop (argc,argv,352,288,&fn); | ||
405 | |||
406 | dJointGroupDestroy (contactgroup); | ||
407 | dSpaceDestroy (space); | ||
408 | dWorldDestroy (world); | ||
409 | dGeomDestroy (box[0]); | ||
410 | for (i=0; i<4; i++) | ||
411 | dGeomDestroy (sphere[i]); | ||
412 | |||
413 | dCloseODE (); | ||
414 | |||
415 | return 0; | ||
416 | } | ||
diff --git a/libraries/ode-0.9/contrib/BreakableJoints/test_buggy.cpp b/libraries/ode-0.9/contrib/BreakableJoints/test_buggy.cpp new file mode 100644 index 0000000..1dc0ab3 --- /dev/null +++ b/libraries/ode-0.9/contrib/BreakableJoints/test_buggy.cpp | |||
@@ -0,0 +1,327 @@ | |||
1 | /************************************************************************* | ||
2 | * * | ||
3 | * Open Dynamics Engine, Copyright (C) 2001,2002 Russell L. Smith. * | ||
4 | * All rights reserved. Email: russ@q12.org Web: www.q12.org * | ||
5 | * * | ||
6 | * This library is free software; you can redistribute it and/or * | ||
7 | * modify it under the terms of EITHER: * | ||
8 | * (1) The GNU Lesser General Public License as published by the Free * | ||
9 | * Software Foundation; either version 2.1 of the License, or (at * | ||
10 | * your option) any later version. The text of the GNU Lesser * | ||
11 | * General Public License is included with this library in the * | ||
12 | * file LICENSE.TXT. * | ||
13 | * (2) The BSD-style license that is included with this library in * | ||
14 | * the file LICENSE-BSD.TXT. * | ||
15 | * * | ||
16 | * This library is distributed in the hope that it will be useful, * | ||
17 | * but WITHOUT ANY WARRANTY; without even the implied warranty of * | ||
18 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the files * | ||
19 | * LICENSE.TXT and LICENSE-BSD.TXT for more details. * | ||
20 | * * | ||
21 | *************************************************************************/ | ||
22 | |||
23 | /* | ||
24 | |||
25 | buggy with suspension. | ||
26 | this also shows you how to use geom groups. | ||
27 | |||
28 | */ | ||
29 | |||
30 | |||
31 | #include <ode/ode.h> | ||
32 | #include <drawstuff/drawstuff.h> | ||
33 | |||
34 | #ifdef _MSC_VER | ||
35 | #pragma warning(disable:4244 4305) // for VC++, no precision loss complaints | ||
36 | #endif | ||
37 | |||
38 | // select correct drawing functions | ||
39 | |||
40 | #ifdef dDOUBLE | ||
41 | #define dsDrawBox dsDrawBoxD | ||
42 | #define dsDrawSphere dsDrawSphereD | ||
43 | #define dsDrawCylinder dsDrawCylinderD | ||
44 | #define dsDrawCappedCylinder dsDrawCappedCylinderD | ||
45 | #endif | ||
46 | |||
47 | |||
48 | // some constants | ||
49 | |||
50 | #define LENGTH 0.7 // chassis length | ||
51 | #define WIDTH 0.5 // chassis width | ||
52 | #define HEIGHT 0.2 // chassis height | ||
53 | #define RADIUS 0.18 // wheel radius | ||
54 | #define STARTZ 0.5 // starting height of chassis | ||
55 | #define CMASS 1 // chassis mass | ||
56 | #define WMASS 0.2 // wheel mass | ||
57 | |||
58 | |||
59 | // dynamics and collision objects (chassis, 3 wheels, environment) | ||
60 | |||
61 | static dWorldID world; | ||
62 | static dSpaceID space; | ||
63 | static dBodyID body[4]; | ||
64 | static dJointID joint[3]; // joint[0] is the front wheel | ||
65 | static dJointGroupID contactgroup; | ||
66 | static dGeomID ground; | ||
67 | static dSpaceID car_space; | ||
68 | static dGeomID box[1]; | ||
69 | static dGeomID sphere[3]; | ||
70 | static dGeomID ground_box; | ||
71 | |||
72 | |||
73 | // things that the user controls | ||
74 | |||
75 | static dReal speed=0,steer=0; // user commands | ||
76 | |||
77 | |||
78 | |||
79 | // this is called by dSpaceCollide when two objects in space are | ||
80 | // potentially colliding. | ||
81 | |||
82 | static void nearCallback (void *data, dGeomID o1, dGeomID o2) | ||
83 | { | ||
84 | int i,n; | ||
85 | |||
86 | // only collide things with the ground | ||
87 | int g1 = (o1 == ground || o1 == ground_box); | ||
88 | int g2 = (o2 == ground || o2 == ground_box); | ||
89 | if (!(g1 ^ g2)) return; | ||
90 | |||
91 | const int N = 10; | ||
92 | dContact contact[N]; | ||
93 | n = dCollide (o1,o2,N,&contact[0].geom,sizeof(dContact)); | ||
94 | if (n > 0) { | ||
95 | for (i=0; i<n; i++) { | ||
96 | contact[i].surface.mode = dContactSlip1 | dContactSlip2 | | ||
97 | dContactSoftERP | dContactSoftCFM | dContactApprox1; | ||
98 | contact[i].surface.mu = dInfinity; | ||
99 | contact[i].surface.slip1 = 0.1; | ||
100 | contact[i].surface.slip2 = 0.1; | ||
101 | contact[i].surface.soft_erp = 0.5; | ||
102 | contact[i].surface.soft_cfm = 0.3; | ||
103 | dJointID c = dJointCreateContact (world,contactgroup,&contact[i]); | ||
104 | dJointAttach (c, | ||
105 | dGeomGetBody(contact[i].geom.g1), | ||
106 | dGeomGetBody(contact[i].geom.g2)); | ||
107 | } | ||
108 | } | ||
109 | } | ||
110 | |||
111 | |||
112 | // start simulation - set viewpoint | ||
113 | |||
114 | static void start() | ||
115 | { | ||
116 | static float xyz[3] = {0.8317f,-0.9817f,0.8000f}; | ||
117 | static float hpr[3] = {121.0000f,-27.5000f,0.0000f}; | ||
118 | dsSetViewpoint (xyz,hpr); | ||
119 | printf ("Press:\t'a' to increase speed.\n" | ||
120 | "\t'z' to decrease speed.\n" | ||
121 | "\t',' to steer left.\n" | ||
122 | "\t'.' to steer right.\n" | ||
123 | "\t' ' to reset speed and steering.\n"); | ||
124 | } | ||
125 | |||
126 | |||
127 | // called when a key pressed | ||
128 | |||
129 | static void command (int cmd) | ||
130 | { | ||
131 | switch (cmd) { | ||
132 | case 'a': case 'A': | ||
133 | speed += 0.3; | ||
134 | break; | ||
135 | case 'z': case 'Z': | ||
136 | speed -= 0.3; | ||
137 | break; | ||
138 | case ',': | ||
139 | steer -= 0.5; | ||
140 | break; | ||
141 | case '.': | ||
142 | steer += 0.5; | ||
143 | break; | ||
144 | case ' ': | ||
145 | speed = 0; | ||
146 | steer = 0; | ||
147 | break; | ||
148 | } | ||
149 | } | ||
150 | |||
151 | |||
152 | // simulation loop | ||
153 | |||
154 | static void simLoop (int pause) | ||
155 | { | ||
156 | int i; | ||
157 | if (!pause) { | ||
158 | // motor | ||
159 | dJointSetHinge2Param (joint[0],dParamVel2,-speed); | ||
160 | dJointSetHinge2Param (joint[0],dParamFMax2,0.1); | ||
161 | |||
162 | // steering | ||
163 | dReal v = steer - dJointGetHinge2Angle1 (joint[0]); | ||
164 | if (v > 0.1) v = 0.1; | ||
165 | if (v < -0.1) v = -0.1; | ||
166 | v *= 10.0; | ||
167 | dJointSetHinge2Param (joint[0],dParamVel,v); | ||
168 | dJointSetHinge2Param (joint[0],dParamFMax,0.2); | ||
169 | dJointSetHinge2Param (joint[0],dParamLoStop,-0.75); | ||
170 | dJointSetHinge2Param (joint[0],dParamHiStop,0.75); | ||
171 | dJointSetHinge2Param (joint[0],dParamFudgeFactor,0.1); | ||
172 | |||
173 | dSpaceCollide (space,0,&nearCallback); | ||
174 | dWorldStep (world,0.05); | ||
175 | |||
176 | // remove all contact joints | ||
177 | dJointGroupEmpty (contactgroup); | ||
178 | } | ||
179 | |||
180 | dsSetColor (0,1,1); | ||
181 | dsSetTexture (DS_WOOD); | ||
182 | dReal sides[3] = {LENGTH,WIDTH,HEIGHT}; | ||
183 | dsDrawBox (dBodyGetPosition(body[0]),dBodyGetRotation(body[0]),sides); | ||
184 | dsSetColor (1,1,1); | ||
185 | for (i=1; i<=3; i++) dsDrawCylinder (dBodyGetPosition(body[i]), | ||
186 | dBodyGetRotation(body[i]),0.02f,RADIUS); | ||
187 | |||
188 | dVector3 ss; | ||
189 | dGeomBoxGetLengths (ground_box,ss); | ||
190 | dsDrawBox (dGeomGetPosition(ground_box),dGeomGetRotation(ground_box),ss); | ||
191 | |||
192 | /* | ||
193 | printf ("%.10f %.10f %.10f %.10f\n", | ||
194 | dJointGetHingeAngle (joint[1]), | ||
195 | dJointGetHingeAngle (joint[2]), | ||
196 | dJointGetHingeAngleRate (joint[1]), | ||
197 | dJointGetHingeAngleRate (joint[2])); | ||
198 | */ | ||
199 | } | ||
200 | |||
201 | |||
202 | int main (int argc, char **argv) | ||
203 | { | ||
204 | int i; | ||
205 | dMass m; | ||
206 | |||
207 | // setup pointers to drawstuff callback functions | ||
208 | dsFunctions fn; | ||
209 | fn.version = DS_VERSION; | ||
210 | fn.start = &start; | ||
211 | fn.step = &simLoop; | ||
212 | fn.command = &command; | ||
213 | fn.stop = 0; | ||
214 | fn.path_to_textures = "../../drawstuff/textures"; | ||
215 | if(argc==2) | ||
216 | { | ||
217 | fn.path_to_textures = argv[1]; | ||
218 | } | ||
219 | |||
220 | // create world | ||
221 | |||
222 | world = dWorldCreate(); | ||
223 | space = dHashSpaceCreate (0); | ||
224 | contactgroup = dJointGroupCreate (0); | ||
225 | dWorldSetGravity (world,0,0,-0.5); | ||
226 | ground = dCreatePlane (space,0,0,1,0); | ||
227 | |||
228 | // chassis body | ||
229 | body[0] = dBodyCreate (world); | ||
230 | dBodySetPosition (body[0],0,0,STARTZ); | ||
231 | dMassSetBox (&m,1,LENGTH,WIDTH,HEIGHT); | ||
232 | dMassAdjust (&m,CMASS); | ||
233 | dBodySetMass (body[0],&m); | ||
234 | box[0] = dCreateBox (0,LENGTH,WIDTH,HEIGHT); | ||
235 | dGeomSetBody (box[0],body[0]); | ||
236 | |||
237 | // wheel bodies | ||
238 | for (i=1; i<=3; i++) { | ||
239 | body[i] = dBodyCreate (world); | ||
240 | dQuaternion q; | ||
241 | dQFromAxisAndAngle (q,1,0,0,M_PI*0.5); | ||
242 | dBodySetQuaternion (body[i],q); | ||
243 | dMassSetSphere (&m,1,RADIUS); | ||
244 | dMassAdjust (&m,WMASS); | ||
245 | dBodySetMass (body[i],&m); | ||
246 | sphere[i-1] = dCreateSphere (0,RADIUS); | ||
247 | dGeomSetBody (sphere[i-1],body[i]); | ||
248 | } | ||
249 | dBodySetPosition (body[1],0.5*LENGTH,0,STARTZ-HEIGHT*0.5); | ||
250 | dBodySetPosition (body[2],-0.5*LENGTH, WIDTH*0.5,STARTZ-HEIGHT*0.5); | ||
251 | dBodySetPosition (body[3],-0.5*LENGTH,-WIDTH*0.5,STARTZ-HEIGHT*0.5); | ||
252 | |||
253 | // front wheel hinge | ||
254 | /* | ||
255 | joint[0] = dJointCreateHinge2 (world,0); | ||
256 | dJointAttach (joint[0],body[0],body[1]); | ||
257 | const dReal *a = dBodyGetPosition (body[1]); | ||
258 | dJointSetHinge2Anchor (joint[0],a[0],a[1],a[2]); | ||
259 | dJointSetHinge2Axis1 (joint[0],0,0,1); | ||
260 | dJointSetHinge2Axis2 (joint[0],0,1,0); | ||
261 | */ | ||
262 | |||
263 | // front and back wheel hinges | ||
264 | for (i=0; i<3; i++) { | ||
265 | joint[i] = dJointCreateHinge2 (world,0); | ||
266 | dJointAttach (joint[i],body[0],body[i+1]); | ||
267 | const dReal *a = dBodyGetPosition (body[i+1]); | ||
268 | dJointSetHinge2Anchor (joint[i],a[0],a[1],a[2]); | ||
269 | dJointSetHinge2Axis1 (joint[i],0,0,1); | ||
270 | dJointSetHinge2Axis2 (joint[i],0,1,0); | ||
271 | |||
272 | // breakable joints contribution | ||
273 | // the wheels can break | ||
274 | dJointSetBreakable (joint[i], 1); | ||
275 | // the wheels wil break at a specific force | ||
276 | dJointSetBreakMode (joint[i], dJOINT_BREAK_AT_B1_FORCE|dJOINT_BREAK_AT_B2_FORCE); | ||
277 | // specify the force for the first body connected to the joint ... | ||
278 | dJointSetBreakForce (joint[i], 0, 1.5, 1.5, 1.5); | ||
279 | // and for the second body | ||
280 | dJointSetBreakForce (joint[i], 1, 1.5, 1.5, 1.5); | ||
281 | } | ||
282 | |||
283 | // set joint suspension | ||
284 | for (i=0; i<3; i++) { | ||
285 | dJointSetHinge2Param (joint[i],dParamSuspensionERP,0.4); | ||
286 | dJointSetHinge2Param (joint[i],dParamSuspensionCFM,0.8); | ||
287 | } | ||
288 | |||
289 | // lock back wheels along the steering axis | ||
290 | for (i=1; i<3; i++) { | ||
291 | // set stops to make sure wheels always stay in alignment | ||
292 | dJointSetHinge2Param (joint[i],dParamLoStop,0); | ||
293 | dJointSetHinge2Param (joint[i],dParamHiStop,0); | ||
294 | // the following alternative method is no good as the wheels may get out | ||
295 | // of alignment: | ||
296 | // dJointSetHinge2Param (joint[i],dParamVel,0); | ||
297 | // dJointSetHinge2Param (joint[i],dParamFMax,dInfinity); | ||
298 | } | ||
299 | |||
300 | // create car space and add it to the top level space | ||
301 | car_space = dSimpleSpaceCreate (space); | ||
302 | dSpaceSetCleanup (car_space,0); | ||
303 | dSpaceAdd (car_space,box[0]); | ||
304 | dSpaceAdd (car_space,sphere[0]); | ||
305 | dSpaceAdd (car_space,sphere[1]); | ||
306 | dSpaceAdd (car_space,sphere[2]); | ||
307 | |||
308 | // environment | ||
309 | ground_box = dCreateBox (space,2,1.5,1); | ||
310 | dMatrix3 R; | ||
311 | dRFromAxisAndAngle (R,0,1,0,-0.15); | ||
312 | dGeomSetPosition (ground_box,2,0,-0.34); | ||
313 | dGeomSetRotation (ground_box,R); | ||
314 | |||
315 | // run simulation | ||
316 | dsSimulationLoop (argc,argv,352,288,&fn); | ||
317 | |||
318 | dJointGroupDestroy (contactgroup); | ||
319 | dSpaceDestroy (space); | ||
320 | dWorldDestroy (world); | ||
321 | dGeomDestroy (box[0]); | ||
322 | dGeomDestroy (sphere[0]); | ||
323 | dGeomDestroy (sphere[1]); | ||
324 | dGeomDestroy (sphere[2]); | ||
325 | |||
326 | return 0; | ||
327 | } | ||