diff options
author | UbitUmarov | 2012-02-08 15:24:10 +0000 |
---|---|---|
committer | UbitUmarov | 2012-02-08 15:24:10 +0000 |
commit | 815f3af1d7b3bf16e81dd3a03e0c69c8e49f2f91 (patch) | |
tree | 84a2cd2a6c76c23923388d629b54eab4b49b4cf7 /OpenSim/Region/Physics/UbitOdePlugin/ODEDynamics.cs | |
parent | Push more NPC stuff into threads (diff) | |
download | opensim-SC-815f3af1d7b3bf16e81dd3a03e0c69c8e49f2f91.zip opensim-SC-815f3af1d7b3bf16e81dd3a03e0c69c8e49f2f91.tar.gz opensim-SC-815f3af1d7b3bf16e81dd3a03e0c69c8e49f2f91.tar.bz2 opensim-SC-815f3af1d7b3bf16e81dd3a03e0c69c8e49f2f91.tar.xz |
UbitODE plugin initial commit
Diffstat (limited to '')
-rw-r--r-- | OpenSim/Region/Physics/UbitOdePlugin/ODEDynamics.cs | 1035 |
1 files changed, 1035 insertions, 0 deletions
diff --git a/OpenSim/Region/Physics/UbitOdePlugin/ODEDynamics.cs b/OpenSim/Region/Physics/UbitOdePlugin/ODEDynamics.cs new file mode 100644 index 0000000..363cbef --- /dev/null +++ b/OpenSim/Region/Physics/UbitOdePlugin/ODEDynamics.cs | |||
@@ -0,0 +1,1035 @@ | |||
1 | /* | ||
2 | * Copyright (c) Contributors, http://opensimulator.org/ | ||
3 | * See CONTRIBUTORS.TXT for a full list of copyright holders. | ||
4 | * | ||
5 | * Redistribution and use in source and binary forms, with or without | ||
6 | * modification, are permitted provided that the following conditions are met: | ||
7 | * * Redistributions of source code must retain the above copyright | ||
8 | * notice, this list of conditions and the following disclaimer. | ||
9 | * * Redistributions in binary form must reproduce the above copyright | ||
10 | * notice, this list of conditions and the following disclaimer in the | ||
11 | * documentation and/or other materials provided with the distribution. | ||
12 | * * Neither the name of the OpenSimulator Project nor the | ||
13 | * names of its contributors may be used to endorse or promote products | ||
14 | * derived from this software without specific prior written permission. | ||
15 | * | ||
16 | * THIS SOFTWARE IS PROVIDED BY THE DEVELOPERS ``AS IS'' AND ANY | ||
17 | * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED | ||
18 | * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE | ||
19 | * DISCLAIMED. IN NO EVENT SHALL THE CONTRIBUTORS BE LIABLE FOR ANY | ||
20 | * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES | ||
21 | * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | ||
22 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND | ||
23 | * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | ||
24 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS | ||
25 | * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | ||
26 | */ | ||
27 | |||
28 | /* Revised Aug, Sept 2009 by Kitto Flora. ODEDynamics.cs replaces | ||
29 | * ODEVehicleSettings.cs. It and ODEPrim.cs are re-organised: | ||
30 | * ODEPrim.cs contains methods dealing with Prim editing, Prim | ||
31 | * characteristics and Kinetic motion. | ||
32 | * ODEDynamics.cs contains methods dealing with Prim Physical motion | ||
33 | * (dynamics) and the associated settings. Old Linear and angular | ||
34 | * motors for dynamic motion have been replace with MoveLinear() | ||
35 | * and MoveAngular(); 'Physical' is used only to switch ODE dynamic | ||
36 | * simualtion on/off; VEHICAL_TYPE_NONE/VEHICAL_TYPE_<other> is to | ||
37 | * switch between 'VEHICLE' parameter use and general dynamics | ||
38 | * settings use. | ||
39 | */ | ||
40 | |||
41 | using System; | ||
42 | using System.Collections.Generic; | ||
43 | using System.Reflection; | ||
44 | using System.Runtime.InteropServices; | ||
45 | using log4net; | ||
46 | using OpenMetaverse; | ||
47 | using OdeAPI; | ||
48 | using OpenSim.Framework; | ||
49 | using OpenSim.Region.Physics.Manager; | ||
50 | |||
51 | namespace OpenSim.Region.Physics.OdePlugin | ||
52 | { | ||
53 | public class ODEDynamics | ||
54 | { | ||
55 | public Vehicle Type | ||
56 | { | ||
57 | get { return m_type; } | ||
58 | } | ||
59 | |||
60 | // private OdeScene m_parentScene = null; | ||
61 | // private IntPtr m_aMotor = IntPtr.Zero; | ||
62 | |||
63 | |||
64 | private OdePrim rootPrim; | ||
65 | private OdeScene _pParentScene; | ||
66 | |||
67 | |||
68 | |||
69 | |||
70 | private Vector3 refUpAxis = new Vector3(0, 0, 1); | ||
71 | private Vector3 refAtAxis = new Vector3(1, 0, 0); | ||
72 | |||
73 | |||
74 | // Vehicle properties | ||
75 | private Vehicle m_type = Vehicle.TYPE_NONE; // If a 'VEHICLE', and what kind | ||
76 | |||
77 | private Quaternion m_referenceFrame = Quaternion.Identity; // Axis modifier | ||
78 | private VehicleFlag m_flags = (VehicleFlag) 0; // Boolean settings: | ||
79 | // HOVER_TERRAIN_ONLY | ||
80 | // HOVER_GLOBAL_HEIGHT | ||
81 | // NO_DEFLECTION_UP | ||
82 | // HOVER_WATER_ONLY | ||
83 | // HOVER_UP_ONLY | ||
84 | // LIMIT_MOTOR_UP | ||
85 | // LIMIT_ROLL_ONLY | ||
86 | private Vector3 m_BlockingEndPoint = Vector3.Zero; // not sl | ||
87 | private Quaternion m_RollreferenceFrame = Quaternion.Identity; | ||
88 | |||
89 | // Linear properties | ||
90 | private Vector3 m_linearMotorDirection = Vector3.Zero; // velocity requested by LSL, decayed by time | ||
91 | private Vector3 m_linearFrictionTimescale = new Vector3(1000, 1000, 1000); | ||
92 | private float m_linearMotorDecayTimescale = 120; | ||
93 | private float m_linearMotorTimescale = 1000; | ||
94 | private Vector3 m_lastLinearVelocityVector = Vector3.Zero; | ||
95 | private Vector3 m_linearMotorOffset = Vector3.Zero; | ||
96 | |||
97 | //Angular properties | ||
98 | private Vector3 m_angularMotorDirection = Vector3.Zero; // angular velocity requested by LSL motor | ||
99 | private float m_angularMotorTimescale = 1000; // motor angular velocity ramp up rate | ||
100 | private float m_angularMotorDecayTimescale = 120; // motor angular velocity decay rate | ||
101 | private Vector3 m_angularFrictionTimescale = new Vector3(1000, 1000, 1000); // body angular velocity decay rate | ||
102 | private Vector3 m_lastAngularVelocity = Vector3.Zero; // what was last applied to body | ||
103 | |||
104 | //Deflection properties | ||
105 | private float m_angularDeflectionEfficiency = 0; | ||
106 | private float m_angularDeflectionTimescale = 1000; | ||
107 | private float m_linearDeflectionEfficiency = 0; | ||
108 | private float m_linearDeflectionTimescale = 1000; | ||
109 | |||
110 | //Banking properties | ||
111 | private float m_bankingEfficiency = 0; | ||
112 | private float m_bankingMix = 0; | ||
113 | private float m_bankingTimescale = 0; | ||
114 | |||
115 | //Hover and Buoyancy properties | ||
116 | private float m_VhoverHeight = 0f; | ||
117 | private float m_VhoverEfficiency = 0f; | ||
118 | private float m_VhoverTimescale = 1000f; | ||
119 | private float m_VhoverTargetHeight = -1.0f; // if <0 then no hover, else its the current target height | ||
120 | private float m_VehicleBuoyancy = 0f; //KF: m_VehicleBuoyancy is set by VEHICLE_BUOYANCY for a vehicle. | ||
121 | // Modifies gravity. Slider between -1 (double-gravity) and 1 (full anti-gravity) | ||
122 | // KF: So far I have found no good method to combine a script-requested .Z velocity and gravity. | ||
123 | // Therefore only m_VehicleBuoyancy=1 (0g) will use the script-requested .Z velocity. | ||
124 | |||
125 | //Attractor properties | ||
126 | private float m_verticalAttractionEfficiency = 1.0f; // damped | ||
127 | private float m_verticalAttractionTimescale = 1000f; // Timescale > 300 means no vert attractor. | ||
128 | |||
129 | // special contact data for vehicles | ||
130 | public ContactData VehiculeContactData = new ContactData(0f, 0.1f); | ||
131 | |||
132 | // auxiliar | ||
133 | private Vector3 m_dir = Vector3.Zero; // velocity applied to body | ||
134 | |||
135 | private float m_lmEfect = 0; // current linear motor eficiency | ||
136 | private float m_amEfect = 0; // current angular motor eficiency | ||
137 | |||
138 | |||
139 | public ODEDynamics(OdePrim rootp) | ||
140 | { | ||
141 | rootPrim = rootp; | ||
142 | _pParentScene = rootPrim._parent_scene; | ||
143 | } | ||
144 | |||
145 | internal void ProcessFloatVehicleParam(Vehicle pParam, float pValue) | ||
146 | { | ||
147 | float len; | ||
148 | float invtimestep = 1.0f / _pParentScene.ODE_STEPSIZE; | ||
149 | float timestep = _pParentScene.ODE_STEPSIZE; | ||
150 | |||
151 | switch (pParam) | ||
152 | { | ||
153 | case Vehicle.ANGULAR_DEFLECTION_EFFICIENCY: | ||
154 | if (pValue < 0f) pValue = 0f; | ||
155 | if (pValue > 1f) pValue = 1f; | ||
156 | m_angularDeflectionEfficiency = pValue; | ||
157 | break; | ||
158 | case Vehicle.ANGULAR_DEFLECTION_TIMESCALE: | ||
159 | if (pValue < timestep) pValue = timestep; | ||
160 | m_angularDeflectionTimescale = pValue; | ||
161 | break; | ||
162 | case Vehicle.ANGULAR_MOTOR_DECAY_TIMESCALE: | ||
163 | if (pValue < timestep) pValue = timestep; | ||
164 | else if (pValue > 120) pValue = 120; | ||
165 | m_angularMotorDecayTimescale = pValue * invtimestep; | ||
166 | break; | ||
167 | case Vehicle.ANGULAR_MOTOR_TIMESCALE: | ||
168 | if (pValue < timestep) pValue = timestep; | ||
169 | m_angularMotorTimescale = pValue; | ||
170 | break; | ||
171 | case Vehicle.BANKING_EFFICIENCY: | ||
172 | if (pValue < -1f) pValue = -1f; | ||
173 | if (pValue > 1f) pValue = 1f; | ||
174 | m_bankingEfficiency = pValue; | ||
175 | break; | ||
176 | case Vehicle.BANKING_MIX: | ||
177 | if (pValue < 0f) pValue = 0f; | ||
178 | if (pValue > 1f) pValue = 1f; | ||
179 | m_bankingMix = pValue; | ||
180 | break; | ||
181 | case Vehicle.BANKING_TIMESCALE: | ||
182 | if (pValue < timestep) pValue = timestep; | ||
183 | m_bankingTimescale = pValue; | ||
184 | break; | ||
185 | case Vehicle.BUOYANCY: | ||
186 | if (pValue < -1f) pValue = -1f; | ||
187 | if (pValue > 1f) pValue = 1f; | ||
188 | m_VehicleBuoyancy = pValue; | ||
189 | break; | ||
190 | case Vehicle.HOVER_EFFICIENCY: | ||
191 | if (pValue < 0f) pValue = 0f; | ||
192 | if (pValue > 1f) pValue = 1f; | ||
193 | m_VhoverEfficiency = pValue; | ||
194 | break; | ||
195 | case Vehicle.HOVER_HEIGHT: | ||
196 | m_VhoverHeight = pValue; | ||
197 | break; | ||
198 | case Vehicle.HOVER_TIMESCALE: | ||
199 | if (pValue < timestep) pValue = timestep; | ||
200 | m_VhoverTimescale = pValue; | ||
201 | break; | ||
202 | case Vehicle.LINEAR_DEFLECTION_EFFICIENCY: | ||
203 | if (pValue < 0f) pValue = 0f; | ||
204 | if (pValue > 1f) pValue = 1f; | ||
205 | m_linearDeflectionEfficiency = pValue; | ||
206 | break; | ||
207 | case Vehicle.LINEAR_DEFLECTION_TIMESCALE: | ||
208 | if (pValue < timestep) pValue = timestep; | ||
209 | m_linearDeflectionTimescale = pValue; | ||
210 | break; | ||
211 | case Vehicle.LINEAR_MOTOR_DECAY_TIMESCALE: | ||
212 | if (pValue < timestep) pValue = timestep; | ||
213 | else if (pValue > 120) pValue = 120; | ||
214 | m_linearMotorDecayTimescale = pValue * invtimestep; | ||
215 | break; | ||
216 | case Vehicle.LINEAR_MOTOR_TIMESCALE: | ||
217 | if (pValue < timestep) pValue = timestep; | ||
218 | m_linearMotorTimescale = pValue; | ||
219 | break; | ||
220 | case Vehicle.VERTICAL_ATTRACTION_EFFICIENCY: | ||
221 | if (pValue < 0f) pValue = 0f; | ||
222 | if (pValue > 1f) pValue = 1f; | ||
223 | m_verticalAttractionEfficiency = pValue; | ||
224 | break; | ||
225 | case Vehicle.VERTICAL_ATTRACTION_TIMESCALE: | ||
226 | if (pValue < timestep) pValue = timestep; | ||
227 | m_verticalAttractionTimescale = pValue; | ||
228 | break; | ||
229 | |||
230 | // These are vector properties but the engine lets you use a single float value to | ||
231 | // set all of the components to the same value | ||
232 | case Vehicle.ANGULAR_FRICTION_TIMESCALE: | ||
233 | if (pValue < timestep) pValue = timestep; | ||
234 | m_angularFrictionTimescale = new Vector3(pValue, pValue, pValue); | ||
235 | break; | ||
236 | case Vehicle.ANGULAR_MOTOR_DIRECTION: | ||
237 | m_angularMotorDirection = new Vector3(pValue, pValue, pValue); | ||
238 | len = m_angularMotorDirection.Length(); | ||
239 | if (len > 12.566f) | ||
240 | m_angularMotorDirection *= (12.566f / len); | ||
241 | m_amEfect = 1.0f; // turn it on | ||
242 | break; | ||
243 | case Vehicle.LINEAR_FRICTION_TIMESCALE: | ||
244 | if (pValue < timestep) pValue = timestep; | ||
245 | m_linearFrictionTimescale = new Vector3(pValue, pValue, pValue); | ||
246 | break; | ||
247 | case Vehicle.LINEAR_MOTOR_DIRECTION: | ||
248 | m_linearMotorDirection = new Vector3(pValue, pValue, pValue); | ||
249 | len = m_linearMotorDirection.Length(); | ||
250 | if (len > 30.0f) | ||
251 | m_linearMotorDirection *= (30.0f / len); | ||
252 | m_lmEfect = 1.0f; // turn it on | ||
253 | break; | ||
254 | case Vehicle.LINEAR_MOTOR_OFFSET: | ||
255 | m_linearMotorOffset = new Vector3(pValue, pValue, pValue); | ||
256 | len = m_linearMotorOffset.Length(); | ||
257 | if (len > 100.0f) | ||
258 | m_linearMotorOffset *= (100.0f / len); | ||
259 | break; | ||
260 | } | ||
261 | }//end ProcessFloatVehicleParam | ||
262 | |||
263 | internal void ProcessVectorVehicleParam(Vehicle pParam, Vector3 pValue) | ||
264 | { | ||
265 | float len; | ||
266 | float invtimestep = 1.0f / _pParentScene.ODE_STEPSIZE; | ||
267 | float timestep = _pParentScene.ODE_STEPSIZE; | ||
268 | switch (pParam) | ||
269 | { | ||
270 | |||
271 | case Vehicle.ANGULAR_FRICTION_TIMESCALE: | ||
272 | if (pValue.X < timestep) pValue.X = timestep; | ||
273 | if (pValue.Y < timestep) pValue.Y = timestep; | ||
274 | if (pValue.Z < timestep) pValue.Z = timestep; | ||
275 | |||
276 | m_angularFrictionTimescale = new Vector3(pValue.X, pValue.Y, pValue.Z); | ||
277 | break; | ||
278 | case Vehicle.ANGULAR_MOTOR_DIRECTION: | ||
279 | m_angularMotorDirection = new Vector3(pValue.X, pValue.Y, pValue.Z); | ||
280 | // Limit requested angular speed to 2 rps= 4 pi rads/sec | ||
281 | len = m_angularMotorDirection.Length(); | ||
282 | if (len > 12.566f) | ||
283 | m_angularMotorDirection *= (12.566f / len); | ||
284 | m_amEfect = 1.0f; // turn it on | ||
285 | break; | ||
286 | case Vehicle.LINEAR_FRICTION_TIMESCALE: | ||
287 | if (pValue.X < timestep) pValue.X = timestep; | ||
288 | if (pValue.Y < timestep) pValue.Y = timestep; | ||
289 | if (pValue.Z < timestep) pValue.Z = timestep; | ||
290 | m_linearFrictionTimescale = new Vector3(pValue.X, pValue.Y, pValue.Z); | ||
291 | break; | ||
292 | case Vehicle.LINEAR_MOTOR_DIRECTION: | ||
293 | m_linearMotorDirection = new Vector3(pValue.X, pValue.Y, pValue.Z); | ||
294 | len = m_linearMotorDirection.Length(); | ||
295 | if (len > 30.0f) | ||
296 | m_linearMotorDirection *= (30.0f / len); | ||
297 | m_lmEfect = 1.0f; // turn it on | ||
298 | break; | ||
299 | case Vehicle.LINEAR_MOTOR_OFFSET: | ||
300 | m_linearMotorOffset = new Vector3(pValue.X, pValue.Y, pValue.Z); | ||
301 | len = m_linearMotorOffset.Length(); | ||
302 | if (len > 100.0f) | ||
303 | m_linearMotorOffset *= (100.0f / len); | ||
304 | break; | ||
305 | case Vehicle.BLOCK_EXIT: | ||
306 | m_BlockingEndPoint = new Vector3(pValue.X, pValue.Y, pValue.Z); | ||
307 | break; | ||
308 | } | ||
309 | }//end ProcessVectorVehicleParam | ||
310 | |||
311 | internal void ProcessRotationVehicleParam(Vehicle pParam, Quaternion pValue) | ||
312 | { | ||
313 | switch (pParam) | ||
314 | { | ||
315 | case Vehicle.REFERENCE_FRAME: | ||
316 | m_referenceFrame = Quaternion.Inverse(pValue); | ||
317 | break; | ||
318 | case Vehicle.ROLL_FRAME: | ||
319 | m_RollreferenceFrame = pValue; | ||
320 | break; | ||
321 | } | ||
322 | }//end ProcessRotationVehicleParam | ||
323 | |||
324 | internal void ProcessVehicleFlags(int pParam, bool remove) | ||
325 | { | ||
326 | if (remove) | ||
327 | { | ||
328 | m_flags &= ~((VehicleFlag)pParam); | ||
329 | } | ||
330 | else | ||
331 | { | ||
332 | m_flags |= (VehicleFlag)pParam; | ||
333 | } | ||
334 | }//end ProcessVehicleFlags | ||
335 | |||
336 | internal void ProcessTypeChange(Vehicle pType) | ||
337 | { | ||
338 | float invtimestep = _pParentScene.ODE_STEPSIZE; | ||
339 | m_lmEfect = 0; | ||
340 | m_amEfect = 0; | ||
341 | |||
342 | m_linearMotorDirection = Vector3.Zero; | ||
343 | m_angularMotorDirection = Vector3.Zero; | ||
344 | |||
345 | m_BlockingEndPoint = Vector3.Zero; | ||
346 | m_RollreferenceFrame = Quaternion.Identity; | ||
347 | m_linearMotorOffset = Vector3.Zero; | ||
348 | |||
349 | m_referenceFrame = Quaternion.Identity; | ||
350 | |||
351 | // Set Defaults For Type | ||
352 | m_type = pType; | ||
353 | switch (pType) | ||
354 | { | ||
355 | case Vehicle.TYPE_NONE: | ||
356 | m_linearFrictionTimescale = new Vector3(1000, 1000, 1000); | ||
357 | m_angularFrictionTimescale = new Vector3(1000, 1000, 1000); | ||
358 | m_linearMotorTimescale = 1000; | ||
359 | m_linearMotorDecayTimescale = 120 * invtimestep; | ||
360 | m_angularMotorTimescale = 1000; | ||
361 | m_angularMotorDecayTimescale = 1000 * invtimestep; | ||
362 | m_VhoverHeight = 0; | ||
363 | m_VhoverTimescale = 1000; | ||
364 | m_VehicleBuoyancy = 0; | ||
365 | m_flags = (VehicleFlag)0; | ||
366 | break; | ||
367 | |||
368 | case Vehicle.TYPE_SLED: | ||
369 | m_linearFrictionTimescale = new Vector3(30, 1, 1000); | ||
370 | m_angularFrictionTimescale = new Vector3(1000, 1000, 1000); | ||
371 | m_linearMotorTimescale = 1000; | ||
372 | m_linearMotorDecayTimescale = 120 * invtimestep; | ||
373 | m_angularMotorTimescale = 1000; | ||
374 | m_angularMotorDecayTimescale = 120 * invtimestep; | ||
375 | m_VhoverHeight = 0; | ||
376 | m_VhoverEfficiency = 1; | ||
377 | m_VhoverTimescale = 10; | ||
378 | m_VehicleBuoyancy = 0; | ||
379 | m_linearDeflectionEfficiency = 1; | ||
380 | m_linearDeflectionTimescale = 1; | ||
381 | m_angularDeflectionEfficiency = 0; | ||
382 | m_angularDeflectionTimescale = 1000; | ||
383 | m_bankingEfficiency = 0; | ||
384 | m_bankingMix = 1; | ||
385 | m_bankingTimescale = 10; | ||
386 | m_flags &= | ||
387 | ~(VehicleFlag.HOVER_WATER_ONLY | VehicleFlag.HOVER_TERRAIN_ONLY | | ||
388 | VehicleFlag.HOVER_GLOBAL_HEIGHT | VehicleFlag.HOVER_UP_ONLY); | ||
389 | m_flags |= (VehicleFlag.NO_DEFLECTION_UP | VehicleFlag.LIMIT_ROLL_ONLY | VehicleFlag.LIMIT_MOTOR_UP); | ||
390 | break; | ||
391 | case Vehicle.TYPE_CAR: | ||
392 | m_linearFrictionTimescale = new Vector3(100, 2, 1000); | ||
393 | m_angularFrictionTimescale = new Vector3(1000, 1000, 1000); | ||
394 | m_linearMotorTimescale = 1; | ||
395 | m_linearMotorDecayTimescale = 60 * invtimestep; | ||
396 | m_angularMotorTimescale = 1; | ||
397 | m_angularMotorDecayTimescale = 0.8f * invtimestep; | ||
398 | m_VhoverHeight = 0; | ||
399 | m_VhoverEfficiency = 0; | ||
400 | m_VhoverTimescale = 1000; | ||
401 | m_VehicleBuoyancy = 0; | ||
402 | m_linearDeflectionEfficiency = 1; | ||
403 | m_linearDeflectionTimescale = 2; | ||
404 | m_angularDeflectionEfficiency = 0; | ||
405 | m_angularDeflectionTimescale = 10; | ||
406 | m_verticalAttractionEfficiency = 1f; | ||
407 | m_verticalAttractionTimescale = 10f; | ||
408 | m_bankingEfficiency = -0.2f; | ||
409 | m_bankingMix = 1; | ||
410 | m_bankingTimescale = 1; | ||
411 | m_flags &= ~(VehicleFlag.HOVER_WATER_ONLY | VehicleFlag.HOVER_TERRAIN_ONLY | VehicleFlag.HOVER_GLOBAL_HEIGHT); | ||
412 | m_flags |= (VehicleFlag.NO_DEFLECTION_UP | VehicleFlag.LIMIT_ROLL_ONLY | | ||
413 | VehicleFlag.LIMIT_MOTOR_UP | VehicleFlag.HOVER_UP_ONLY); | ||
414 | break; | ||
415 | case Vehicle.TYPE_BOAT: | ||
416 | m_linearFrictionTimescale = new Vector3(10, 3, 2); | ||
417 | m_angularFrictionTimescale = new Vector3(10, 10, 10); | ||
418 | m_linearMotorTimescale = 5; | ||
419 | m_linearMotorDecayTimescale = 60 * invtimestep; | ||
420 | m_angularMotorTimescale = 4; | ||
421 | m_angularMotorDecayTimescale = 4 * invtimestep; | ||
422 | m_VhoverHeight = 0; | ||
423 | m_VhoverEfficiency = 0.5f; | ||
424 | m_VhoverTimescale = 2; | ||
425 | m_VehicleBuoyancy = 1; | ||
426 | m_linearDeflectionEfficiency = 0.5f; | ||
427 | m_linearDeflectionTimescale = 3; | ||
428 | m_angularDeflectionEfficiency = 0.5f; | ||
429 | m_angularDeflectionTimescale = 5; | ||
430 | m_verticalAttractionEfficiency = 0.5f; | ||
431 | m_verticalAttractionTimescale = 5f; | ||
432 | m_bankingEfficiency = -0.3f; | ||
433 | m_bankingMix = 0.8f; | ||
434 | m_bankingTimescale = 1; | ||
435 | m_flags &= ~(VehicleFlag.HOVER_TERRAIN_ONLY | | ||
436 | VehicleFlag.HOVER_GLOBAL_HEIGHT | | ||
437 | VehicleFlag.HOVER_UP_ONLY | | ||
438 | VehicleFlag.LIMIT_ROLL_ONLY); | ||
439 | m_flags |= (VehicleFlag.NO_DEFLECTION_UP | | ||
440 | VehicleFlag.LIMIT_MOTOR_UP | | ||
441 | VehicleFlag.HOVER_WATER_ONLY); | ||
442 | break; | ||
443 | case Vehicle.TYPE_AIRPLANE: | ||
444 | m_linearFrictionTimescale = new Vector3(200, 10, 5); | ||
445 | m_angularFrictionTimescale = new Vector3(20, 20, 20); | ||
446 | m_linearMotorTimescale = 2; | ||
447 | m_linearMotorDecayTimescale = 60 * invtimestep; | ||
448 | m_angularMotorTimescale = 4; | ||
449 | m_angularMotorDecayTimescale = 8 * invtimestep; | ||
450 | m_VhoverHeight = 0; | ||
451 | m_VhoverEfficiency = 0.5f; | ||
452 | m_VhoverTimescale = 1000; | ||
453 | m_VehicleBuoyancy = 0; | ||
454 | m_linearDeflectionEfficiency = 0.5f; | ||
455 | m_linearDeflectionTimescale = 0.5f; | ||
456 | m_angularDeflectionEfficiency = 1; | ||
457 | m_angularDeflectionTimescale = 2; | ||
458 | m_verticalAttractionEfficiency = 0.9f; | ||
459 | m_verticalAttractionTimescale = 2f; | ||
460 | m_bankingEfficiency = 1; | ||
461 | m_bankingMix = 0.7f; | ||
462 | m_bankingTimescale = 2; | ||
463 | m_flags &= ~(VehicleFlag.HOVER_WATER_ONLY | | ||
464 | VehicleFlag.HOVER_TERRAIN_ONLY | | ||
465 | VehicleFlag.HOVER_GLOBAL_HEIGHT | | ||
466 | VehicleFlag.HOVER_UP_ONLY | | ||
467 | VehicleFlag.NO_DEFLECTION_UP | | ||
468 | VehicleFlag.LIMIT_MOTOR_UP); | ||
469 | m_flags |= (VehicleFlag.LIMIT_ROLL_ONLY); | ||
470 | break; | ||
471 | case Vehicle.TYPE_BALLOON: | ||
472 | m_linearFrictionTimescale = new Vector3(5, 5, 5); | ||
473 | m_angularFrictionTimescale = new Vector3(10, 10, 10); | ||
474 | m_linearMotorTimescale = 5; | ||
475 | m_linearMotorDecayTimescale = 60 * invtimestep; | ||
476 | m_angularMotorTimescale = 6; | ||
477 | m_angularMotorDecayTimescale = 10 * invtimestep; | ||
478 | m_VhoverHeight = 5; | ||
479 | m_VhoverEfficiency = 0.8f; | ||
480 | m_VhoverTimescale = 10; | ||
481 | m_VehicleBuoyancy = 1; | ||
482 | m_linearDeflectionEfficiency = 0; | ||
483 | m_linearDeflectionTimescale = 5 * invtimestep; | ||
484 | m_angularDeflectionEfficiency = 0; | ||
485 | m_angularDeflectionTimescale = 5; | ||
486 | m_verticalAttractionEfficiency = 0f; | ||
487 | m_verticalAttractionTimescale = 1000f; | ||
488 | m_bankingEfficiency = 0; | ||
489 | m_bankingMix = 0.7f; | ||
490 | m_bankingTimescale = 5; | ||
491 | m_flags &= ~(VehicleFlag.HOVER_WATER_ONLY | | ||
492 | VehicleFlag.HOVER_TERRAIN_ONLY | | ||
493 | VehicleFlag.HOVER_UP_ONLY | | ||
494 | VehicleFlag.NO_DEFLECTION_UP | | ||
495 | VehicleFlag.LIMIT_MOTOR_UP); | ||
496 | m_flags |= (VehicleFlag.LIMIT_ROLL_ONLY | | ||
497 | VehicleFlag.HOVER_GLOBAL_HEIGHT); | ||
498 | break; | ||
499 | } | ||
500 | |||
501 | }//end SetDefaultsForType | ||
502 | |||
503 | internal void Stop() | ||
504 | { | ||
505 | m_lmEfect = 0; | ||
506 | m_amEfect = 0; | ||
507 | } | ||
508 | |||
509 | public static Vector3 Xrot(Quaternion rot) | ||
510 | { | ||
511 | Vector3 vec; | ||
512 | rot.Normalize(); // just in case | ||
513 | vec.X = 2 * (rot.X * rot.X + rot.W * rot.W) - 1; | ||
514 | vec.Y = 2 * (rot.X * rot.Y + rot.Z * rot.W); | ||
515 | vec.Z = 2 * (rot.X * rot.Z - rot.Y * rot.W); | ||
516 | return vec; | ||
517 | } | ||
518 | |||
519 | public static Vector3 Zrot(Quaternion rot) | ||
520 | { | ||
521 | Vector3 vec; | ||
522 | rot.Normalize(); // just in case | ||
523 | vec.X = 2 * (rot.X * rot.Z + rot.Y * rot.W); | ||
524 | vec.Y = 2 * (rot.Y * rot.Z - rot.X * rot.W); | ||
525 | vec.Z = 2 * (rot.Z * rot.Z + rot.W * rot.W) - 1; | ||
526 | |||
527 | return vec; | ||
528 | } | ||
529 | |||
530 | private const float halfpi = 0.5f * (float)Math.PI; | ||
531 | |||
532 | public static Vector3 ubitRot2Euler(Quaternion rot) | ||
533 | { | ||
534 | // returns roll in X | ||
535 | // pitch in Y | ||
536 | // yaw in Z | ||
537 | Vector3 vec; | ||
538 | |||
539 | // assuming rot is normalised | ||
540 | // rot.Normalize(); | ||
541 | |||
542 | float zX = rot.X * rot.Z + rot.Y * rot.W; | ||
543 | |||
544 | if (zX < -0.49999f) | ||
545 | { | ||
546 | vec.X = 0; | ||
547 | vec.Y = -halfpi; | ||
548 | vec.Z = (float)(-2d * Math.Atan(rot.X / rot.W)); | ||
549 | } | ||
550 | else if (zX > 0.49999f) | ||
551 | { | ||
552 | vec.X = 0; | ||
553 | vec.Y = halfpi; | ||
554 | vec.Z = (float)(2d * Math.Atan(rot.X / rot.W)); | ||
555 | } | ||
556 | else | ||
557 | { | ||
558 | vec.Y = (float)Math.Asin(2 * zX); | ||
559 | |||
560 | float sqw = rot.W * rot.W; | ||
561 | |||
562 | float minuszY = rot.X * rot.W - rot.Y * rot.Z; | ||
563 | float zZ = rot.Z * rot.Z + sqw - 0.5f; | ||
564 | |||
565 | vec.X = (float)Math.Atan2(minuszY, zZ); | ||
566 | |||
567 | float yX = rot.Z * rot.W - rot.X * rot.Y; //( have negative ?) | ||
568 | float yY = rot.X * rot.X + sqw - 0.5f; | ||
569 | vec.Z = (float)Math.Atan2(yX, yY); | ||
570 | } | ||
571 | return vec; | ||
572 | } | ||
573 | |||
574 | |||
575 | public static void GetRollPitch(Quaternion rot, out float roll, out float pitch) | ||
576 | { | ||
577 | // assuming rot is normalised | ||
578 | // rot.Normalize(); | ||
579 | |||
580 | float zX = rot.X * rot.Z + rot.Y * rot.W; | ||
581 | |||
582 | if (zX < -0.49999f) | ||
583 | { | ||
584 | roll = 0; | ||
585 | pitch = -halfpi; | ||
586 | } | ||
587 | else if (zX > 0.49999f) | ||
588 | { | ||
589 | roll = 0; | ||
590 | pitch = halfpi; | ||
591 | } | ||
592 | else | ||
593 | { | ||
594 | pitch = (float)Math.Asin(2 * zX); | ||
595 | |||
596 | float minuszY = rot.X * rot.W - rot.Y * rot.Z; | ||
597 | float zZ = rot.Z * rot.Z + rot.W * rot.W - 0.5f; | ||
598 | |||
599 | roll = (float)Math.Atan2(minuszY, zZ); | ||
600 | } | ||
601 | return ; | ||
602 | } | ||
603 | |||
604 | internal void Step()//float pTimestep) | ||
605 | { | ||
606 | IntPtr Body = rootPrim.Body; | ||
607 | |||
608 | d.Quaternion rot = d.BodyGetQuaternion(Body); | ||
609 | Quaternion objrotq = new Quaternion(rot.X, rot.Y, rot.Z, rot.W); // rotq = rotation of object | ||
610 | Quaternion rotq = objrotq; // rotq = rotation of object | ||
611 | rotq *= m_referenceFrame; // rotq is now rotation in vehicle reference frame | ||
612 | Quaternion irotq = Quaternion.Inverse(rotq); | ||
613 | |||
614 | d.Vector3 dvtmp; | ||
615 | Vector3 tmpV; | ||
616 | dvtmp = d.BodyGetLinearVel(Body); | ||
617 | Vector3 curVel; | ||
618 | curVel.X = dvtmp.X; | ||
619 | curVel.Y = dvtmp.Y; | ||
620 | curVel.Z = dvtmp.Z; | ||
621 | Vector3 curLocalVel = curVel * irotq; // current velocity in local | ||
622 | |||
623 | dvtmp = d.BodyGetAngularVel(Body); | ||
624 | Vector3 curAngVel; | ||
625 | curAngVel.X = dvtmp.X; | ||
626 | curAngVel.Y = dvtmp.Y; | ||
627 | curAngVel.Z = dvtmp.Z; | ||
628 | Vector3 curLocalAngVel = curAngVel * irotq; // current velocity in local | ||
629 | |||
630 | Vector3 force = Vector3.Zero; // actually linear aceleration until mult by mass in world frame | ||
631 | Vector3 torque = Vector3.Zero;// actually angular aceleration until mult by Inertia in object frame | ||
632 | d.Vector3 dtorque = new d.Vector3();// actually angular aceleration until mult by Inertia in object frame | ||
633 | |||
634 | bool doathing = false; | ||
635 | |||
636 | // linear motor | ||
637 | if (m_lmEfect > 0.01 && m_linearMotorTimescale < 1000) | ||
638 | { | ||
639 | tmpV = m_linearMotorDirection - curLocalVel; // velocity error | ||
640 | if (tmpV.LengthSquared() > 1e-6f) | ||
641 | { | ||
642 | tmpV = tmpV * (m_lmEfect / m_linearMotorTimescale); // error to correct in this timestep | ||
643 | tmpV *= rotq; // to world | ||
644 | |||
645 | if ((m_flags & VehicleFlag.LIMIT_MOTOR_UP) != 0) | ||
646 | tmpV.Z = 0; | ||
647 | |||
648 | if (m_linearMotorOffset.X != 0 && m_linearMotorOffset.Y != 0 && m_linearMotorOffset.Z != 0) | ||
649 | { | ||
650 | // have offset, do it now | ||
651 | tmpV *= rootPrim.Mass; | ||
652 | d.BodyAddForceAtRelPos(Body, tmpV.X, tmpV.Y, tmpV.Z, m_linearMotorOffset.X, m_linearMotorOffset.Y, m_linearMotorOffset.Z); | ||
653 | } | ||
654 | else | ||
655 | { | ||
656 | force.X += tmpV.X; | ||
657 | force.Y += tmpV.Y; | ||
658 | force.Z += tmpV.Z; | ||
659 | } | ||
660 | } | ||
661 | m_lmEfect *= (1 - 1.0f / m_linearMotorDecayTimescale); | ||
662 | } | ||
663 | else | ||
664 | m_lmEfect = 0; | ||
665 | |||
666 | // friction | ||
667 | if (curLocalVel.X != 0 || curLocalVel.Y != 0 || curLocalVel.Z != 0) | ||
668 | { | ||
669 | tmpV.X = -curLocalVel.X / m_linearFrictionTimescale.X; | ||
670 | tmpV.Y = -curLocalVel.Y / m_linearFrictionTimescale.Y; | ||
671 | tmpV.Z = -curLocalVel.Z / m_linearFrictionTimescale.Z; | ||
672 | tmpV *= rotq; // to world | ||
673 | force.X += tmpV.X; | ||
674 | force.Y += tmpV.Y; | ||
675 | force.Z += tmpV.Z; | ||
676 | } | ||
677 | |||
678 | // hover | ||
679 | if (m_VhoverTimescale < 300) | ||
680 | { | ||
681 | d.Vector3 pos = d.BodyGetPosition(Body); | ||
682 | |||
683 | // default to global | ||
684 | float perr = m_VhoverHeight - pos.Z;; | ||
685 | |||
686 | if ((m_flags & VehicleFlag.HOVER_TERRAIN_ONLY) != 0) | ||
687 | { | ||
688 | perr += _pParentScene.GetTerrainHeightAtXY(pos.X, pos.Y); | ||
689 | } | ||
690 | else if ((m_flags & VehicleFlag.HOVER_WATER_ONLY) != 0) | ||
691 | { | ||
692 | perr += _pParentScene.GetWaterLevel(); | ||
693 | } | ||
694 | else if ((m_flags & VehicleFlag.HOVER_GLOBAL_HEIGHT) == 0) | ||
695 | { | ||
696 | float t = _pParentScene.GetTerrainHeightAtXY(pos.X, pos.Y); | ||
697 | float w = _pParentScene.GetWaterLevel(); | ||
698 | if (t > w) | ||
699 | perr += t; | ||
700 | else | ||
701 | perr += w; | ||
702 | } | ||
703 | |||
704 | if ((m_flags & VehicleFlag.HOVER_UP_ONLY) == 0 || perr > 0) | ||
705 | { | ||
706 | force.Z += (perr / m_VhoverTimescale / m_VhoverTimescale - curVel.Z * m_VhoverEfficiency) / _pParentScene.ODE_STEPSIZE; | ||
707 | force.Z += _pParentScene.gravityz * (1f - m_VehicleBuoyancy); | ||
708 | } | ||
709 | else // no buoyancy | ||
710 | force.Z += _pParentScene.gravityz; | ||
711 | } | ||
712 | else | ||
713 | { | ||
714 | // default gravity and buoancy | ||
715 | force.Z += _pParentScene.gravityz * (1f - m_VehicleBuoyancy); | ||
716 | } | ||
717 | |||
718 | // linear deflection | ||
719 | if (m_linearDeflectionEfficiency > 0) | ||
720 | { | ||
721 | float len = curVel.Length(); | ||
722 | Vector3 atAxis = refAtAxis; | ||
723 | atAxis *= rotq; // at axis rotated to world | ||
724 | atAxis = Xrot(rotq); | ||
725 | tmpV = atAxis * len; | ||
726 | tmpV -= curVel; // velocity error | ||
727 | tmpV *= (m_linearDeflectionEfficiency / m_linearDeflectionTimescale); // error to correct in this timestep | ||
728 | force.X += tmpV.X; | ||
729 | force.Y += tmpV.Y; | ||
730 | if((m_flags & VehicleFlag.NO_DEFLECTION_UP) ==0) | ||
731 | force.Z += tmpV.Z; | ||
732 | } | ||
733 | |||
734 | // angular motor | ||
735 | if (m_amEfect > 0.01 && m_angularMotorTimescale < 1000) | ||
736 | { | ||
737 | tmpV = m_angularMotorDirection - curLocalAngVel; // velocity error | ||
738 | if (tmpV.LengthSquared() > 1e-6f) | ||
739 | { | ||
740 | tmpV = tmpV * (m_amEfect / m_angularMotorTimescale); // error to correct in this timestep | ||
741 | tmpV *= m_referenceFrame; // to object | ||
742 | dtorque.X += tmpV.X; | ||
743 | dtorque.Y += tmpV.Y; | ||
744 | dtorque.Z += tmpV.Z; | ||
745 | } | ||
746 | m_amEfect *= (1 - 1.0f / m_angularMotorDecayTimescale); | ||
747 | } | ||
748 | else | ||
749 | m_amEfect = 0; | ||
750 | |||
751 | // angular friction | ||
752 | if (curLocalAngVel.X != 0 || curLocalAngVel.Y != 0 || curLocalAngVel.Z != 0) | ||
753 | { | ||
754 | tmpV.X = -curLocalAngVel.X / m_angularFrictionTimescale.X; | ||
755 | tmpV.Y = -curLocalAngVel.Y / m_angularFrictionTimescale.Y; | ||
756 | tmpV.Z = -curLocalAngVel.Z / m_angularFrictionTimescale.Z; | ||
757 | tmpV *= m_referenceFrame; // to object | ||
758 | dtorque.X += tmpV.X; | ||
759 | dtorque.Y += tmpV.Y; | ||
760 | dtorque.Z += tmpV.Z; | ||
761 | } | ||
762 | |||
763 | // angular deflection | ||
764 | if (m_angularDeflectionEfficiency > 0) | ||
765 | { | ||
766 | doathing = false; | ||
767 | float ftmp = m_angularDeflectionEfficiency / m_angularDeflectionTimescale / m_angularDeflectionTimescale /_pParentScene.ODE_STEPSIZE; | ||
768 | tmpV.X = 0; | ||
769 | if (Math.Abs(curLocalVel.Z) > 0.01) | ||
770 | { | ||
771 | tmpV.Y = -(float)Math.Atan2(curLocalVel.Z, curLocalVel.X) * ftmp; | ||
772 | doathing = true; | ||
773 | } | ||
774 | else | ||
775 | tmpV.Y = 0; | ||
776 | if (Math.Abs(curLocalVel.Y) > 0.01) | ||
777 | { | ||
778 | tmpV.Z = (float)Math.Atan2(curLocalVel.Y, curLocalVel.X) * ftmp; | ||
779 | doathing = true; | ||
780 | } | ||
781 | else | ||
782 | tmpV.Z = 0; | ||
783 | |||
784 | if (doathing) | ||
785 | { | ||
786 | tmpV *= m_referenceFrame; // to object | ||
787 | dtorque.X += tmpV.X; | ||
788 | dtorque.Y += tmpV.Y; | ||
789 | dtorque.Z += tmpV.Z; | ||
790 | } | ||
791 | } | ||
792 | |||
793 | // vertical atractor | ||
794 | if (m_verticalAttractionTimescale < 300) | ||
795 | { | ||
796 | doathing = false; | ||
797 | float roll; | ||
798 | float pitch; | ||
799 | |||
800 | GetRollPitch(rotq, out roll, out pitch); | ||
801 | |||
802 | |||
803 | float ftmp = 1.0f / m_verticalAttractionTimescale / m_verticalAttractionTimescale / _pParentScene.ODE_STEPSIZE; | ||
804 | float ftmp2 = m_verticalAttractionEfficiency / _pParentScene.ODE_STEPSIZE; | ||
805 | |||
806 | if (Math.Abs(roll) > 0.01) // roll | ||
807 | { | ||
808 | tmpV.X = -roll * ftmp; | ||
809 | tmpV.X -= curLocalAngVel.X * ftmp2; | ||
810 | doathing = true; | ||
811 | } | ||
812 | else | ||
813 | { | ||
814 | tmpV.X = 0; | ||
815 | } | ||
816 | |||
817 | if (Math.Abs(pitch) > 0.01 && ((m_flags & VehicleFlag.LIMIT_ROLL_ONLY) == 0)) // pitch | ||
818 | { | ||
819 | tmpV.Y = -pitch * ftmp; | ||
820 | tmpV.Y -= curLocalAngVel.Y * ftmp2; | ||
821 | doathing = true; | ||
822 | } | ||
823 | else | ||
824 | { | ||
825 | tmpV.Y = 0; | ||
826 | } | ||
827 | |||
828 | tmpV.Z = 0; | ||
829 | |||
830 | if (m_bankingEfficiency == 0 || Math.Abs(roll) < 0.01) | ||
831 | tmpV.Z = 0; | ||
832 | else | ||
833 | { | ||
834 | float broll = -roll * m_bankingEfficiency; ; | ||
835 | if (m_bankingMix != 0) | ||
836 | { | ||
837 | float vfact = m_bankingMix * Math.Abs(curLocalVel.X) / 10.0f; | ||
838 | if (vfact < m_bankingMix) | ||
839 | broll *= ((1 - m_bankingMix) + vfact); | ||
840 | } | ||
841 | |||
842 | tmpV.Z = (broll - curLocalAngVel.Z) / m_bankingTimescale; | ||
843 | doathing = true; | ||
844 | } | ||
845 | |||
846 | if (doathing) | ||
847 | { | ||
848 | |||
849 | tmpV *= m_referenceFrame; // to object | ||
850 | dtorque.X += tmpV.X; | ||
851 | dtorque.Y += tmpV.Y; | ||
852 | dtorque.Z += tmpV.Z; | ||
853 | } | ||
854 | } | ||
855 | /* | ||
856 | d.Vector3 pos = d.BodyGetPosition(Body); | ||
857 | // Vector3 accel = new Vector3(-(m_dir.X - m_lastLinearVelocityVector.X / 0.1f), -(m_dir.Y - m_lastLinearVelocityVector.Y / 0.1f), m_dir.Z - m_lastLinearVelocityVector.Z / 0.1f); | ||
858 | Vector3 posChange = new Vector3(); | ||
859 | posChange.X = pos.X - m_lastPositionVector.X; | ||
860 | posChange.Y = pos.Y - m_lastPositionVector.Y; | ||
861 | posChange.Z = pos.Z - m_lastPositionVector.Z; | ||
862 | double Zchange = Math.Abs(posChange.Z); | ||
863 | if (m_BlockingEndPoint != Vector3.Zero) | ||
864 | { | ||
865 | if (pos.X >= (m_BlockingEndPoint.X - (float)1)) | ||
866 | { | ||
867 | pos.X -= posChange.X + 1; | ||
868 | d.BodySetPosition(Body, pos.X, pos.Y, pos.Z); | ||
869 | } | ||
870 | if (pos.Y >= (m_BlockingEndPoint.Y - (float)1)) | ||
871 | { | ||
872 | pos.Y -= posChange.Y + 1; | ||
873 | d.BodySetPosition(Body, pos.X, pos.Y, pos.Z); | ||
874 | } | ||
875 | if (pos.Z >= (m_BlockingEndPoint.Z - (float)1)) | ||
876 | { | ||
877 | pos.Z -= posChange.Z + 1; | ||
878 | d.BodySetPosition(Body, pos.X, pos.Y, pos.Z); | ||
879 | } | ||
880 | if (pos.X <= 0) | ||
881 | { | ||
882 | pos.X += posChange.X + 1; | ||
883 | d.BodySetPosition(Body, pos.X, pos.Y, pos.Z); | ||
884 | } | ||
885 | if (pos.Y <= 0) | ||
886 | { | ||
887 | pos.Y += posChange.Y + 1; | ||
888 | d.BodySetPosition(Body, pos.X, pos.Y, pos.Z); | ||
889 | } | ||
890 | } | ||
891 | if (pos.Z < _pParentScene.GetTerrainHeightAtXY(pos.X, pos.Y)) | ||
892 | { | ||
893 | pos.Z = _pParentScene.GetTerrainHeightAtXY(pos.X, pos.Y) + 2; | ||
894 | d.BodySetPosition(Body, pos.X, pos.Y, pos.Z); | ||
895 | } | ||
896 | |||
897 | } | ||
898 | if ((m_flags & (VehicleFlag.NO_X)) != 0) | ||
899 | { | ||
900 | m_dir.X = 0; | ||
901 | } | ||
902 | if ((m_flags & (VehicleFlag.NO_Y)) != 0) | ||
903 | { | ||
904 | m_dir.Y = 0; | ||
905 | } | ||
906 | if ((m_flags & (VehicleFlag.NO_Z)) != 0) | ||
907 | { | ||
908 | m_dir.Z = 0; | ||
909 | } | ||
910 | |||
911 | |||
912 | */ | ||
913 | // angular part | ||
914 | /* | ||
915 | |||
916 | // Get what the body is doing, this includes 'external' influences | ||
917 | /* | ||
918 | Vector3 angularVelocity = Vector3.Zero; | ||
919 | |||
920 | // Vertical attractor section | ||
921 | Vector3 vertattr = Vector3.Zero; | ||
922 | |||
923 | if (m_verticalAttractionTimescale < 300) | ||
924 | { | ||
925 | float VAservo = 0.2f / m_verticalAttractionTimescale; | ||
926 | // get present body rotation | ||
927 | // make a vector pointing up | ||
928 | Vector3 verterr = Vector3.Zero; | ||
929 | verterr.Z = 1.0f; | ||
930 | // rotate it to Body Angle | ||
931 | verterr = verterr * rotq; | ||
932 | // verterr.X and .Y are the World error ammounts. They are 0 when there is no error (Vehicle Body is 'vertical'), and .Z will be 1. | ||
933 | // As the body leans to its side |.X| will increase to 1 and .Z fall to 0. As body inverts |.X| will fall and .Z will go | ||
934 | // negative. Similar for tilt and |.Y|. .X and .Y must be modulated to prevent a stable inverted body. | ||
935 | if (verterr.Z < 0.0f) | ||
936 | { | ||
937 | verterr.X = 2.0f - verterr.X; | ||
938 | verterr.Y = 2.0f - verterr.Y; | ||
939 | } | ||
940 | // Error is 0 (no error) to +/- 2 (max error) | ||
941 | // scale it by VAservo | ||
942 | verterr = verterr * VAservo; | ||
943 | //if (frcount == 0) Console.WriteLine("VAerr=" + verterr); | ||
944 | |||
945 | // As the body rotates around the X axis, then verterr.Y increases; Rotated around Y then .X increases, so | ||
946 | // Change Body angular velocity X based on Y, and Y based on X. Z is not changed. | ||
947 | vertattr.X = verterr.Y; | ||
948 | vertattr.Y = - verterr.X; | ||
949 | vertattr.Z = 0f; | ||
950 | |||
951 | // scaling appears better usingsquare-law | ||
952 | float bounce = 1.0f - (m_verticalAttractionEfficiency * m_verticalAttractionEfficiency); | ||
953 | vertattr.X += bounce * angularVelocity.X; | ||
954 | vertattr.Y += bounce * angularVelocity.Y; | ||
955 | |||
956 | } // else vertical attractor is off | ||
957 | |||
958 | // m_lastVertAttractor = vertattr; | ||
959 | |||
960 | // Bank section tba | ||
961 | // Deflection section tba | ||
962 | |||
963 | // Sum velocities | ||
964 | m_lastAngularVelocity = angularVelocity + vertattr; // + bank + deflection | ||
965 | |||
966 | if ((m_flags & (VehicleFlag.NO_DEFLECTION_UP)) != 0) | ||
967 | { | ||
968 | m_lastAngularVelocity.X = 0; | ||
969 | m_lastAngularVelocity.Y = 0; | ||
970 | } | ||
971 | |||
972 | if (!m_lastAngularVelocity.ApproxEquals(Vector3.Zero, 0.01f)) | ||
973 | { | ||
974 | if (!d.BodyIsEnabled (Body)) d.BodyEnable (Body); | ||
975 | } | ||
976 | else | ||
977 | { | ||
978 | m_lastAngularVelocity = Vector3.Zero; // Reduce small value to zero. | ||
979 | } | ||
980 | */ | ||
981 | |||
982 | d.Mass dmass; | ||
983 | d.BodyGetMass(Body,out dmass); | ||
984 | |||
985 | if (force.X != 0 || force.Y != 0 || force.Z != 0) | ||
986 | { | ||
987 | force *= dmass.mass; | ||
988 | d.BodySetForce(Body, force.X, force.Y, force.Z); | ||
989 | } | ||
990 | |||
991 | if (dtorque.X != 0 || dtorque.Y != 0 || dtorque.Z != 0) | ||
992 | { | ||
993 | d.MultiplyM3V3(out dvtmp, ref dmass.I, ref dtorque); | ||
994 | d.BodyAddRelTorque(Body, dvtmp.X, dvtmp.Y, dvtmp.Z); // add torque in object frame | ||
995 | } | ||
996 | |||
997 | //end MoveAngular | ||
998 | |||
999 | // limit rotations | ||
1000 | /* | ||
1001 | bool changed = false; | ||
1002 | |||
1003 | if (m_RollreferenceFrame != Quaternion.Identity) | ||
1004 | { | ||
1005 | if (rotq.X >= m_RollreferenceFrame.X) | ||
1006 | { | ||
1007 | rot.X = rotq.X - (m_RollreferenceFrame.X / 2); | ||
1008 | } | ||
1009 | if (rotq.Y >= m_RollreferenceFrame.Y) | ||
1010 | { | ||
1011 | rot.Y = rotq.Y - (m_RollreferenceFrame.Y / 2); | ||
1012 | } | ||
1013 | if (rotq.X <= -m_RollreferenceFrame.X) | ||
1014 | { | ||
1015 | rot.X = rotq.X + (m_RollreferenceFrame.X / 2); | ||
1016 | } | ||
1017 | if (rotq.Y <= -m_RollreferenceFrame.Y) | ||
1018 | { | ||
1019 | rot.Y = rotq.Y + (m_RollreferenceFrame.Y / 2); | ||
1020 | } | ||
1021 | changed = true; | ||
1022 | } | ||
1023 | |||
1024 | if ((m_flags & VehicleFlag.LOCK_ROTATION) != 0) | ||
1025 | { | ||
1026 | rot.X = 0; | ||
1027 | rot.Y = 0; | ||
1028 | changed = true; | ||
1029 | } | ||
1030 | if (changed) | ||
1031 | d.BodySetQuaternion(Body, ref rot); | ||
1032 | */ | ||
1033 | } | ||
1034 | } | ||
1035 | } | ||