diff options
author | dan miller | 2007-10-19 05:20:07 +0000 |
---|---|---|
committer | dan miller | 2007-10-19 05:20:07 +0000 |
commit | fca74b0bf0a0833f5701e9c0de7b3bc15b2233dd (patch) | |
tree | 51bcae7a1b8381a6bf6fd8025a7de1e30fe0045d /libraries/ode-0.9/OPCODE/OPC_TriTriOverlap.h | |
parent | resubmitting ode (diff) | |
download | opensim-SC-fca74b0bf0a0833f5701e9c0de7b3bc15b2233dd.zip opensim-SC-fca74b0bf0a0833f5701e9c0de7b3bc15b2233dd.tar.gz opensim-SC-fca74b0bf0a0833f5701e9c0de7b3bc15b2233dd.tar.bz2 opensim-SC-fca74b0bf0a0833f5701e9c0de7b3bc15b2233dd.tar.xz |
dont ask
Diffstat (limited to 'libraries/ode-0.9/OPCODE/OPC_TriTriOverlap.h')
-rw-r--r-- | libraries/ode-0.9/OPCODE/OPC_TriTriOverlap.h | 279 |
1 files changed, 0 insertions, 279 deletions
diff --git a/libraries/ode-0.9/OPCODE/OPC_TriTriOverlap.h b/libraries/ode-0.9/OPCODE/OPC_TriTriOverlap.h deleted file mode 100644 index 1e71c6a..0000000 --- a/libraries/ode-0.9/OPCODE/OPC_TriTriOverlap.h +++ /dev/null | |||
@@ -1,279 +0,0 @@ | |||
1 | |||
2 | //! if OPC_TRITRI_EPSILON_TEST is true then we do a check (if |dv|<EPSILON then dv=0.0;) else no check is done (which is less robust, but faster) | ||
3 | #define LOCAL_EPSILON 0.000001f | ||
4 | |||
5 | //! sort so that a<=b | ||
6 | #define SORT(a,b) \ | ||
7 | if(a>b) \ | ||
8 | { \ | ||
9 | const float c=a; \ | ||
10 | a=b; \ | ||
11 | b=c; \ | ||
12 | } | ||
13 | |||
14 | //! Edge to edge test based on Franlin Antonio's gem: "Faster Line Segment Intersection", in Graphics Gems III, pp. 199-202 | ||
15 | #define EDGE_EDGE_TEST(V0, U0, U1) \ | ||
16 | Bx = U0[i0] - U1[i0]; \ | ||
17 | By = U0[i1] - U1[i1]; \ | ||
18 | Cx = V0[i0] - U0[i0]; \ | ||
19 | Cy = V0[i1] - U0[i1]; \ | ||
20 | f = Ay*Bx - Ax*By; \ | ||
21 | d = By*Cx - Bx*Cy; \ | ||
22 | if((f>0.0f && d>=0.0f && d<=f) || (f<0.0f && d<=0.0f && d>=f)) \ | ||
23 | { \ | ||
24 | const float e=Ax*Cy - Ay*Cx; \ | ||
25 | if(f>0.0f) \ | ||
26 | { \ | ||
27 | if(e>=0.0f && e<=f) return TRUE; \ | ||
28 | } \ | ||
29 | else \ | ||
30 | { \ | ||
31 | if(e<=0.0f && e>=f) return TRUE; \ | ||
32 | } \ | ||
33 | } | ||
34 | |||
35 | //! TO BE DOCUMENTED | ||
36 | #define EDGE_AGAINST_TRI_EDGES(V0, V1, U0, U1, U2) \ | ||
37 | { \ | ||
38 | float Bx,By,Cx,Cy,d,f; \ | ||
39 | const float Ax = V1[i0] - V0[i0]; \ | ||
40 | const float Ay = V1[i1] - V0[i1]; \ | ||
41 | /* test edge U0,U1 against V0,V1 */ \ | ||
42 | EDGE_EDGE_TEST(V0, U0, U1); \ | ||
43 | /* test edge U1,U2 against V0,V1 */ \ | ||
44 | EDGE_EDGE_TEST(V0, U1, U2); \ | ||
45 | /* test edge U2,U1 against V0,V1 */ \ | ||
46 | EDGE_EDGE_TEST(V0, U2, U0); \ | ||
47 | } | ||
48 | |||
49 | //! TO BE DOCUMENTED | ||
50 | #define POINT_IN_TRI(V0, U0, U1, U2) \ | ||
51 | { \ | ||
52 | /* is T1 completly inside T2? */ \ | ||
53 | /* check if V0 is inside tri(U0,U1,U2) */ \ | ||
54 | float a = U1[i1] - U0[i1]; \ | ||
55 | float b = -(U1[i0] - U0[i0]); \ | ||
56 | float c = -a*U0[i0] - b*U0[i1]; \ | ||
57 | float d0 = a*V0[i0] + b*V0[i1] + c; \ | ||
58 | \ | ||
59 | a = U2[i1] - U1[i1]; \ | ||
60 | b = -(U2[i0] - U1[i0]); \ | ||
61 | c = -a*U1[i0] - b*U1[i1]; \ | ||
62 | const float d1 = a*V0[i0] + b*V0[i1] + c; \ | ||
63 | \ | ||
64 | a = U0[i1] - U2[i1]; \ | ||
65 | b = -(U0[i0] - U2[i0]); \ | ||
66 | c = -a*U2[i0] - b*U2[i1]; \ | ||
67 | const float d2 = a*V0[i0] + b*V0[i1] + c; \ | ||
68 | if(d0*d1>0.0f) \ | ||
69 | { \ | ||
70 | if(d0*d2>0.0f) return TRUE; \ | ||
71 | } \ | ||
72 | } | ||
73 | |||
74 | //! TO BE DOCUMENTED | ||
75 | BOOL CoplanarTriTri(const Point& n, const Point& v0, const Point& v1, const Point& v2, const Point& u0, const Point& u1, const Point& u2) | ||
76 | { | ||
77 | float A[3]; | ||
78 | short i0,i1; | ||
79 | /* first project onto an axis-aligned plane, that maximizes the area */ | ||
80 | /* of the triangles, compute indices: i0,i1. */ | ||
81 | A[0] = fabsf(n[0]); | ||
82 | A[1] = fabsf(n[1]); | ||
83 | A[2] = fabsf(n[2]); | ||
84 | if(A[0]>A[1]) | ||
85 | { | ||
86 | if(A[0]>A[2]) | ||
87 | { | ||
88 | i0=1; /* A[0] is greatest */ | ||
89 | i1=2; | ||
90 | } | ||
91 | else | ||
92 | { | ||
93 | i0=0; /* A[2] is greatest */ | ||
94 | i1=1; | ||
95 | } | ||
96 | } | ||
97 | else /* A[0]<=A[1] */ | ||
98 | { | ||
99 | if(A[2]>A[1]) | ||
100 | { | ||
101 | i0=0; /* A[2] is greatest */ | ||
102 | i1=1; | ||
103 | } | ||
104 | else | ||
105 | { | ||
106 | i0=0; /* A[1] is greatest */ | ||
107 | i1=2; | ||
108 | } | ||
109 | } | ||
110 | |||
111 | /* test all edges of triangle 1 against the edges of triangle 2 */ | ||
112 | EDGE_AGAINST_TRI_EDGES(v0, v1, u0, u1, u2); | ||
113 | EDGE_AGAINST_TRI_EDGES(v1, v2, u0, u1, u2); | ||
114 | EDGE_AGAINST_TRI_EDGES(v2, v0, u0, u1, u2); | ||
115 | |||
116 | /* finally, test if tri1 is totally contained in tri2 or vice versa */ | ||
117 | POINT_IN_TRI(v0, u0, u1, u2); | ||
118 | POINT_IN_TRI(u0, v0, v1, v2); | ||
119 | |||
120 | return FALSE; | ||
121 | } | ||
122 | |||
123 | //! TO BE DOCUMENTED | ||
124 | #define NEWCOMPUTE_INTERVALS(VV0, VV1, VV2, D0, D1, D2, D0D1, D0D2, A, B, C, X0, X1) \ | ||
125 | { \ | ||
126 | if(D0D1>0.0f) \ | ||
127 | { \ | ||
128 | /* here we know that D0D2<=0.0 */ \ | ||
129 | /* that is D0, D1 are on the same side, D2 on the other or on the plane */ \ | ||
130 | A=VV2; B=(VV0 - VV2)*D2; C=(VV1 - VV2)*D2; X0=D2 - D0; X1=D2 - D1; \ | ||
131 | } \ | ||
132 | else if(D0D2>0.0f) \ | ||
133 | { \ | ||
134 | /* here we know that d0d1<=0.0 */ \ | ||
135 | A=VV1; B=(VV0 - VV1)*D1; C=(VV2 - VV1)*D1; X0=D1 - D0; X1=D1 - D2; \ | ||
136 | } \ | ||
137 | else if(D1*D2>0.0f || D0!=0.0f) \ | ||
138 | { \ | ||
139 | /* here we know that d0d1<=0.0 or that D0!=0.0 */ \ | ||
140 | A=VV0; B=(VV1 - VV0)*D0; C=(VV2 - VV0)*D0; X0=D0 - D1; X1=D0 - D2; \ | ||
141 | } \ | ||
142 | else if(D1!=0.0f) \ | ||
143 | { \ | ||
144 | A=VV1; B=(VV0 - VV1)*D1; C=(VV2 - VV1)*D1; X0=D1 - D0; X1=D1 - D2; \ | ||
145 | } \ | ||
146 | else if(D2!=0.0f) \ | ||
147 | { \ | ||
148 | A=VV2; B=(VV0 - VV2)*D2; C=(VV1 - VV2)*D2; X0=D2 - D0; X1=D2 - D1; \ | ||
149 | } \ | ||
150 | else \ | ||
151 | { \ | ||
152 | /* triangles are coplanar */ \ | ||
153 | return CoplanarTriTri(N1, V0, V1, V2, U0, U1, U2); \ | ||
154 | } \ | ||
155 | } | ||
156 | |||
157 | /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// | ||
158 | /** | ||
159 | * Triangle/triangle intersection test routine, | ||
160 | * by Tomas Moller, 1997. | ||
161 | * See article "A Fast Triangle-Triangle Intersection Test", | ||
162 | * Journal of Graphics Tools, 2(2), 1997 | ||
163 | * | ||
164 | * Updated June 1999: removed the divisions -- a little faster now! | ||
165 | * Updated October 1999: added {} to CROSS and SUB macros | ||
166 | * | ||
167 | * int NoDivTriTriIsect(float V0[3],float V1[3],float V2[3], | ||
168 | * float U0[3],float U1[3],float U2[3]) | ||
169 | * | ||
170 | * \param V0 [in] triangle 0, vertex 0 | ||
171 | * \param V1 [in] triangle 0, vertex 1 | ||
172 | * \param V2 [in] triangle 0, vertex 2 | ||
173 | * \param U0 [in] triangle 1, vertex 0 | ||
174 | * \param U1 [in] triangle 1, vertex 1 | ||
175 | * \param U2 [in] triangle 1, vertex 2 | ||
176 | * \return true if triangles overlap | ||
177 | */ | ||
178 | /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// | ||
179 | inline_ BOOL AABBTreeCollider::TriTriOverlap(const Point& V0, const Point& V1, const Point& V2, const Point& U0, const Point& U1, const Point& U2) | ||
180 | { | ||
181 | // Stats | ||
182 | mNbPrimPrimTests++; | ||
183 | |||
184 | // Compute plane equation of triangle(V0,V1,V2) | ||
185 | Point E1 = V1 - V0; | ||
186 | Point E2 = V2 - V0; | ||
187 | const Point N1 = E1 ^ E2; | ||
188 | const float d1 =-N1 | V0; | ||
189 | // Plane equation 1: N1.X+d1=0 | ||
190 | |||
191 | // Put U0,U1,U2 into plane equation 1 to compute signed distances to the plane | ||
192 | float du0 = (N1|U0) + d1; | ||
193 | float du1 = (N1|U1) + d1; | ||
194 | float du2 = (N1|U2) + d1; | ||
195 | |||
196 | // Coplanarity robustness check | ||
197 | #ifdef OPC_TRITRI_EPSILON_TEST | ||
198 | if(fabsf(du0)<LOCAL_EPSILON) du0 = 0.0f; | ||
199 | if(fabsf(du1)<LOCAL_EPSILON) du1 = 0.0f; | ||
200 | if(fabsf(du2)<LOCAL_EPSILON) du2 = 0.0f; | ||
201 | #endif | ||
202 | const float du0du1 = du0 * du1; | ||
203 | const float du0du2 = du0 * du2; | ||
204 | |||
205 | if(du0du1>0.0f && du0du2>0.0f) // same sign on all of them + not equal 0 ? | ||
206 | return FALSE; // no intersection occurs | ||
207 | |||
208 | // Compute plane of triangle (U0,U1,U2) | ||
209 | E1 = U1 - U0; | ||
210 | E2 = U2 - U0; | ||
211 | const Point N2 = E1 ^ E2; | ||
212 | const float d2=-N2 | U0; | ||
213 | // plane equation 2: N2.X+d2=0 | ||
214 | |||
215 | // put V0,V1,V2 into plane equation 2 | ||
216 | float dv0 = (N2|V0) + d2; | ||
217 | float dv1 = (N2|V1) + d2; | ||
218 | float dv2 = (N2|V2) + d2; | ||
219 | |||
220 | #ifdef OPC_TRITRI_EPSILON_TEST | ||
221 | if(fabsf(dv0)<LOCAL_EPSILON) dv0 = 0.0f; | ||
222 | if(fabsf(dv1)<LOCAL_EPSILON) dv1 = 0.0f; | ||
223 | if(fabsf(dv2)<LOCAL_EPSILON) dv2 = 0.0f; | ||
224 | #endif | ||
225 | |||
226 | const float dv0dv1 = dv0 * dv1; | ||
227 | const float dv0dv2 = dv0 * dv2; | ||
228 | |||
229 | if(dv0dv1>0.0f && dv0dv2>0.0f) // same sign on all of them + not equal 0 ? | ||
230 | return FALSE; // no intersection occurs | ||
231 | |||
232 | // Compute direction of intersection line | ||
233 | const Point D = N1^N2; | ||
234 | |||
235 | // Compute and index to the largest component of D | ||
236 | float max=fabsf(D[0]); | ||
237 | short index=0; | ||
238 | float bb=fabsf(D[1]); | ||
239 | float cc=fabsf(D[2]); | ||
240 | if(bb>max) max=bb,index=1; | ||
241 | if(cc>max) max=cc,index=2; | ||
242 | |||
243 | // This is the simplified projection onto L | ||
244 | const float vp0 = V0[index]; | ||
245 | const float vp1 = V1[index]; | ||
246 | const float vp2 = V2[index]; | ||
247 | |||
248 | const float up0 = U0[index]; | ||
249 | const float up1 = U1[index]; | ||
250 | const float up2 = U2[index]; | ||
251 | |||
252 | // Compute interval for triangle 1 | ||
253 | float a,b,c,x0,x1; | ||
254 | NEWCOMPUTE_INTERVALS(vp0,vp1,vp2,dv0,dv1,dv2,dv0dv1,dv0dv2,a,b,c,x0,x1); | ||
255 | |||
256 | // Compute interval for triangle 2 | ||
257 | float d,e,f,y0,y1; | ||
258 | NEWCOMPUTE_INTERVALS(up0,up1,up2,du0,du1,du2,du0du1,du0du2,d,e,f,y0,y1); | ||
259 | |||
260 | const float xx=x0*x1; | ||
261 | const float yy=y0*y1; | ||
262 | const float xxyy=xx*yy; | ||
263 | |||
264 | float isect1[2], isect2[2]; | ||
265 | |||
266 | float tmp=a*xxyy; | ||
267 | isect1[0]=tmp+b*x1*yy; | ||
268 | isect1[1]=tmp+c*x0*yy; | ||
269 | |||
270 | tmp=d*xxyy; | ||
271 | isect2[0]=tmp+e*xx*y1; | ||
272 | isect2[1]=tmp+f*xx*y0; | ||
273 | |||
274 | SORT(isect1[0],isect1[1]); | ||
275 | SORT(isect2[0],isect2[1]); | ||
276 | |||
277 | if(isect1[1]<isect2[0] || isect2[1]<isect1[0]) return FALSE; | ||
278 | return TRUE; | ||
279 | } | ||