diff options
author | dan miller | 2007-10-19 05:20:48 +0000 |
---|---|---|
committer | dan miller | 2007-10-19 05:20:48 +0000 |
commit | d48ea5bb797037069d641da41da0f195f0124491 (patch) | |
tree | 40ff433d94859d629aac933d5ec73b382f62ba1a /libraries/ode-0.9/OPCODE/Ice/IceMatrix3x3.h | |
parent | dont ask (diff) | |
download | opensim-SC-d48ea5bb797037069d641da41da0f195f0124491.zip opensim-SC-d48ea5bb797037069d641da41da0f195f0124491.tar.gz opensim-SC-d48ea5bb797037069d641da41da0f195f0124491.tar.bz2 opensim-SC-d48ea5bb797037069d641da41da0f195f0124491.tar.xz |
one more for the gipper
Diffstat (limited to 'libraries/ode-0.9/OPCODE/Ice/IceMatrix3x3.h')
-rw-r--r-- | libraries/ode-0.9/OPCODE/Ice/IceMatrix3x3.h | 496 |
1 files changed, 496 insertions, 0 deletions
diff --git a/libraries/ode-0.9/OPCODE/Ice/IceMatrix3x3.h b/libraries/ode-0.9/OPCODE/Ice/IceMatrix3x3.h new file mode 100644 index 0000000..a30680d --- /dev/null +++ b/libraries/ode-0.9/OPCODE/Ice/IceMatrix3x3.h | |||
@@ -0,0 +1,496 @@ | |||
1 | /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// | ||
2 | /** | ||
3 | * Contains code for 3x3 matrices. | ||
4 | * \file IceMatrix3x3.h | ||
5 | * \author Pierre Terdiman | ||
6 | * \date April, 4, 2000 | ||
7 | */ | ||
8 | /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// | ||
9 | |||
10 | /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// | ||
11 | // Include Guard | ||
12 | #ifndef __ICEMATRIX3X3_H__ | ||
13 | #define __ICEMATRIX3X3_H__ | ||
14 | |||
15 | // Forward declarations | ||
16 | class Quat; | ||
17 | |||
18 | #define MATRIX3X3_EPSILON (1.0e-7f) | ||
19 | |||
20 | class ICEMATHS_API Matrix3x3 | ||
21 | { | ||
22 | public: | ||
23 | //! Empty constructor | ||
24 | inline_ Matrix3x3() {} | ||
25 | //! Constructor from 9 values | ||
26 | inline_ Matrix3x3(float m00, float m01, float m02, float m10, float m11, float m12, float m20, float m21, float m22) | ||
27 | { | ||
28 | m[0][0] = m00; m[0][1] = m01; m[0][2] = m02; | ||
29 | m[1][0] = m10; m[1][1] = m11; m[1][2] = m12; | ||
30 | m[2][0] = m20; m[2][1] = m21; m[2][2] = m22; | ||
31 | } | ||
32 | //! Copy constructor | ||
33 | inline_ Matrix3x3(const Matrix3x3& mat) { CopyMemory(m, &mat.m, 9*sizeof(float)); } | ||
34 | //! Destructor | ||
35 | inline_ ~Matrix3x3() {} | ||
36 | |||
37 | //! Assign values | ||
38 | inline_ void Set(float m00, float m01, float m02, float m10, float m11, float m12, float m20, float m21, float m22) | ||
39 | { | ||
40 | m[0][0] = m00; m[0][1] = m01; m[0][2] = m02; | ||
41 | m[1][0] = m10; m[1][1] = m11; m[1][2] = m12; | ||
42 | m[2][0] = m20; m[2][1] = m21; m[2][2] = m22; | ||
43 | } | ||
44 | |||
45 | //! Sets the scale from a Point. The point is put on the diagonal. | ||
46 | inline_ void SetScale(const Point& p) { m[0][0] = p.x; m[1][1] = p.y; m[2][2] = p.z; } | ||
47 | |||
48 | //! Sets the scale from floats. Values are put on the diagonal. | ||
49 | inline_ void SetScale(float sx, float sy, float sz) { m[0][0] = sx; m[1][1] = sy; m[2][2] = sz; } | ||
50 | |||
51 | //! Scales from a Point. Each row is multiplied by a component. | ||
52 | inline_ void Scale(const Point& p) | ||
53 | { | ||
54 | m[0][0] *= p.x; m[0][1] *= p.x; m[0][2] *= p.x; | ||
55 | m[1][0] *= p.y; m[1][1] *= p.y; m[1][2] *= p.y; | ||
56 | m[2][0] *= p.z; m[2][1] *= p.z; m[2][2] *= p.z; | ||
57 | } | ||
58 | |||
59 | //! Scales from floats. Each row is multiplied by a value. | ||
60 | inline_ void Scale(float sx, float sy, float sz) | ||
61 | { | ||
62 | m[0][0] *= sx; m[0][1] *= sx; m[0][2] *= sx; | ||
63 | m[1][0] *= sy; m[1][1] *= sy; m[1][2] *= sy; | ||
64 | m[2][0] *= sz; m[2][1] *= sz; m[2][2] *= sz; | ||
65 | } | ||
66 | |||
67 | //! Copy from a Matrix3x3 | ||
68 | inline_ void Copy(const Matrix3x3& source) { CopyMemory(m, source.m, 9*sizeof(float)); } | ||
69 | |||
70 | // Row-column access | ||
71 | //! Returns a row. | ||
72 | inline_ void GetRow(const udword r, Point& p) const { p.x = m[r][0]; p.y = m[r][1]; p.z = m[r][2]; } | ||
73 | //! Returns a row. | ||
74 | inline_ const Point& GetRow(const udword r) const { return *(const Point*)&m[r][0]; } | ||
75 | //! Returns a row. | ||
76 | inline_ Point& GetRow(const udword r) { return *(Point*)&m[r][0]; } | ||
77 | //! Sets a row. | ||
78 | inline_ void SetRow(const udword r, const Point& p) { m[r][0] = p.x; m[r][1] = p.y; m[r][2] = p.z; } | ||
79 | //! Returns a column. | ||
80 | inline_ void GetCol(const udword c, Point& p) const { p.x = m[0][c]; p.y = m[1][c]; p.z = m[2][c]; } | ||
81 | //! Sets a column. | ||
82 | inline_ void SetCol(const udword c, const Point& p) { m[0][c] = p.x; m[1][c] = p.y; m[2][c] = p.z; } | ||
83 | |||
84 | //! Computes the trace. The trace is the sum of the 3 diagonal components. | ||
85 | inline_ float Trace() const { return m[0][0] + m[1][1] + m[2][2]; } | ||
86 | //! Clears the matrix. | ||
87 | inline_ void Zero() { ZeroMemory(&m, sizeof(m)); } | ||
88 | //! Sets the identity matrix. | ||
89 | inline_ void Identity() { Zero(); m[0][0] = m[1][1] = m[2][2] = 1.0f; } | ||
90 | //! Checks for identity | ||
91 | inline_ bool IsIdentity() const | ||
92 | { | ||
93 | if(IR(m[0][0])!=IEEE_1_0) return false; | ||
94 | if(IR(m[0][1])!=0) return false; | ||
95 | if(IR(m[0][2])!=0) return false; | ||
96 | |||
97 | if(IR(m[1][0])!=0) return false; | ||
98 | if(IR(m[1][1])!=IEEE_1_0) return false; | ||
99 | if(IR(m[1][2])!=0) return false; | ||
100 | |||
101 | if(IR(m[2][0])!=0) return false; | ||
102 | if(IR(m[2][1])!=0) return false; | ||
103 | if(IR(m[2][2])!=IEEE_1_0) return false; | ||
104 | |||
105 | return true; | ||
106 | } | ||
107 | |||
108 | //! Checks matrix validity | ||
109 | inline_ BOOL IsValid() const | ||
110 | { | ||
111 | for(udword j=0;j<3;j++) | ||
112 | { | ||
113 | for(udword i=0;i<3;i++) | ||
114 | { | ||
115 | if(!IsValidFloat(m[j][i])) return FALSE; | ||
116 | } | ||
117 | } | ||
118 | return TRUE; | ||
119 | } | ||
120 | |||
121 | //! Makes a skew-symmetric matrix (a.k.a. Star(*) Matrix) | ||
122 | //! [ 0.0 -a.z a.y ] | ||
123 | //! [ a.z 0.0 -a.x ] | ||
124 | //! [ -a.y a.x 0.0 ] | ||
125 | //! This is also called a "cross matrix" since for any vectors A and B, | ||
126 | //! A^B = Skew(A) * B = - B * Skew(A); | ||
127 | inline_ void SkewSymmetric(const Point& a) | ||
128 | { | ||
129 | m[0][0] = 0.0f; | ||
130 | m[0][1] = -a.z; | ||
131 | m[0][2] = a.y; | ||
132 | |||
133 | m[1][0] = a.z; | ||
134 | m[1][1] = 0.0f; | ||
135 | m[1][2] = -a.x; | ||
136 | |||
137 | m[2][0] = -a.y; | ||
138 | m[2][1] = a.x; | ||
139 | m[2][2] = 0.0f; | ||
140 | } | ||
141 | |||
142 | //! Negates the matrix | ||
143 | inline_ void Neg() | ||
144 | { | ||
145 | m[0][0] = -m[0][0]; m[0][1] = -m[0][1]; m[0][2] = -m[0][2]; | ||
146 | m[1][0] = -m[1][0]; m[1][1] = -m[1][1]; m[1][2] = -m[1][2]; | ||
147 | m[2][0] = -m[2][0]; m[2][1] = -m[2][1]; m[2][2] = -m[2][2]; | ||
148 | } | ||
149 | |||
150 | //! Neg from another matrix | ||
151 | inline_ void Neg(const Matrix3x3& mat) | ||
152 | { | ||
153 | m[0][0] = -mat.m[0][0]; m[0][1] = -mat.m[0][1]; m[0][2] = -mat.m[0][2]; | ||
154 | m[1][0] = -mat.m[1][0]; m[1][1] = -mat.m[1][1]; m[1][2] = -mat.m[1][2]; | ||
155 | m[2][0] = -mat.m[2][0]; m[2][1] = -mat.m[2][1]; m[2][2] = -mat.m[2][2]; | ||
156 | } | ||
157 | |||
158 | //! Add another matrix | ||
159 | inline_ void Add(const Matrix3x3& mat) | ||
160 | { | ||
161 | m[0][0] += mat.m[0][0]; m[0][1] += mat.m[0][1]; m[0][2] += mat.m[0][2]; | ||
162 | m[1][0] += mat.m[1][0]; m[1][1] += mat.m[1][1]; m[1][2] += mat.m[1][2]; | ||
163 | m[2][0] += mat.m[2][0]; m[2][1] += mat.m[2][1]; m[2][2] += mat.m[2][2]; | ||
164 | } | ||
165 | |||
166 | //! Sub another matrix | ||
167 | inline_ void Sub(const Matrix3x3& mat) | ||
168 | { | ||
169 | m[0][0] -= mat.m[0][0]; m[0][1] -= mat.m[0][1]; m[0][2] -= mat.m[0][2]; | ||
170 | m[1][0] -= mat.m[1][0]; m[1][1] -= mat.m[1][1]; m[1][2] -= mat.m[1][2]; | ||
171 | m[2][0] -= mat.m[2][0]; m[2][1] -= mat.m[2][1]; m[2][2] -= mat.m[2][2]; | ||
172 | } | ||
173 | //! Mac | ||
174 | inline_ void Mac(const Matrix3x3& a, const Matrix3x3& b, float s) | ||
175 | { | ||
176 | m[0][0] = a.m[0][0] + b.m[0][0] * s; | ||
177 | m[0][1] = a.m[0][1] + b.m[0][1] * s; | ||
178 | m[0][2] = a.m[0][2] + b.m[0][2] * s; | ||
179 | |||
180 | m[1][0] = a.m[1][0] + b.m[1][0] * s; | ||
181 | m[1][1] = a.m[1][1] + b.m[1][1] * s; | ||
182 | m[1][2] = a.m[1][2] + b.m[1][2] * s; | ||
183 | |||
184 | m[2][0] = a.m[2][0] + b.m[2][0] * s; | ||
185 | m[2][1] = a.m[2][1] + b.m[2][1] * s; | ||
186 | m[2][2] = a.m[2][2] + b.m[2][2] * s; | ||
187 | } | ||
188 | //! Mac | ||
189 | inline_ void Mac(const Matrix3x3& a, float s) | ||
190 | { | ||
191 | m[0][0] += a.m[0][0] * s; m[0][1] += a.m[0][1] * s; m[0][2] += a.m[0][2] * s; | ||
192 | m[1][0] += a.m[1][0] * s; m[1][1] += a.m[1][1] * s; m[1][2] += a.m[1][2] * s; | ||
193 | m[2][0] += a.m[2][0] * s; m[2][1] += a.m[2][1] * s; m[2][2] += a.m[2][2] * s; | ||
194 | } | ||
195 | |||
196 | //! this = A * s | ||
197 | inline_ void Mult(const Matrix3x3& a, float s) | ||
198 | { | ||
199 | m[0][0] = a.m[0][0] * s; m[0][1] = a.m[0][1] * s; m[0][2] = a.m[0][2] * s; | ||
200 | m[1][0] = a.m[1][0] * s; m[1][1] = a.m[1][1] * s; m[1][2] = a.m[1][2] * s; | ||
201 | m[2][0] = a.m[2][0] * s; m[2][1] = a.m[2][1] * s; m[2][2] = a.m[2][2] * s; | ||
202 | } | ||
203 | |||
204 | inline_ void Add(const Matrix3x3& a, const Matrix3x3& b) | ||
205 | { | ||
206 | m[0][0] = a.m[0][0] + b.m[0][0]; m[0][1] = a.m[0][1] + b.m[0][1]; m[0][2] = a.m[0][2] + b.m[0][2]; | ||
207 | m[1][0] = a.m[1][0] + b.m[1][0]; m[1][1] = a.m[1][1] + b.m[1][1]; m[1][2] = a.m[1][2] + b.m[1][2]; | ||
208 | m[2][0] = a.m[2][0] + b.m[2][0]; m[2][1] = a.m[2][1] + b.m[2][1]; m[2][2] = a.m[2][2] + b.m[2][2]; | ||
209 | } | ||
210 | |||
211 | inline_ void Sub(const Matrix3x3& a, const Matrix3x3& b) | ||
212 | { | ||
213 | m[0][0] = a.m[0][0] - b.m[0][0]; m[0][1] = a.m[0][1] - b.m[0][1]; m[0][2] = a.m[0][2] - b.m[0][2]; | ||
214 | m[1][0] = a.m[1][0] - b.m[1][0]; m[1][1] = a.m[1][1] - b.m[1][1]; m[1][2] = a.m[1][2] - b.m[1][2]; | ||
215 | m[2][0] = a.m[2][0] - b.m[2][0]; m[2][1] = a.m[2][1] - b.m[2][1]; m[2][2] = a.m[2][2] - b.m[2][2]; | ||
216 | } | ||
217 | |||
218 | //! this = a * b | ||
219 | inline_ void Mult(const Matrix3x3& a, const Matrix3x3& b) | ||
220 | { | ||
221 | m[0][0] = a.m[0][0] * b.m[0][0] + a.m[0][1] * b.m[1][0] + a.m[0][2] * b.m[2][0]; | ||
222 | m[0][1] = a.m[0][0] * b.m[0][1] + a.m[0][1] * b.m[1][1] + a.m[0][2] * b.m[2][1]; | ||
223 | m[0][2] = a.m[0][0] * b.m[0][2] + a.m[0][1] * b.m[1][2] + a.m[0][2] * b.m[2][2]; | ||
224 | m[1][0] = a.m[1][0] * b.m[0][0] + a.m[1][1] * b.m[1][0] + a.m[1][2] * b.m[2][0]; | ||
225 | m[1][1] = a.m[1][0] * b.m[0][1] + a.m[1][1] * b.m[1][1] + a.m[1][2] * b.m[2][1]; | ||
226 | m[1][2] = a.m[1][0] * b.m[0][2] + a.m[1][1] * b.m[1][2] + a.m[1][2] * b.m[2][2]; | ||
227 | m[2][0] = a.m[2][0] * b.m[0][0] + a.m[2][1] * b.m[1][0] + a.m[2][2] * b.m[2][0]; | ||
228 | m[2][1] = a.m[2][0] * b.m[0][1] + a.m[2][1] * b.m[1][1] + a.m[2][2] * b.m[2][1]; | ||
229 | m[2][2] = a.m[2][0] * b.m[0][2] + a.m[2][1] * b.m[1][2] + a.m[2][2] * b.m[2][2]; | ||
230 | } | ||
231 | |||
232 | //! this = transpose(a) * b | ||
233 | inline_ void MultAtB(const Matrix3x3& a, const Matrix3x3& b) | ||
234 | { | ||
235 | m[0][0] = a.m[0][0] * b.m[0][0] + a.m[1][0] * b.m[1][0] + a.m[2][0] * b.m[2][0]; | ||
236 | m[0][1] = a.m[0][0] * b.m[0][1] + a.m[1][0] * b.m[1][1] + a.m[2][0] * b.m[2][1]; | ||
237 | m[0][2] = a.m[0][0] * b.m[0][2] + a.m[1][0] * b.m[1][2] + a.m[2][0] * b.m[2][2]; | ||
238 | m[1][0] = a.m[0][1] * b.m[0][0] + a.m[1][1] * b.m[1][0] + a.m[2][1] * b.m[2][0]; | ||
239 | m[1][1] = a.m[0][1] * b.m[0][1] + a.m[1][1] * b.m[1][1] + a.m[2][1] * b.m[2][1]; | ||
240 | m[1][2] = a.m[0][1] * b.m[0][2] + a.m[1][1] * b.m[1][2] + a.m[2][1] * b.m[2][2]; | ||
241 | m[2][0] = a.m[0][2] * b.m[0][0] + a.m[1][2] * b.m[1][0] + a.m[2][2] * b.m[2][0]; | ||
242 | m[2][1] = a.m[0][2] * b.m[0][1] + a.m[1][2] * b.m[1][1] + a.m[2][2] * b.m[2][1]; | ||
243 | m[2][2] = a.m[0][2] * b.m[0][2] + a.m[1][2] * b.m[1][2] + a.m[2][2] * b.m[2][2]; | ||
244 | } | ||
245 | |||
246 | //! this = a * transpose(b) | ||
247 | inline_ void MultABt(const Matrix3x3& a, const Matrix3x3& b) | ||
248 | { | ||
249 | m[0][0] = a.m[0][0] * b.m[0][0] + a.m[0][1] * b.m[0][1] + a.m[0][2] * b.m[0][2]; | ||
250 | m[0][1] = a.m[0][0] * b.m[1][0] + a.m[0][1] * b.m[1][1] + a.m[0][2] * b.m[1][2]; | ||
251 | m[0][2] = a.m[0][0] * b.m[2][0] + a.m[0][1] * b.m[2][1] + a.m[0][2] * b.m[2][2]; | ||
252 | m[1][0] = a.m[1][0] * b.m[0][0] + a.m[1][1] * b.m[0][1] + a.m[1][2] * b.m[0][2]; | ||
253 | m[1][1] = a.m[1][0] * b.m[1][0] + a.m[1][1] * b.m[1][1] + a.m[1][2] * b.m[1][2]; | ||
254 | m[1][2] = a.m[1][0] * b.m[2][0] + a.m[1][1] * b.m[2][1] + a.m[1][2] * b.m[2][2]; | ||
255 | m[2][0] = a.m[2][0] * b.m[0][0] + a.m[2][1] * b.m[0][1] + a.m[2][2] * b.m[0][2]; | ||
256 | m[2][1] = a.m[2][0] * b.m[1][0] + a.m[2][1] * b.m[1][1] + a.m[2][2] * b.m[1][2]; | ||
257 | m[2][2] = a.m[2][0] * b.m[2][0] + a.m[2][1] * b.m[2][1] + a.m[2][2] * b.m[2][2]; | ||
258 | } | ||
259 | |||
260 | //! Makes a rotation matrix mapping vector "from" to vector "to". | ||
261 | Matrix3x3& FromTo(const Point& from, const Point& to); | ||
262 | |||
263 | //! Set a rotation matrix around the X axis. | ||
264 | //! 1 0 0 | ||
265 | //! RX = 0 cx sx | ||
266 | //! 0 -sx cx | ||
267 | void RotX(float angle); | ||
268 | //! Set a rotation matrix around the Y axis. | ||
269 | //! cy 0 -sy | ||
270 | //! RY = 0 1 0 | ||
271 | //! sy 0 cy | ||
272 | void RotY(float angle); | ||
273 | //! Set a rotation matrix around the Z axis. | ||
274 | //! cz sz 0 | ||
275 | //! RZ = -sz cz 0 | ||
276 | //! 0 0 1 | ||
277 | void RotZ(float angle); | ||
278 | //! cy sx.sy -sy.cx | ||
279 | //! RY.RX 0 cx sx | ||
280 | //! sy -sx.cy cx.cy | ||
281 | void RotYX(float y, float x); | ||
282 | |||
283 | //! Make a rotation matrix about an arbitrary axis | ||
284 | Matrix3x3& Rot(float angle, const Point& axis); | ||
285 | |||
286 | //! Transpose the matrix. | ||
287 | void Transpose() | ||
288 | { | ||
289 | IR(m[1][0]) ^= IR(m[0][1]); IR(m[0][1]) ^= IR(m[1][0]); IR(m[1][0]) ^= IR(m[0][1]); | ||
290 | IR(m[2][0]) ^= IR(m[0][2]); IR(m[0][2]) ^= IR(m[2][0]); IR(m[2][0]) ^= IR(m[0][2]); | ||
291 | IR(m[2][1]) ^= IR(m[1][2]); IR(m[1][2]) ^= IR(m[2][1]); IR(m[2][1]) ^= IR(m[1][2]); | ||
292 | } | ||
293 | |||
294 | //! this = Transpose(a) | ||
295 | void Transpose(const Matrix3x3& a) | ||
296 | { | ||
297 | m[0][0] = a.m[0][0]; m[0][1] = a.m[1][0]; m[0][2] = a.m[2][0]; | ||
298 | m[1][0] = a.m[0][1]; m[1][1] = a.m[1][1]; m[1][2] = a.m[2][1]; | ||
299 | m[2][0] = a.m[0][2]; m[2][1] = a.m[1][2]; m[2][2] = a.m[2][2]; | ||
300 | } | ||
301 | |||
302 | //! Compute the determinant of the matrix. We use the rule of Sarrus. | ||
303 | float Determinant() const | ||
304 | { | ||
305 | return (m[0][0]*m[1][1]*m[2][2] + m[0][1]*m[1][2]*m[2][0] + m[0][2]*m[1][0]*m[2][1]) | ||
306 | - (m[2][0]*m[1][1]*m[0][2] + m[2][1]*m[1][2]*m[0][0] + m[2][2]*m[1][0]*m[0][1]); | ||
307 | } | ||
308 | /* | ||
309 | //! Compute a cofactor. Used for matrix inversion. | ||
310 | float CoFactor(ubyte row, ubyte column) const | ||
311 | { | ||
312 | static sdword gIndex[3+2] = { 0, 1, 2, 0, 1 }; | ||
313 | return (m[gIndex[row+1]][gIndex[column+1]]*m[gIndex[row+2]][gIndex[column+2]] - m[gIndex[row+2]][gIndex[column+1]]*m[gIndex[row+1]][gIndex[column+2]]); | ||
314 | } | ||
315 | */ | ||
316 | //! Invert the matrix. Determinant must be different from zero, else matrix can't be inverted. | ||
317 | Matrix3x3& Invert() | ||
318 | { | ||
319 | float Det = Determinant(); // Must be !=0 | ||
320 | float OneOverDet = 1.0f / Det; | ||
321 | |||
322 | Matrix3x3 Temp; | ||
323 | Temp.m[0][0] = +(m[1][1] * m[2][2] - m[2][1] * m[1][2]) * OneOverDet; | ||
324 | Temp.m[1][0] = -(m[1][0] * m[2][2] - m[2][0] * m[1][2]) * OneOverDet; | ||
325 | Temp.m[2][0] = +(m[1][0] * m[2][1] - m[2][0] * m[1][1]) * OneOverDet; | ||
326 | Temp.m[0][1] = -(m[0][1] * m[2][2] - m[2][1] * m[0][2]) * OneOverDet; | ||
327 | Temp.m[1][1] = +(m[0][0] * m[2][2] - m[2][0] * m[0][2]) * OneOverDet; | ||
328 | Temp.m[2][1] = -(m[0][0] * m[2][1] - m[2][0] * m[0][1]) * OneOverDet; | ||
329 | Temp.m[0][2] = +(m[0][1] * m[1][2] - m[1][1] * m[0][2]) * OneOverDet; | ||
330 | Temp.m[1][2] = -(m[0][0] * m[1][2] - m[1][0] * m[0][2]) * OneOverDet; | ||
331 | Temp.m[2][2] = +(m[0][0] * m[1][1] - m[1][0] * m[0][1]) * OneOverDet; | ||
332 | |||
333 | *this = Temp; | ||
334 | |||
335 | return *this; | ||
336 | } | ||
337 | |||
338 | Matrix3x3& Normalize(); | ||
339 | |||
340 | //! this = exp(a) | ||
341 | Matrix3x3& Exp(const Matrix3x3& a); | ||
342 | |||
343 | void FromQuat(const Quat &q); | ||
344 | void FromQuatL2(const Quat &q, float l2); | ||
345 | |||
346 | // Arithmetic operators | ||
347 | //! Operator for Matrix3x3 Plus = Matrix3x3 + Matrix3x3; | ||
348 | inline_ Matrix3x3 operator+(const Matrix3x3& mat) const | ||
349 | { | ||
350 | return Matrix3x3( | ||
351 | m[0][0] + mat.m[0][0], m[0][1] + mat.m[0][1], m[0][2] + mat.m[0][2], | ||
352 | m[1][0] + mat.m[1][0], m[1][1] + mat.m[1][1], m[1][2] + mat.m[1][2], | ||
353 | m[2][0] + mat.m[2][0], m[2][1] + mat.m[2][1], m[2][2] + mat.m[2][2]); | ||
354 | } | ||
355 | |||
356 | //! Operator for Matrix3x3 Minus = Matrix3x3 - Matrix3x3; | ||
357 | inline_ Matrix3x3 operator-(const Matrix3x3& mat) const | ||
358 | { | ||
359 | return Matrix3x3( | ||
360 | m[0][0] - mat.m[0][0], m[0][1] - mat.m[0][1], m[0][2] - mat.m[0][2], | ||
361 | m[1][0] - mat.m[1][0], m[1][1] - mat.m[1][1], m[1][2] - mat.m[1][2], | ||
362 | m[2][0] - mat.m[2][0], m[2][1] - mat.m[2][1], m[2][2] - mat.m[2][2]); | ||
363 | } | ||
364 | |||
365 | //! Operator for Matrix3x3 Mul = Matrix3x3 * Matrix3x3; | ||
366 | inline_ Matrix3x3 operator*(const Matrix3x3& mat) const | ||
367 | { | ||
368 | return Matrix3x3( | ||
369 | m[0][0]*mat.m[0][0] + m[0][1]*mat.m[1][0] + m[0][2]*mat.m[2][0], | ||
370 | m[0][0]*mat.m[0][1] + m[0][1]*mat.m[1][1] + m[0][2]*mat.m[2][1], | ||
371 | m[0][0]*mat.m[0][2] + m[0][1]*mat.m[1][2] + m[0][2]*mat.m[2][2], | ||
372 | |||
373 | m[1][0]*mat.m[0][0] + m[1][1]*mat.m[1][0] + m[1][2]*mat.m[2][0], | ||
374 | m[1][0]*mat.m[0][1] + m[1][1]*mat.m[1][1] + m[1][2]*mat.m[2][1], | ||
375 | m[1][0]*mat.m[0][2] + m[1][1]*mat.m[1][2] + m[1][2]*mat.m[2][2], | ||
376 | |||
377 | m[2][0]*mat.m[0][0] + m[2][1]*mat.m[1][0] + m[2][2]*mat.m[2][0], | ||
378 | m[2][0]*mat.m[0][1] + m[2][1]*mat.m[1][1] + m[2][2]*mat.m[2][1], | ||
379 | m[2][0]*mat.m[0][2] + m[2][1]*mat.m[1][2] + m[2][2]*mat.m[2][2]); | ||
380 | } | ||
381 | |||
382 | //! Operator for Point Mul = Matrix3x3 * Point; | ||
383 | inline_ Point operator*(const Point& v) const { return Point(GetRow(0)|v, GetRow(1)|v, GetRow(2)|v); } | ||
384 | |||
385 | //! Operator for Matrix3x3 Mul = Matrix3x3 * float; | ||
386 | inline_ Matrix3x3 operator*(float s) const | ||
387 | { | ||
388 | return Matrix3x3( | ||
389 | m[0][0]*s, m[0][1]*s, m[0][2]*s, | ||
390 | m[1][0]*s, m[1][1]*s, m[1][2]*s, | ||
391 | m[2][0]*s, m[2][1]*s, m[2][2]*s); | ||
392 | } | ||
393 | |||
394 | //! Operator for Matrix3x3 Mul = float * Matrix3x3; | ||
395 | inline_ friend Matrix3x3 operator*(float s, const Matrix3x3& mat) | ||
396 | { | ||
397 | return Matrix3x3( | ||
398 | s*mat.m[0][0], s*mat.m[0][1], s*mat.m[0][2], | ||
399 | s*mat.m[1][0], s*mat.m[1][1], s*mat.m[1][2], | ||
400 | s*mat.m[2][0], s*mat.m[2][1], s*mat.m[2][2]); | ||
401 | } | ||
402 | |||
403 | //! Operator for Matrix3x3 Div = Matrix3x3 / float; | ||
404 | inline_ Matrix3x3 operator/(float s) const | ||
405 | { | ||
406 | if (s) s = 1.0f / s; | ||
407 | return Matrix3x3( | ||
408 | m[0][0]*s, m[0][1]*s, m[0][2]*s, | ||
409 | m[1][0]*s, m[1][1]*s, m[1][2]*s, | ||
410 | m[2][0]*s, m[2][1]*s, m[2][2]*s); | ||
411 | } | ||
412 | |||
413 | //! Operator for Matrix3x3 Div = float / Matrix3x3; | ||
414 | inline_ friend Matrix3x3 operator/(float s, const Matrix3x3& mat) | ||
415 | { | ||
416 | return Matrix3x3( | ||
417 | s/mat.m[0][0], s/mat.m[0][1], s/mat.m[0][2], | ||
418 | s/mat.m[1][0], s/mat.m[1][1], s/mat.m[1][2], | ||
419 | s/mat.m[2][0], s/mat.m[2][1], s/mat.m[2][2]); | ||
420 | } | ||
421 | |||
422 | //! Operator for Matrix3x3 += Matrix3x3 | ||
423 | inline_ Matrix3x3& operator+=(const Matrix3x3& mat) | ||
424 | { | ||
425 | m[0][0] += mat.m[0][0]; m[0][1] += mat.m[0][1]; m[0][2] += mat.m[0][2]; | ||
426 | m[1][0] += mat.m[1][0]; m[1][1] += mat.m[1][1]; m[1][2] += mat.m[1][2]; | ||
427 | m[2][0] += mat.m[2][0]; m[2][1] += mat.m[2][1]; m[2][2] += mat.m[2][2]; | ||
428 | return *this; | ||
429 | } | ||
430 | |||
431 | //! Operator for Matrix3x3 -= Matrix3x3 | ||
432 | inline_ Matrix3x3& operator-=(const Matrix3x3& mat) | ||
433 | { | ||
434 | m[0][0] -= mat.m[0][0]; m[0][1] -= mat.m[0][1]; m[0][2] -= mat.m[0][2]; | ||
435 | m[1][0] -= mat.m[1][0]; m[1][1] -= mat.m[1][1]; m[1][2] -= mat.m[1][2]; | ||
436 | m[2][0] -= mat.m[2][0]; m[2][1] -= mat.m[2][1]; m[2][2] -= mat.m[2][2]; | ||
437 | return *this; | ||
438 | } | ||
439 | |||
440 | //! Operator for Matrix3x3 *= Matrix3x3 | ||
441 | inline_ Matrix3x3& operator*=(const Matrix3x3& mat) | ||
442 | { | ||
443 | Point TempRow; | ||
444 | |||
445 | GetRow(0, TempRow); | ||
446 | m[0][0] = TempRow.x*mat.m[0][0] + TempRow.y*mat.m[1][0] + TempRow.z*mat.m[2][0]; | ||
447 | m[0][1] = TempRow.x*mat.m[0][1] + TempRow.y*mat.m[1][1] + TempRow.z*mat.m[2][1]; | ||
448 | m[0][2] = TempRow.x*mat.m[0][2] + TempRow.y*mat.m[1][2] + TempRow.z*mat.m[2][2]; | ||
449 | |||
450 | GetRow(1, TempRow); | ||
451 | m[1][0] = TempRow.x*mat.m[0][0] + TempRow.y*mat.m[1][0] + TempRow.z*mat.m[2][0]; | ||
452 | m[1][1] = TempRow.x*mat.m[0][1] + TempRow.y*mat.m[1][1] + TempRow.z*mat.m[2][1]; | ||
453 | m[1][2] = TempRow.x*mat.m[0][2] + TempRow.y*mat.m[1][2] + TempRow.z*mat.m[2][2]; | ||
454 | |||
455 | GetRow(2, TempRow); | ||
456 | m[2][0] = TempRow.x*mat.m[0][0] + TempRow.y*mat.m[1][0] + TempRow.z*mat.m[2][0]; | ||
457 | m[2][1] = TempRow.x*mat.m[0][1] + TempRow.y*mat.m[1][1] + TempRow.z*mat.m[2][1]; | ||
458 | m[2][2] = TempRow.x*mat.m[0][2] + TempRow.y*mat.m[1][2] + TempRow.z*mat.m[2][2]; | ||
459 | return *this; | ||
460 | } | ||
461 | |||
462 | //! Operator for Matrix3x3 *= float | ||
463 | inline_ Matrix3x3& operator*=(float s) | ||
464 | { | ||
465 | m[0][0] *= s; m[0][1] *= s; m[0][2] *= s; | ||
466 | m[1][0] *= s; m[1][1] *= s; m[1][2] *= s; | ||
467 | m[2][0] *= s; m[2][1] *= s; m[2][2] *= s; | ||
468 | return *this; | ||
469 | } | ||
470 | |||
471 | //! Operator for Matrix3x3 /= float | ||
472 | inline_ Matrix3x3& operator/=(float s) | ||
473 | { | ||
474 | if (s) s = 1.0f / s; | ||
475 | m[0][0] *= s; m[0][1] *= s; m[0][2] *= s; | ||
476 | m[1][0] *= s; m[1][1] *= s; m[1][2] *= s; | ||
477 | m[2][0] *= s; m[2][1] *= s; m[2][2] *= s; | ||
478 | return *this; | ||
479 | } | ||
480 | |||
481 | // Cast operators | ||
482 | //! Cast a Matrix3x3 to a Matrix4x4. | ||
483 | operator Matrix4x4() const; | ||
484 | //! Cast a Matrix3x3 to a Quat. | ||
485 | operator Quat() const; | ||
486 | |||
487 | inline_ const Point& operator[](int row) const { return *(const Point*)&m[row][0]; } | ||
488 | inline_ Point& operator[](int row) { return *(Point*)&m[row][0]; } | ||
489 | |||
490 | public: | ||
491 | |||
492 | float m[3][3]; | ||
493 | }; | ||
494 | |||
495 | #endif // __ICEMATRIX3X3_H__ | ||
496 | |||