aboutsummaryrefslogtreecommitdiffstatshomepage
path: root/libraries/ode-0.9/OPCODE/Ice/IceMatrix3x3.h
diff options
context:
space:
mode:
authordan miller2007-10-19 05:24:38 +0000
committerdan miller2007-10-19 05:24:38 +0000
commitf205de7847da7ae1c10212d82e7042d0100b4ce0 (patch)
tree9acc9608a6880502aaeda43af52c33e278e95b9c /libraries/ode-0.9/OPCODE/Ice/IceMatrix3x3.h
parenttrying to fix my screwup part deux (diff)
downloadopensim-SC-f205de7847da7ae1c10212d82e7042d0100b4ce0.zip
opensim-SC-f205de7847da7ae1c10212d82e7042d0100b4ce0.tar.gz
opensim-SC-f205de7847da7ae1c10212d82e7042d0100b4ce0.tar.bz2
opensim-SC-f205de7847da7ae1c10212d82e7042d0100b4ce0.tar.xz
from the start... checking in ode-0.9
Diffstat (limited to 'libraries/ode-0.9/OPCODE/Ice/IceMatrix3x3.h')
-rw-r--r--libraries/ode-0.9/OPCODE/Ice/IceMatrix3x3.h496
1 files changed, 496 insertions, 0 deletions
diff --git a/libraries/ode-0.9/OPCODE/Ice/IceMatrix3x3.h b/libraries/ode-0.9/OPCODE/Ice/IceMatrix3x3.h
new file mode 100644
index 0000000..a30680d
--- /dev/null
+++ b/libraries/ode-0.9/OPCODE/Ice/IceMatrix3x3.h
@@ -0,0 +1,496 @@
1///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
2/**
3 * Contains code for 3x3 matrices.
4 * \file IceMatrix3x3.h
5 * \author Pierre Terdiman
6 * \date April, 4, 2000
7 */
8///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
9
10///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
11// Include Guard
12#ifndef __ICEMATRIX3X3_H__
13#define __ICEMATRIX3X3_H__
14
15 // Forward declarations
16 class Quat;
17
18 #define MATRIX3X3_EPSILON (1.0e-7f)
19
20 class ICEMATHS_API Matrix3x3
21 {
22 public:
23 //! Empty constructor
24 inline_ Matrix3x3() {}
25 //! Constructor from 9 values
26 inline_ Matrix3x3(float m00, float m01, float m02, float m10, float m11, float m12, float m20, float m21, float m22)
27 {
28 m[0][0] = m00; m[0][1] = m01; m[0][2] = m02;
29 m[1][0] = m10; m[1][1] = m11; m[1][2] = m12;
30 m[2][0] = m20; m[2][1] = m21; m[2][2] = m22;
31 }
32 //! Copy constructor
33 inline_ Matrix3x3(const Matrix3x3& mat) { CopyMemory(m, &mat.m, 9*sizeof(float)); }
34 //! Destructor
35 inline_ ~Matrix3x3() {}
36
37 //! Assign values
38 inline_ void Set(float m00, float m01, float m02, float m10, float m11, float m12, float m20, float m21, float m22)
39 {
40 m[0][0] = m00; m[0][1] = m01; m[0][2] = m02;
41 m[1][0] = m10; m[1][1] = m11; m[1][2] = m12;
42 m[2][0] = m20; m[2][1] = m21; m[2][2] = m22;
43 }
44
45 //! Sets the scale from a Point. The point is put on the diagonal.
46 inline_ void SetScale(const Point& p) { m[0][0] = p.x; m[1][1] = p.y; m[2][2] = p.z; }
47
48 //! Sets the scale from floats. Values are put on the diagonal.
49 inline_ void SetScale(float sx, float sy, float sz) { m[0][0] = sx; m[1][1] = sy; m[2][2] = sz; }
50
51 //! Scales from a Point. Each row is multiplied by a component.
52 inline_ void Scale(const Point& p)
53 {
54 m[0][0] *= p.x; m[0][1] *= p.x; m[0][2] *= p.x;
55 m[1][0] *= p.y; m[1][1] *= p.y; m[1][2] *= p.y;
56 m[2][0] *= p.z; m[2][1] *= p.z; m[2][2] *= p.z;
57 }
58
59 //! Scales from floats. Each row is multiplied by a value.
60 inline_ void Scale(float sx, float sy, float sz)
61 {
62 m[0][0] *= sx; m[0][1] *= sx; m[0][2] *= sx;
63 m[1][0] *= sy; m[1][1] *= sy; m[1][2] *= sy;
64 m[2][0] *= sz; m[2][1] *= sz; m[2][2] *= sz;
65 }
66
67 //! Copy from a Matrix3x3
68 inline_ void Copy(const Matrix3x3& source) { CopyMemory(m, source.m, 9*sizeof(float)); }
69
70 // Row-column access
71 //! Returns a row.
72 inline_ void GetRow(const udword r, Point& p) const { p.x = m[r][0]; p.y = m[r][1]; p.z = m[r][2]; }
73 //! Returns a row.
74 inline_ const Point& GetRow(const udword r) const { return *(const Point*)&m[r][0]; }
75 //! Returns a row.
76 inline_ Point& GetRow(const udword r) { return *(Point*)&m[r][0]; }
77 //! Sets a row.
78 inline_ void SetRow(const udword r, const Point& p) { m[r][0] = p.x; m[r][1] = p.y; m[r][2] = p.z; }
79 //! Returns a column.
80 inline_ void GetCol(const udword c, Point& p) const { p.x = m[0][c]; p.y = m[1][c]; p.z = m[2][c]; }
81 //! Sets a column.
82 inline_ void SetCol(const udword c, const Point& p) { m[0][c] = p.x; m[1][c] = p.y; m[2][c] = p.z; }
83
84 //! Computes the trace. The trace is the sum of the 3 diagonal components.
85 inline_ float Trace() const { return m[0][0] + m[1][1] + m[2][2]; }
86 //! Clears the matrix.
87 inline_ void Zero() { ZeroMemory(&m, sizeof(m)); }
88 //! Sets the identity matrix.
89 inline_ void Identity() { Zero(); m[0][0] = m[1][1] = m[2][2] = 1.0f; }
90 //! Checks for identity
91 inline_ bool IsIdentity() const
92 {
93 if(IR(m[0][0])!=IEEE_1_0) return false;
94 if(IR(m[0][1])!=0) return false;
95 if(IR(m[0][2])!=0) return false;
96
97 if(IR(m[1][0])!=0) return false;
98 if(IR(m[1][1])!=IEEE_1_0) return false;
99 if(IR(m[1][2])!=0) return false;
100
101 if(IR(m[2][0])!=0) return false;
102 if(IR(m[2][1])!=0) return false;
103 if(IR(m[2][2])!=IEEE_1_0) return false;
104
105 return true;
106 }
107
108 //! Checks matrix validity
109 inline_ BOOL IsValid() const
110 {
111 for(udword j=0;j<3;j++)
112 {
113 for(udword i=0;i<3;i++)
114 {
115 if(!IsValidFloat(m[j][i])) return FALSE;
116 }
117 }
118 return TRUE;
119 }
120
121 //! Makes a skew-symmetric matrix (a.k.a. Star(*) Matrix)
122 //! [ 0.0 -a.z a.y ]
123 //! [ a.z 0.0 -a.x ]
124 //! [ -a.y a.x 0.0 ]
125 //! This is also called a "cross matrix" since for any vectors A and B,
126 //! A^B = Skew(A) * B = - B * Skew(A);
127 inline_ void SkewSymmetric(const Point& a)
128 {
129 m[0][0] = 0.0f;
130 m[0][1] = -a.z;
131 m[0][2] = a.y;
132
133 m[1][0] = a.z;
134 m[1][1] = 0.0f;
135 m[1][2] = -a.x;
136
137 m[2][0] = -a.y;
138 m[2][1] = a.x;
139 m[2][2] = 0.0f;
140 }
141
142 //! Negates the matrix
143 inline_ void Neg()
144 {
145 m[0][0] = -m[0][0]; m[0][1] = -m[0][1]; m[0][2] = -m[0][2];
146 m[1][0] = -m[1][0]; m[1][1] = -m[1][1]; m[1][2] = -m[1][2];
147 m[2][0] = -m[2][0]; m[2][1] = -m[2][1]; m[2][2] = -m[2][2];
148 }
149
150 //! Neg from another matrix
151 inline_ void Neg(const Matrix3x3& mat)
152 {
153 m[0][0] = -mat.m[0][0]; m[0][1] = -mat.m[0][1]; m[0][2] = -mat.m[0][2];
154 m[1][0] = -mat.m[1][0]; m[1][1] = -mat.m[1][1]; m[1][2] = -mat.m[1][2];
155 m[2][0] = -mat.m[2][0]; m[2][1] = -mat.m[2][1]; m[2][2] = -mat.m[2][2];
156 }
157
158 //! Add another matrix
159 inline_ void Add(const Matrix3x3& mat)
160 {
161 m[0][0] += mat.m[0][0]; m[0][1] += mat.m[0][1]; m[0][2] += mat.m[0][2];
162 m[1][0] += mat.m[1][0]; m[1][1] += mat.m[1][1]; m[1][2] += mat.m[1][2];
163 m[2][0] += mat.m[2][0]; m[2][1] += mat.m[2][1]; m[2][2] += mat.m[2][2];
164 }
165
166 //! Sub another matrix
167 inline_ void Sub(const Matrix3x3& mat)
168 {
169 m[0][0] -= mat.m[0][0]; m[0][1] -= mat.m[0][1]; m[0][2] -= mat.m[0][2];
170 m[1][0] -= mat.m[1][0]; m[1][1] -= mat.m[1][1]; m[1][2] -= mat.m[1][2];
171 m[2][0] -= mat.m[2][0]; m[2][1] -= mat.m[2][1]; m[2][2] -= mat.m[2][2];
172 }
173 //! Mac
174 inline_ void Mac(const Matrix3x3& a, const Matrix3x3& b, float s)
175 {
176 m[0][0] = a.m[0][0] + b.m[0][0] * s;
177 m[0][1] = a.m[0][1] + b.m[0][1] * s;
178 m[0][2] = a.m[0][2] + b.m[0][2] * s;
179
180 m[1][0] = a.m[1][0] + b.m[1][0] * s;
181 m[1][1] = a.m[1][1] + b.m[1][1] * s;
182 m[1][2] = a.m[1][2] + b.m[1][2] * s;
183
184 m[2][0] = a.m[2][0] + b.m[2][0] * s;
185 m[2][1] = a.m[2][1] + b.m[2][1] * s;
186 m[2][2] = a.m[2][2] + b.m[2][2] * s;
187 }
188 //! Mac
189 inline_ void Mac(const Matrix3x3& a, float s)
190 {
191 m[0][0] += a.m[0][0] * s; m[0][1] += a.m[0][1] * s; m[0][2] += a.m[0][2] * s;
192 m[1][0] += a.m[1][0] * s; m[1][1] += a.m[1][1] * s; m[1][2] += a.m[1][2] * s;
193 m[2][0] += a.m[2][0] * s; m[2][1] += a.m[2][1] * s; m[2][2] += a.m[2][2] * s;
194 }
195
196 //! this = A * s
197 inline_ void Mult(const Matrix3x3& a, float s)
198 {
199 m[0][0] = a.m[0][0] * s; m[0][1] = a.m[0][1] * s; m[0][2] = a.m[0][2] * s;
200 m[1][0] = a.m[1][0] * s; m[1][1] = a.m[1][1] * s; m[1][2] = a.m[1][2] * s;
201 m[2][0] = a.m[2][0] * s; m[2][1] = a.m[2][1] * s; m[2][2] = a.m[2][2] * s;
202 }
203
204 inline_ void Add(const Matrix3x3& a, const Matrix3x3& b)
205 {
206 m[0][0] = a.m[0][0] + b.m[0][0]; m[0][1] = a.m[0][1] + b.m[0][1]; m[0][2] = a.m[0][2] + b.m[0][2];
207 m[1][0] = a.m[1][0] + b.m[1][0]; m[1][1] = a.m[1][1] + b.m[1][1]; m[1][2] = a.m[1][2] + b.m[1][2];
208 m[2][0] = a.m[2][0] + b.m[2][0]; m[2][1] = a.m[2][1] + b.m[2][1]; m[2][2] = a.m[2][2] + b.m[2][2];
209 }
210
211 inline_ void Sub(const Matrix3x3& a, const Matrix3x3& b)
212 {
213 m[0][0] = a.m[0][0] - b.m[0][0]; m[0][1] = a.m[0][1] - b.m[0][1]; m[0][2] = a.m[0][2] - b.m[0][2];
214 m[1][0] = a.m[1][0] - b.m[1][0]; m[1][1] = a.m[1][1] - b.m[1][1]; m[1][2] = a.m[1][2] - b.m[1][2];
215 m[2][0] = a.m[2][0] - b.m[2][0]; m[2][1] = a.m[2][1] - b.m[2][1]; m[2][2] = a.m[2][2] - b.m[2][2];
216 }
217
218 //! this = a * b
219 inline_ void Mult(const Matrix3x3& a, const Matrix3x3& b)
220 {
221 m[0][0] = a.m[0][0] * b.m[0][0] + a.m[0][1] * b.m[1][0] + a.m[0][2] * b.m[2][0];
222 m[0][1] = a.m[0][0] * b.m[0][1] + a.m[0][1] * b.m[1][1] + a.m[0][2] * b.m[2][1];
223 m[0][2] = a.m[0][0] * b.m[0][2] + a.m[0][1] * b.m[1][2] + a.m[0][2] * b.m[2][2];
224 m[1][0] = a.m[1][0] * b.m[0][0] + a.m[1][1] * b.m[1][0] + a.m[1][2] * b.m[2][0];
225 m[1][1] = a.m[1][0] * b.m[0][1] + a.m[1][1] * b.m[1][1] + a.m[1][2] * b.m[2][1];
226 m[1][2] = a.m[1][0] * b.m[0][2] + a.m[1][1] * b.m[1][2] + a.m[1][2] * b.m[2][2];
227 m[2][0] = a.m[2][0] * b.m[0][0] + a.m[2][1] * b.m[1][0] + a.m[2][2] * b.m[2][0];
228 m[2][1] = a.m[2][0] * b.m[0][1] + a.m[2][1] * b.m[1][1] + a.m[2][2] * b.m[2][1];
229 m[2][2] = a.m[2][0] * b.m[0][2] + a.m[2][1] * b.m[1][2] + a.m[2][2] * b.m[2][2];
230 }
231
232 //! this = transpose(a) * b
233 inline_ void MultAtB(const Matrix3x3& a, const Matrix3x3& b)
234 {
235 m[0][0] = a.m[0][0] * b.m[0][0] + a.m[1][0] * b.m[1][0] + a.m[2][0] * b.m[2][0];
236 m[0][1] = a.m[0][0] * b.m[0][1] + a.m[1][0] * b.m[1][1] + a.m[2][0] * b.m[2][1];
237 m[0][2] = a.m[0][0] * b.m[0][2] + a.m[1][0] * b.m[1][2] + a.m[2][0] * b.m[2][2];
238 m[1][0] = a.m[0][1] * b.m[0][0] + a.m[1][1] * b.m[1][0] + a.m[2][1] * b.m[2][0];
239 m[1][1] = a.m[0][1] * b.m[0][1] + a.m[1][1] * b.m[1][1] + a.m[2][1] * b.m[2][1];
240 m[1][2] = a.m[0][1] * b.m[0][2] + a.m[1][1] * b.m[1][2] + a.m[2][1] * b.m[2][2];
241 m[2][0] = a.m[0][2] * b.m[0][0] + a.m[1][2] * b.m[1][0] + a.m[2][2] * b.m[2][0];
242 m[2][1] = a.m[0][2] * b.m[0][1] + a.m[1][2] * b.m[1][1] + a.m[2][2] * b.m[2][1];
243 m[2][2] = a.m[0][2] * b.m[0][2] + a.m[1][2] * b.m[1][2] + a.m[2][2] * b.m[2][2];
244 }
245
246 //! this = a * transpose(b)
247 inline_ void MultABt(const Matrix3x3& a, const Matrix3x3& b)
248 {
249 m[0][0] = a.m[0][0] * b.m[0][0] + a.m[0][1] * b.m[0][1] + a.m[0][2] * b.m[0][2];
250 m[0][1] = a.m[0][0] * b.m[1][0] + a.m[0][1] * b.m[1][1] + a.m[0][2] * b.m[1][2];
251 m[0][2] = a.m[0][0] * b.m[2][0] + a.m[0][1] * b.m[2][1] + a.m[0][2] * b.m[2][2];
252 m[1][0] = a.m[1][0] * b.m[0][0] + a.m[1][1] * b.m[0][1] + a.m[1][2] * b.m[0][2];
253 m[1][1] = a.m[1][0] * b.m[1][0] + a.m[1][1] * b.m[1][1] + a.m[1][2] * b.m[1][2];
254 m[1][2] = a.m[1][0] * b.m[2][0] + a.m[1][1] * b.m[2][1] + a.m[1][2] * b.m[2][2];
255 m[2][0] = a.m[2][0] * b.m[0][0] + a.m[2][1] * b.m[0][1] + a.m[2][2] * b.m[0][2];
256 m[2][1] = a.m[2][0] * b.m[1][0] + a.m[2][1] * b.m[1][1] + a.m[2][2] * b.m[1][2];
257 m[2][2] = a.m[2][0] * b.m[2][0] + a.m[2][1] * b.m[2][1] + a.m[2][2] * b.m[2][2];
258 }
259
260 //! Makes a rotation matrix mapping vector "from" to vector "to".
261 Matrix3x3& FromTo(const Point& from, const Point& to);
262
263 //! Set a rotation matrix around the X axis.
264 //! 1 0 0
265 //! RX = 0 cx sx
266 //! 0 -sx cx
267 void RotX(float angle);
268 //! Set a rotation matrix around the Y axis.
269 //! cy 0 -sy
270 //! RY = 0 1 0
271 //! sy 0 cy
272 void RotY(float angle);
273 //! Set a rotation matrix around the Z axis.
274 //! cz sz 0
275 //! RZ = -sz cz 0
276 //! 0 0 1
277 void RotZ(float angle);
278 //! cy sx.sy -sy.cx
279 //! RY.RX 0 cx sx
280 //! sy -sx.cy cx.cy
281 void RotYX(float y, float x);
282
283 //! Make a rotation matrix about an arbitrary axis
284 Matrix3x3& Rot(float angle, const Point& axis);
285
286 //! Transpose the matrix.
287 void Transpose()
288 {
289 IR(m[1][0]) ^= IR(m[0][1]); IR(m[0][1]) ^= IR(m[1][0]); IR(m[1][0]) ^= IR(m[0][1]);
290 IR(m[2][0]) ^= IR(m[0][2]); IR(m[0][2]) ^= IR(m[2][0]); IR(m[2][0]) ^= IR(m[0][2]);
291 IR(m[2][1]) ^= IR(m[1][2]); IR(m[1][2]) ^= IR(m[2][1]); IR(m[2][1]) ^= IR(m[1][2]);
292 }
293
294 //! this = Transpose(a)
295 void Transpose(const Matrix3x3& a)
296 {
297 m[0][0] = a.m[0][0]; m[0][1] = a.m[1][0]; m[0][2] = a.m[2][0];
298 m[1][0] = a.m[0][1]; m[1][1] = a.m[1][1]; m[1][2] = a.m[2][1];
299 m[2][0] = a.m[0][2]; m[2][1] = a.m[1][2]; m[2][2] = a.m[2][2];
300 }
301
302 //! Compute the determinant of the matrix. We use the rule of Sarrus.
303 float Determinant() const
304 {
305 return (m[0][0]*m[1][1]*m[2][2] + m[0][1]*m[1][2]*m[2][0] + m[0][2]*m[1][0]*m[2][1])
306 - (m[2][0]*m[1][1]*m[0][2] + m[2][1]*m[1][2]*m[0][0] + m[2][2]*m[1][0]*m[0][1]);
307 }
308/*
309 //! Compute a cofactor. Used for matrix inversion.
310 float CoFactor(ubyte row, ubyte column) const
311 {
312 static sdword gIndex[3+2] = { 0, 1, 2, 0, 1 };
313 return (m[gIndex[row+1]][gIndex[column+1]]*m[gIndex[row+2]][gIndex[column+2]] - m[gIndex[row+2]][gIndex[column+1]]*m[gIndex[row+1]][gIndex[column+2]]);
314 }
315*/
316 //! Invert the matrix. Determinant must be different from zero, else matrix can't be inverted.
317 Matrix3x3& Invert()
318 {
319 float Det = Determinant(); // Must be !=0
320 float OneOverDet = 1.0f / Det;
321
322 Matrix3x3 Temp;
323 Temp.m[0][0] = +(m[1][1] * m[2][2] - m[2][1] * m[1][2]) * OneOverDet;
324 Temp.m[1][0] = -(m[1][0] * m[2][2] - m[2][0] * m[1][2]) * OneOverDet;
325 Temp.m[2][0] = +(m[1][0] * m[2][1] - m[2][0] * m[1][1]) * OneOverDet;
326 Temp.m[0][1] = -(m[0][1] * m[2][2] - m[2][1] * m[0][2]) * OneOverDet;
327 Temp.m[1][1] = +(m[0][0] * m[2][2] - m[2][0] * m[0][2]) * OneOverDet;
328 Temp.m[2][1] = -(m[0][0] * m[2][1] - m[2][0] * m[0][1]) * OneOverDet;
329 Temp.m[0][2] = +(m[0][1] * m[1][2] - m[1][1] * m[0][2]) * OneOverDet;
330 Temp.m[1][2] = -(m[0][0] * m[1][2] - m[1][0] * m[0][2]) * OneOverDet;
331 Temp.m[2][2] = +(m[0][0] * m[1][1] - m[1][0] * m[0][1]) * OneOverDet;
332
333 *this = Temp;
334
335 return *this;
336 }
337
338 Matrix3x3& Normalize();
339
340 //! this = exp(a)
341 Matrix3x3& Exp(const Matrix3x3& a);
342
343void FromQuat(const Quat &q);
344void FromQuatL2(const Quat &q, float l2);
345
346 // Arithmetic operators
347 //! Operator for Matrix3x3 Plus = Matrix3x3 + Matrix3x3;
348 inline_ Matrix3x3 operator+(const Matrix3x3& mat) const
349 {
350 return Matrix3x3(
351 m[0][0] + mat.m[0][0], m[0][1] + mat.m[0][1], m[0][2] + mat.m[0][2],
352 m[1][0] + mat.m[1][0], m[1][1] + mat.m[1][1], m[1][2] + mat.m[1][2],
353 m[2][0] + mat.m[2][0], m[2][1] + mat.m[2][1], m[2][2] + mat.m[2][2]);
354 }
355
356 //! Operator for Matrix3x3 Minus = Matrix3x3 - Matrix3x3;
357 inline_ Matrix3x3 operator-(const Matrix3x3& mat) const
358 {
359 return Matrix3x3(
360 m[0][0] - mat.m[0][0], m[0][1] - mat.m[0][1], m[0][2] - mat.m[0][2],
361 m[1][0] - mat.m[1][0], m[1][1] - mat.m[1][1], m[1][2] - mat.m[1][2],
362 m[2][0] - mat.m[2][0], m[2][1] - mat.m[2][1], m[2][2] - mat.m[2][2]);
363 }
364
365 //! Operator for Matrix3x3 Mul = Matrix3x3 * Matrix3x3;
366 inline_ Matrix3x3 operator*(const Matrix3x3& mat) const
367 {
368 return Matrix3x3(
369 m[0][0]*mat.m[0][0] + m[0][1]*mat.m[1][0] + m[0][2]*mat.m[2][0],
370 m[0][0]*mat.m[0][1] + m[0][1]*mat.m[1][1] + m[0][2]*mat.m[2][1],
371 m[0][0]*mat.m[0][2] + m[0][1]*mat.m[1][2] + m[0][2]*mat.m[2][2],
372
373 m[1][0]*mat.m[0][0] + m[1][1]*mat.m[1][0] + m[1][2]*mat.m[2][0],
374 m[1][0]*mat.m[0][1] + m[1][1]*mat.m[1][1] + m[1][2]*mat.m[2][1],
375 m[1][0]*mat.m[0][2] + m[1][1]*mat.m[1][2] + m[1][2]*mat.m[2][2],
376
377 m[2][0]*mat.m[0][0] + m[2][1]*mat.m[1][0] + m[2][2]*mat.m[2][0],
378 m[2][0]*mat.m[0][1] + m[2][1]*mat.m[1][1] + m[2][2]*mat.m[2][1],
379 m[2][0]*mat.m[0][2] + m[2][1]*mat.m[1][2] + m[2][2]*mat.m[2][2]);
380 }
381
382 //! Operator for Point Mul = Matrix3x3 * Point;
383 inline_ Point operator*(const Point& v) const { return Point(GetRow(0)|v, GetRow(1)|v, GetRow(2)|v); }
384
385 //! Operator for Matrix3x3 Mul = Matrix3x3 * float;
386 inline_ Matrix3x3 operator*(float s) const
387 {
388 return Matrix3x3(
389 m[0][0]*s, m[0][1]*s, m[0][2]*s,
390 m[1][0]*s, m[1][1]*s, m[1][2]*s,
391 m[2][0]*s, m[2][1]*s, m[2][2]*s);
392 }
393
394 //! Operator for Matrix3x3 Mul = float * Matrix3x3;
395 inline_ friend Matrix3x3 operator*(float s, const Matrix3x3& mat)
396 {
397 return Matrix3x3(
398 s*mat.m[0][0], s*mat.m[0][1], s*mat.m[0][2],
399 s*mat.m[1][0], s*mat.m[1][1], s*mat.m[1][2],
400 s*mat.m[2][0], s*mat.m[2][1], s*mat.m[2][2]);
401 }
402
403 //! Operator for Matrix3x3 Div = Matrix3x3 / float;
404 inline_ Matrix3x3 operator/(float s) const
405 {
406 if (s) s = 1.0f / s;
407 return Matrix3x3(
408 m[0][0]*s, m[0][1]*s, m[0][2]*s,
409 m[1][0]*s, m[1][1]*s, m[1][2]*s,
410 m[2][0]*s, m[2][1]*s, m[2][2]*s);
411 }
412
413 //! Operator for Matrix3x3 Div = float / Matrix3x3;
414 inline_ friend Matrix3x3 operator/(float s, const Matrix3x3& mat)
415 {
416 return Matrix3x3(
417 s/mat.m[0][0], s/mat.m[0][1], s/mat.m[0][2],
418 s/mat.m[1][0], s/mat.m[1][1], s/mat.m[1][2],
419 s/mat.m[2][0], s/mat.m[2][1], s/mat.m[2][2]);
420 }
421
422 //! Operator for Matrix3x3 += Matrix3x3
423 inline_ Matrix3x3& operator+=(const Matrix3x3& mat)
424 {
425 m[0][0] += mat.m[0][0]; m[0][1] += mat.m[0][1]; m[0][2] += mat.m[0][2];
426 m[1][0] += mat.m[1][0]; m[1][1] += mat.m[1][1]; m[1][2] += mat.m[1][2];
427 m[2][0] += mat.m[2][0]; m[2][1] += mat.m[2][1]; m[2][2] += mat.m[2][2];
428 return *this;
429 }
430
431 //! Operator for Matrix3x3 -= Matrix3x3
432 inline_ Matrix3x3& operator-=(const Matrix3x3& mat)
433 {
434 m[0][0] -= mat.m[0][0]; m[0][1] -= mat.m[0][1]; m[0][2] -= mat.m[0][2];
435 m[1][0] -= mat.m[1][0]; m[1][1] -= mat.m[1][1]; m[1][2] -= mat.m[1][2];
436 m[2][0] -= mat.m[2][0]; m[2][1] -= mat.m[2][1]; m[2][2] -= mat.m[2][2];
437 return *this;
438 }
439
440 //! Operator for Matrix3x3 *= Matrix3x3
441 inline_ Matrix3x3& operator*=(const Matrix3x3& mat)
442 {
443 Point TempRow;
444
445 GetRow(0, TempRow);
446 m[0][0] = TempRow.x*mat.m[0][0] + TempRow.y*mat.m[1][0] + TempRow.z*mat.m[2][0];
447 m[0][1] = TempRow.x*mat.m[0][1] + TempRow.y*mat.m[1][1] + TempRow.z*mat.m[2][1];
448 m[0][2] = TempRow.x*mat.m[0][2] + TempRow.y*mat.m[1][2] + TempRow.z*mat.m[2][2];
449
450 GetRow(1, TempRow);
451 m[1][0] = TempRow.x*mat.m[0][0] + TempRow.y*mat.m[1][0] + TempRow.z*mat.m[2][0];
452 m[1][1] = TempRow.x*mat.m[0][1] + TempRow.y*mat.m[1][1] + TempRow.z*mat.m[2][1];
453 m[1][2] = TempRow.x*mat.m[0][2] + TempRow.y*mat.m[1][2] + TempRow.z*mat.m[2][2];
454
455 GetRow(2, TempRow);
456 m[2][0] = TempRow.x*mat.m[0][0] + TempRow.y*mat.m[1][0] + TempRow.z*mat.m[2][0];
457 m[2][1] = TempRow.x*mat.m[0][1] + TempRow.y*mat.m[1][1] + TempRow.z*mat.m[2][1];
458 m[2][2] = TempRow.x*mat.m[0][2] + TempRow.y*mat.m[1][2] + TempRow.z*mat.m[2][2];
459 return *this;
460 }
461
462 //! Operator for Matrix3x3 *= float
463 inline_ Matrix3x3& operator*=(float s)
464 {
465 m[0][0] *= s; m[0][1] *= s; m[0][2] *= s;
466 m[1][0] *= s; m[1][1] *= s; m[1][2] *= s;
467 m[2][0] *= s; m[2][1] *= s; m[2][2] *= s;
468 return *this;
469 }
470
471 //! Operator for Matrix3x3 /= float
472 inline_ Matrix3x3& operator/=(float s)
473 {
474 if (s) s = 1.0f / s;
475 m[0][0] *= s; m[0][1] *= s; m[0][2] *= s;
476 m[1][0] *= s; m[1][1] *= s; m[1][2] *= s;
477 m[2][0] *= s; m[2][1] *= s; m[2][2] *= s;
478 return *this;
479 }
480
481 // Cast operators
482 //! Cast a Matrix3x3 to a Matrix4x4.
483 operator Matrix4x4() const;
484 //! Cast a Matrix3x3 to a Quat.
485 operator Quat() const;
486
487 inline_ const Point& operator[](int row) const { return *(const Point*)&m[row][0]; }
488 inline_ Point& operator[](int row) { return *(Point*)&m[row][0]; }
489
490 public:
491
492 float m[3][3];
493 };
494
495#endif // __ICEMATRIX3X3_H__
496