1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
|
/**
* @file mass_properties.cpp
* @author andrew@lindenlab.com
* @date 2007-12-20
* @brief Tests for the LLPrimMassProperties and LLObjectMassProperties classes
*
* $LicenseInfo:firstyear=2007&license=internal$
*
* Copyright (c) 2007-2009, Linden Research, Inc.
*
* The following source code is PROPRIETARY AND CONFIDENTIAL. Use of
* this source code is governed by the Linden Lab Source Code Disclosure
* Agreement ("Agreement") previously entered between you and Linden
* Lab. By accessing, using, copying, modifying or distributing this
* software, you acknowledge that you have been informed of your
* obligations under the Agreement and agree to abide by those obligations.
*
* ALL LINDEN LAB SOURCE CODE IS PROVIDED "AS IS." LINDEN LAB MAKES NO
* WARRANTIES, EXPRESS, IMPLIED OR OTHERWISE, REGARDING ITS ACCURACY,
* COMPLETENESS OR PERFORMANCE.
* $/LicenseInfo$
*/
#include "linden_common.h"
#include "lltut.h"
#include <llmath/v3math.h>
#include <llmath/llquaternion.h>
#include <llphysics/abstract/utils/llinertiatensorutils.h>
#include <llphysics/abstract/utils/llobjectmassproperties.h>
#include <llphysics/abstract/utils/llprimmassproperties.h>
#include <llphysics/abstract/utils/llphysicsvolumemanager.h>
#include <llprimitive/llmaterialtable.h>
#include <llprimitive/llprimitive.h>
const F32 SMALL_RELATIVE_ERROR = 0.001f; // 0.1%
const F32 SQRT_THREE = 1.732050808f;
const F32 SQRT_SIX = 2.449489743f;
namespace tut
{
struct mass_properties_data
{
LLPrimMassProperties prim_properties;
LLObjectMassProperties object_properties;
};
typedef test_group<mass_properties_data> mass_properties_group;
typedef mass_properties_group::object mass_properties;
tut::mass_properties_group mp_test_group("mass properties");
template<> template<>
void mass_properties::test<1>()
{
// test SPHERE mass properties
LLPrimMassProperties prim_sphere;
prim_sphere.setUnitSphere();
F32 density = 1000.f;
F32 radius = 5.f;
F32 diameter = 2.f * radius;
LLVector3 scale(diameter, diameter, diameter);
LLObjectMassProperties obj_sphere(prim_sphere, scale, density);
F32 computed_mass = obj_sphere.getMass();
//LLVector3 center_of_mass
//obj_sphere.getCenterOfMass(center_of_mass);
LLMatrix3 inertia;
obj_sphere.getInertiaLocal(inertia);
F32 computed_inertia_eigenvalue = inertia.mMatrix[0][0];
// volume is normalized for scale = <1,1,1>
// V = 4/3 * PI * r^3
// inertia_eigenvalue = (2/5) * M * r^2
F32 volume = ( 4.f / 3.f ) * radius * radius * radius * F_PI;
F32 expected_mass = density * volume;
F32 expected_inertia_eigenvalue = ( 2.f / 5.f ) * expected_mass * radius * radius;
F32 error = fabs(computed_mass - expected_mass) / expected_mass;
ensure("expected sphere mass should match computed", error < SMALL_RELATIVE_ERROR);
error = fabs(computed_inertia_eigenvalue - expected_inertia_eigenvalue) / expected_inertia_eigenvalue;
ensure("expected sphere inertia should match computed", error < SMALL_RELATIVE_ERROR);
}
template<> template<>
void mass_properties::test<2>()
{
// test LLInertiaTensorUtils
// define a known inertia tensor in the center of mass frame
// from the numerical example in this paper:
// http://www.journaldatabase.org/articles/87064/Explicit_Exact_Formulas_f.html
F32 known_mass = 1873.23f;
LLVector3 known_center( 0.f, 0.f, 0.f );
LLMatrix3 known_inertia;
known_inertia.mMatrix[0][0] = 43520.33257f;
known_inertia.mMatrix[1][1] = 194711.28938f;
known_inertia.mMatrix[2][2] = 191168.76173f;
known_inertia.mMatrix[0][1] = -11996.20119f;
known_inertia.mMatrix[1][0] = -11996.20119f;
known_inertia.mMatrix[0][2] = 46343.16662f;
known_inertia.mMatrix[2][0] = 46343.16662f;
known_inertia.mMatrix[2][1] = -4417.66150f;
known_inertia.mMatrix[1][2] = -4417.66150f;
// the following two shifts should have null effect
{
LLVector3 first_shift(2.f, 3.f, 4.f);
LLVector3 second_shift = - first_shift;
LLMatrix3 inertia = known_inertia;
LLInertiaTensorUtils::shiftCenteredInertiaTensor(inertia, first_shift, known_mass);
LLInertiaTensorUtils::centerInertiaTensor(inertia, second_shift, known_mass);
// we should now have the same inertia with which we started
for (S32 i=0; i<3; ++i)
{
for (S32 j=0; j<3; ++j)
{
F32 error = fabs(1.f - inertia.mMatrix[i][j] / known_inertia.mMatrix[i][j]);
ensure("LLInertiaTensorUtils shift+sclae-shift-scale should be no-op", error < SMALL_RELATIVE_ERROR);
}
}
}
// the following series operations should have null effect
{
LLVector3 first_shift(1.f, 5.f, 10.f);
LLVector3 second_scale(2.f, 3.f, 4.f);
LLVector3 third_shift;
LLVector3 fourth_scale;
for (S32 i = 0; i < 3; ++i)
{
third_shift.mV[i] = -first_shift.mV[i] * second_scale.mV[i];
fourth_scale.mV[i] = 1.f / second_scale.mV[i];
}
F32 mass = known_mass;
LLVector3 center = known_center;
LLMatrix3 inertia = known_inertia;
// first
LLInertiaTensorUtils::shiftCenteredInertiaTensor(inertia, first_shift, mass);
center += first_shift;
// second
LLInertiaTensorUtils::scaleInertiaTensor(inertia, second_scale);
mass *= second_scale.mV[VX] * second_scale.mV[VY] * second_scale.mV[VZ];
for (S32 i = 0; i < 3; ++i)
{
center.mV[i] *= second_scale.mV[i];
}
// third
LLInertiaTensorUtils::centerInertiaTensor(inertia, third_shift, mass);
center -= third_shift;
// foruth
LLInertiaTensorUtils::scaleInertiaTensor(inertia, fourth_scale);
// we should now have the same inertia with which we started
for (S32 i=0; i<3; ++i)
{
for (S32 j=0; j<3; ++j)
{
F32 error = fabs(1.f - inertia.mMatrix[i][j] / known_inertia.mMatrix[i][j]);
ensure("LLInertiaTensorUtils shift+sclae-shift-scale should be no-op", error < SMALL_RELATIVE_ERROR);
}
}
}
}
template<> template<>
void mass_properties::test<3>()
{
// test tetrahedral decomposition of unit tetrahedron centered on origin
std::vector< LLVector3 > points;
points.push_back( LLVector3( 0.f, 0.f, 0.f ) );
points.push_back( LLVector3( 1.f, 0.f, 0.f ) );
points.push_back( LLVector3( 0.5f, 0.5f * SQRT_THREE, 0.f) );
points.push_back( LLVector3( 0.5f, SQRT_THREE / 6.f, SQRT_SIX / 3.f) );
// compute the center
LLVector3 center;
for (S32 i = 0; i < (S32)points.size(); ++i)
{
center += points[i];
}
center *= ( 1.f / F32(points.size()) );
// shift all points to center of mass frame
for (S32 i = 0; i < (S32)points.size(); ++i)
{
points[i] -= center;
}
LLPrimMassProperties tetrahedron;
tetrahedron.addSignedTetrahedron(1.0, points[0], points[1], points[2], points[3]);
// we must manually center the inertia tensor here
// since addSignedTetrahedron() does not do it automatically
tetrahedron.centerInertiaTensor();
F32 density = 1.0f;
LLVector3 scale(1.f, 1.f, 1.f);
LLMatrix3 analytic_inertia;
tetrahedron.getScaledInertiaTensor(analytic_inertia, scale, density);
// compute the mesh
std::vector< S32 > triangle_indices;
triangle_indices.push_back(0);
triangle_indices.push_back(2);
triangle_indices.push_back(1);
triangle_indices.push_back(0);
triangle_indices.push_back(1);
triangle_indices.push_back(3);
triangle_indices.push_back(0);
triangle_indices.push_back(3);
triangle_indices.push_back(2);
triangle_indices.push_back(1);
triangle_indices.push_back(2);
triangle_indices.push_back(3);
// compute the same inertia using a mesh
{
LLPrimMassProperties mesh;
mesh.setUnitMesh(points, triangle_indices);
// the two properties should agree
F32 error = ( tetrahedron.getVolume() - mesh.getVolume() ) / tetrahedron.getVolume();
ensure("tetrahedron and mesh volume should match", error < SMALL_RELATIVE_ERROR);
error = ( tetrahedron.getCenterOfMass() - mesh.getCenterOfMass() ).length();
ensure("tetrahedron and mesh centers should match", error < SMALL_RELATIVE_ERROR);
LLMatrix3 mesh_inertia;
mesh.getScaledInertiaTensor(mesh_inertia, scale, density);
for (S32 i=0; i<3; ++i)
{
for (S32 j=0; j<3; ++j)
{
// only verify the non-small elements
if (analytic_inertia.mMatrix[i][j] > SMALL_RELATIVE_ERROR)
{
error = fabs(1.f - mesh_inertia.mMatrix[i][j] / analytic_inertia.mMatrix[i][j]);
ensure("LLPrimMassProperties::setUnitMesh() inertia ", error < SMALL_RELATIVE_ERROR);
}
}
}
}
// shift the whole tetrahedron away from the center of mass and recompute the mesh
{
LLVector3 shift(11.f, 7.f, 3.f);
for (S32 i = 0; i < (S32)points.size(); ++i)
{
points[i] += shift;
}
LLPrimMassProperties mesh;
mesh.setUnitMesh(points, triangle_indices);
// the two properties should agree
F32 error = ( tetrahedron.getVolume() - mesh.getVolume() ) / tetrahedron.getVolume();
ensure("tetrahedron and mesh volume should match", error < SMALL_RELATIVE_ERROR);
LLMatrix3 mesh_inertia;
mesh.getScaledInertiaTensor(mesh_inertia, scale, density);
for (S32 i=0; i<3; ++i)
{
for (S32 j=0; j<3; ++j)
{
// only verify the non-small elements
if (analytic_inertia.mMatrix[i][j] > SMALL_RELATIVE_ERROR)
{
error = fabs(1.f - mesh_inertia.mMatrix[i][j] / analytic_inertia.mMatrix[i][j]);
ensure("LLPrimMassProperties::setUnitMesh() inertia ", error < SMALL_RELATIVE_ERROR);
}
}
}
}
}
template<> template<>
void mass_properties::test<4>()
{
// test tetrahedron utilities
// from the paper described here:
// from the numerical example in this paper:
// http://www.journaldatabase.org/articles/87064/Explicit_Exact_Formulas_f.html
// initialize info about the tetrahedron
std::vector< LLVector3 > points;
points.push_back( LLVector3( 8.33220f, -11.86875f, 0.93355f) );
points.push_back( LLVector3( 0.75523f, 5.00000f, 16.37072f) );
points.push_back( LLVector3( 52.61236f, 5.00000f, - 5.38580f) );
points.push_back( LLVector3( 2.00000f, 5.00000f, 3.00000f) );
LLVector3 expected_center( 15.92492f, 0.78281f, 3.732962f);
LLMatrix3 expected_inertia;
expected_inertia.mMatrix[0][0] = 43520.33257f;
expected_inertia.mMatrix[1][1] = 194711.28938f;
expected_inertia.mMatrix[2][2] = 191168.76173f;
expected_inertia.mMatrix[0][1] = -11996.20119f;
expected_inertia.mMatrix[1][0] = -11996.20119f;
expected_inertia.mMatrix[0][2] = 46343.16662f;
expected_inertia.mMatrix[2][0] = 46343.16662f;
expected_inertia.mMatrix[2][1] = -4417.66150f;
expected_inertia.mMatrix[1][2] = -4417.66150f;
// measure tetrahedron bounding box max dimension
// for relative error estimates
LLVector3 box_min(FLT_MAX, FLT_MAX, FLT_MAX);
LLVector3 box_max(-FLT_MAX, -FLT_MAX, -FLT_MAX);
for (S32 point_index = 0; point_index < (S32)points.size(); ++point_index)
{
for (S32 i = 0; i < 3; ++i)
{
if (points[point_index].mV[i] < box_min.mV[i])
{
box_min.mV[i] = points[point_index].mV[i];
}
if (points[point_index].mV[i] > box_max.mV[i])
{
box_max.mV[i] = points[point_index].mV[i];
}
}
}
F32 tetrahedron_max_dimension = (box_max - box_min).length();
// test LLPrimMassProperties::addSignedTetrahedron()
{
LLPrimMassProperties tetrahedron;
tetrahedron.addSignedTetrahedron(1.f, points[0], points[1], points[2], points[3]);
// we must manually center the inertia tensor here
// since addSignedTetrahedron() does not do it automatically
tetrahedron.centerInertiaTensor();
// check the center of mass
LLVector3 center = tetrahedron.getCenterOfMass();
F32 error = (center - expected_center).length() / tetrahedron_max_dimension;
ensure("LLPrimMassProperties::addSignedTetrahedron() center of mass ", error < SMALL_RELATIVE_ERROR);
// check the inertia tensor
LLMatrix3 computed_inertia;
LLVector3 scale(1.f, 1.f, 1.f);
F32 density = 1.f;
tetrahedron.getScaledInertiaTensor(computed_inertia, scale, density);
for (S32 i=0; i<3; ++i)
{
for (S32 j=0; j<3; ++j)
{
error = fabs(1.f - computed_inertia.mMatrix[i][j] / expected_inertia.mMatrix[i][j]);
ensure("LLPrimMassProperties::addSignedTetrahedron inertia ", error < SMALL_RELATIVE_ERROR);
}
}
}
// test LLPrimMassProperties::addUnitMesh()
{
std::vector< S32 > triangle_indices;
triangle_indices.push_back(0);
triangle_indices.push_back(2);
triangle_indices.push_back(1);
triangle_indices.push_back(1);
triangle_indices.push_back(3);
triangle_indices.push_back(0);
triangle_indices.push_back(2);
triangle_indices.push_back(0);
triangle_indices.push_back(3);
triangle_indices.push_back(3);
triangle_indices.push_back(1);
triangle_indices.push_back(2);
LLPrimMassProperties mesh;
mesh.setUnitMesh(points, triangle_indices);
// check the center of mass
LLVector3 center = mesh.getCenterOfMass();
F32 error = (center - expected_center).length() / tetrahedron_max_dimension;
ensure("LLPrimMassProperties::setUnitMesh() center of mass ", error < SMALL_RELATIVE_ERROR);
// check the inertia tensor
LLMatrix3 computed_inertia;
LLVector3 scale(1.f, 1.f, 1.f);
F32 density = 1.f;
mesh.getScaledInertiaTensor(computed_inertia, scale, density);
for (S32 i=0; i<3; ++i)
{
for (S32 j=0; j<3; ++j)
{
error = fabs(1.f - computed_inertia.mMatrix[i][j] / expected_inertia.mMatrix[i][j]);
ensure("LLPrimMassProperties::setUnitMesh() inertia diagonal elements mismatch", error < SMALL_RELATIVE_ERROR);
}
}
}
}
template<> template<>
void mass_properties::test<5>()
{
// test LLPrimMassProperties
// unit shape box
LLPrimMassProperties box;
box.setUnitBox();
// unit shape mesh -- box
//
// 4-----------0
// z /| /|
// | / | / |
// | / | / |
// | 6-----------2 |
// | | | | |
// | | 5-------|---1
// | | / | /
// | | / | /
// | y |/ |/
// |/ 7-----------3
// +------------------------ x
std::vector< LLVector3 > points;
points.push_back( LLVector3( 0.5f, 0.5f, 0.5f) );
points.push_back( LLVector3( 0.5f, 0.5f, -0.5f) );
points.push_back( LLVector3( 0.5f, -0.5f, 0.5f) );
points.push_back( LLVector3( 0.5f, -0.5f, -0.5f) );
points.push_back( LLVector3(-0.5f, 0.5f, 0.5f) );
points.push_back( LLVector3(-0.5f, 0.5f, -0.5f) );
points.push_back( LLVector3(-0.5f, -0.5f, 0.5f) );
points.push_back( LLVector3(-0.5f, -0.5f, -0.5f) );
std::vector< S32 > triangle_indices;
// +x
triangle_indices.push_back(1);
triangle_indices.push_back(0);
triangle_indices.push_back(2);
triangle_indices.push_back(1);
triangle_indices.push_back(2);
triangle_indices.push_back(3);
// -y
triangle_indices.push_back(3);
triangle_indices.push_back(2);
triangle_indices.push_back(7);
triangle_indices.push_back(7);
triangle_indices.push_back(2);
triangle_indices.push_back(6);
// -x
triangle_indices.push_back(7);
triangle_indices.push_back(6);
triangle_indices.push_back(4);
triangle_indices.push_back(7);
triangle_indices.push_back(4);
triangle_indices.push_back(5);
// +y
triangle_indices.push_back(5);
triangle_indices.push_back(4);
triangle_indices.push_back(1);
triangle_indices.push_back(1);
triangle_indices.push_back(4);
triangle_indices.push_back(0);
// +z
triangle_indices.push_back(0);
triangle_indices.push_back(4);
triangle_indices.push_back(6);
triangle_indices.push_back(0);
triangle_indices.push_back(6);
triangle_indices.push_back(2);
// -z
triangle_indices.push_back(7);
triangle_indices.push_back(5);
triangle_indices.push_back(3);
triangle_indices.push_back(3);
triangle_indices.push_back(5);
triangle_indices.push_back(1);
LLPrimMassProperties mesh;
mesh.setUnitMesh(points, triangle_indices);
// the unit box and unit mesh mass properties should be nearly the same
// volume should agree
F32 error = fabs(box.getVolume() - mesh.getVolume()) / box.getVolume();
ensure("UnitBox and UnitMesh(box) should have same volume", error < SMALL_RELATIVE_ERROR);
// center of mass should agree
LLVector3 box_center = box.getCenterOfMass();
LLVector3 mesh_center = mesh.getCenterOfMass();
error = fabs( (box_center - mesh_center).length() );
ensure("UnitBox and UnitMesh(box) centers of mass should agree", error < SMALL_RELATIVE_ERROR );
LLVector3 scale(1.f, 1.f, 1.f);
F32 density = 1.f;
LLMatrix3 box_inertia, mesh_inertia;
box.getScaledInertiaTensor(box_inertia, scale, density);
mesh.getScaledInertiaTensor(mesh_inertia, scale, density);
// mesh eigenvalues should be uniform
for (S32 i = 0; i < 2; ++i)
{
error = fabs(mesh_inertia.mMatrix[i][i] - mesh_inertia.mMatrix[i+1][i+1]) / mesh_inertia.mMatrix[i][i];
ensure("UnitMesh(box) should have uniform eigenvalues", error < SMALL_RELATIVE_ERROR);
}
// inertias should agree
for (S32 i = 0; i < 3; ++i)
{
for (S32 j = 0; j < 3; ++j)
{
error = fabs(box_inertia.mMatrix[i][j] - mesh_inertia.mMatrix[i][j]);
if (error > 0.f
&& box_inertia.mMatrix[i][j] != 0.f)
{
error /= box_inertia.mMatrix[i][j];
}
ensure("UnitBox and UnitMesh(box) should have same inertia", error < SMALL_RELATIVE_ERROR);
}
}
// Here we test the boundary of the LLPrimLinkInfo::canLink() method
// between semi-random middle-sized objects.
}
template<> template<>
void mass_properties::test<6>()
{
// test LLObjectMassProperties
// we make a large single-prim box, then a similarly shaped object
// that is multiple prims, and compare their mass properties
LLPrimMassProperties box;
box.setUnitBox();
F32 density = 3.7f;
LLVector3 big_scale(1.f, 2.f, 3.f);
LLObjectMassProperties big_box(box, big_scale, density);
LLObjectMassProperties multiple_box;
LLVector3 position;
LLQuaternion rotation;
rotation.loadIdentity();
F32 small_box_size = 0.5f;
LLVector3 small_scale( small_box_size, small_box_size, small_box_size);
S32 num_boxes_x = S32(big_scale.mV[VX] / small_box_size);
S32 num_boxes_y = S32(big_scale.mV[VY] / small_box_size);
S32 num_boxes_z = S32(big_scale.mV[VZ] / small_box_size);
LLVector3 start_pos = 0.5f * (small_scale - big_scale);
for (S32 x = 0; x < num_boxes_x; ++x)
{
for (S32 y = 0; y < num_boxes_y; ++y)
{
for (S32 z = 0; z < num_boxes_z; ++z)
{
position.set( F32(x) * small_box_size, F32(y) * small_box_size, F32(z) * small_box_size );
position += start_pos;
multiple_box.add(box, small_scale, density, position, rotation);
}
}
}
// the mass properties of the two boxes should match
// mass
F32 big_mass = big_box.getMass();
F32 multiple_mass = multiple_box.getMass();
F32 error = (big_mass - multiple_mass) / big_mass;
ensure("Big box and equivalent multi-prim box should have same mass", error < SMALL_RELATIVE_ERROR);
// center of mass
LLVector3 big_center, multiple_center;
big_box.getCenterOfMass(big_center);
multiple_box.getCenterOfMass(multiple_center);
error = (big_center - multiple_center).length();
ensure("Big box and equivalent multi-prim box should have same center", error < SMALL_RELATIVE_ERROR);
// inertia
LLMatrix3 big_inertia, multiple_inertia;
big_box.getInertiaLocal(big_inertia);
multiple_box.getInertiaLocal(multiple_inertia);
for (S32 i = 0; i < 3; ++i)
{
for (S32 j = 0; j < 3; ++j)
{
error = fabs(big_inertia.mMatrix[i][j] - multiple_inertia.mMatrix[i][j]);
if (error > 0.f
&& big_inertia.mMatrix[i][j] != 0.f)
{
error /= big_inertia.mMatrix[i][j];
}
ensure("UnitBox and UnitMesh(box) should have same inertia", error < SMALL_RELATIVE_ERROR);
}
}
}
template<> template<>
void mass_properties::test<7>()
{
// test LLObjectMassProperties with rotations
// we make a large single-prim box via mesh, then a similarly shaped
// object that is multiple prims (implicit boxes), and compare their
// mass properties
//
// 4-----------0
// z /| /|
// | / | / |
// | / | / |
// | 6-----------2 |
// | | | | |
// | | 5-------|---1
// | | / | /
// | | / | /
// | y |/ |/
// |/ 7-----------3
// +------------------------ x
std::vector< LLVector3 > points;
points.push_back( LLVector3( 0.5f, 0.5f, 0.5f) );
points.push_back( LLVector3( 0.5f, 0.5f, -0.5f) );
points.push_back( LLVector3( 0.5f, -0.5f, 0.5f) );
points.push_back( LLVector3( 0.5f, -0.5f, -0.5f) );
points.push_back( LLVector3(-0.5f, 0.5f, 0.5f) );
points.push_back( LLVector3(-0.5f, 0.5f, -0.5f) );
points.push_back( LLVector3(-0.5f, -0.5f, 0.5f) );
points.push_back( LLVector3(-0.5f, -0.5f, -0.5f) );
std::vector< S32 > triangle_indices;
// +x
triangle_indices.push_back(1);
triangle_indices.push_back(0);
triangle_indices.push_back(2);
triangle_indices.push_back(1);
triangle_indices.push_back(2);
triangle_indices.push_back(3);
// -y
triangle_indices.push_back(3);
triangle_indices.push_back(2);
triangle_indices.push_back(7);
triangle_indices.push_back(7);
triangle_indices.push_back(2);
triangle_indices.push_back(6);
// -x
triangle_indices.push_back(7);
triangle_indices.push_back(6);
triangle_indices.push_back(4);
triangle_indices.push_back(7);
triangle_indices.push_back(4);
triangle_indices.push_back(5);
// +y
triangle_indices.push_back(5);
triangle_indices.push_back(4);
triangle_indices.push_back(1);
triangle_indices.push_back(1);
triangle_indices.push_back(4);
triangle_indices.push_back(0);
// +z
triangle_indices.push_back(0);
triangle_indices.push_back(4);
triangle_indices.push_back(6);
triangle_indices.push_back(0);
triangle_indices.push_back(6);
triangle_indices.push_back(2);
// -z
triangle_indices.push_back(7);
triangle_indices.push_back(5);
triangle_indices.push_back(3);
triangle_indices.push_back(3);
triangle_indices.push_back(5);
triangle_indices.push_back(1);
F32 angle_step = F_PI / (2.f * 3.f);
for (F32 angle = 0.f; angle < 0.51f * F_PI; angle += angle_step)
{
// scale and rotate mesh points
LLVector3 axis(0.f, 0.f, angle);
LLQuaternion mesh_rotation(angle, axis);
LLVector3 big_scale(3.f, 5.f, 7.f);
std::vector< LLVector3 > new_points;
for (S32 p = 0; p < (S32)points.size(); ++p)
{
LLVector3 new_point = points[p];
for (S32 i = 0; i < 3; ++i)
{
new_point.mV[i] *= big_scale.mV[i];
}
new_points.push_back( new_point * mesh_rotation );
}
// build the big mesh box
LLPrimMassProperties mesh_box;
mesh_box.setUnitMesh(new_points, triangle_indices);
F32 density = 3.7f;
LLVector3 unit_scale(1.f, 1.f, 1.f);
LLObjectMassProperties big_box(mesh_box, unit_scale, density);
// build the multiple_box
LLPrimMassProperties box;
box.setUnitBox();
LLObjectMassProperties multiple_box;
LLVector3 position;
F32 small_box_size = 0.5f;
LLVector3 small_scale( small_box_size, small_box_size, small_box_size);
S32 num_boxes_x = S32(big_scale.mV[VX] / small_box_size);
S32 num_boxes_y = S32(big_scale.mV[VY] / small_box_size);
S32 num_boxes_z = S32(big_scale.mV[VZ] / small_box_size);
LLVector3 start_pos = (0.5f * (small_scale - big_scale)) * mesh_rotation;
for (S32 x = 0; x < num_boxes_x; ++x)
{
for (S32 y = 0; y < num_boxes_y; ++y)
{
for (S32 z = 0; z < num_boxes_z; ++z)
{
position.set( F32(x) * small_box_size, F32(y) * small_box_size, F32(z) * small_box_size );
position *= mesh_rotation;
position += start_pos;
multiple_box.add(box, small_scale, density, position, mesh_rotation);
}
}
}
// the mass properties of the two boxes should match
// mass
F32 big_mass = big_box.getMass();
F32 multiple_mass = multiple_box.getMass();
F32 error = (big_mass - multiple_mass) / big_mass;
ensure("Big box and equivalent multi-prim box should have same mass", error < SMALL_RELATIVE_ERROR);
// center of mass
LLVector3 big_center, multiple_center;
big_box.getCenterOfMass(big_center);
multiple_box.getCenterOfMass(multiple_center);
error = (big_center - multiple_center).length();
ensure("Big box and equivalent multi-prim box should have same center", error < SMALL_RELATIVE_ERROR);
LLMatrix3 big_inertia, multiple_inertia;
big_box.getInertiaLocal(big_inertia);
multiple_box.getInertiaLocal(multiple_inertia);
for (S32 i = 0; i < 3; ++i)
{
for (S32 j = 0; j < 3; ++j)
{
error = fabs(big_inertia.mMatrix[i][j] - multiple_inertia.mMatrix[i][j]);
if (error > 0.f
&& big_inertia.mMatrix[i][j] > SMALL_RELATIVE_ERROR)
{
error /= big_inertia.mMatrix[i][j];
}
ensure("UnitBox and UnitMesh(box) should have same inertia", error < SMALL_RELATIVE_ERROR);
}
}
}
}
template<> template<>
void mass_properties::test<8>()
{
// test LLPhysicsVolumeManager
// we make a large single-prim box, then a similarly shaped object
// that is multiple prims, and compare their mass properties
// first we make the single-prim giant
//
// 4-----------0
// z /| /|
// | / | / |
// | / | / |
// | 6-----------2 |
// | | | | |
// | | 5-------|---1
// | | / | /
// | | / | /
// | y |/ |/
// |/ 7-----------3
// +------------------------ x
std::vector< LLVector3 > points;
points.push_back( LLVector3( 0.5f, 0.5f, 0.5f) );
points.push_back( LLVector3( 0.5f, 0.5f, -0.5f) );
points.push_back( LLVector3( 0.5f, -0.5f, 0.5f) );
points.push_back( LLVector3( 0.5f, -0.5f, -0.5f) );
points.push_back( LLVector3(-0.5f, 0.5f, 0.5f) );
points.push_back( LLVector3(-0.5f, 0.5f, -0.5f) );
points.push_back( LLVector3(-0.5f, -0.5f, 0.5f) );
points.push_back( LLVector3(-0.5f, -0.5f, -0.5f) );
std::vector< S32 > triangle_indices;
// +x
triangle_indices.push_back(1);
triangle_indices.push_back(0);
triangle_indices.push_back(2);
triangle_indices.push_back(1);
triangle_indices.push_back(2);
triangle_indices.push_back(3);
// -y
triangle_indices.push_back(3);
triangle_indices.push_back(2);
triangle_indices.push_back(7);
triangle_indices.push_back(7);
triangle_indices.push_back(2);
triangle_indices.push_back(6);
// -x
triangle_indices.push_back(7);
triangle_indices.push_back(6);
triangle_indices.push_back(4);
triangle_indices.push_back(7);
triangle_indices.push_back(4);
triangle_indices.push_back(5);
// +y
triangle_indices.push_back(5);
triangle_indices.push_back(4);
triangle_indices.push_back(1);
triangle_indices.push_back(1);
triangle_indices.push_back(4);
triangle_indices.push_back(0);
// +z
triangle_indices.push_back(0);
triangle_indices.push_back(4);
triangle_indices.push_back(6);
triangle_indices.push_back(0);
triangle_indices.push_back(6);
triangle_indices.push_back(2);
// -z
triangle_indices.push_back(7);
triangle_indices.push_back(5);
triangle_indices.push_back(3);
triangle_indices.push_back(3);
triangle_indices.push_back(5);
triangle_indices.push_back(1);
// scale the mesh points
LLVector3 big_scale(1.f, 2.f, 3.f);
std::vector< LLVector3 > new_points;
for (S32 p = 0; p < (S32)points.size(); ++p)
{
LLVector3 new_point = points[p];
for (S32 i = 0; i < 3; ++i)
{
new_point.mV[i] *= big_scale.mV[i];
}
new_points.push_back( new_point );
}
// build the big mesh box (primitive)
LLPrimMassProperties mesh_box;
mesh_box.setUnitMesh(new_points, triangle_indices);
F32 density = DEFAULT_OBJECT_DENSITY;
LLVector3 unit_scale(1.f, 1.f, 1.f);
LLObjectMassProperties big_box(mesh_box, unit_scale, density);
// build the multi-prim box (object)
S32 TEST_VOLUME_DETAIL = 1;
LLVolumeParams volume_params;
volume_params.setCube();
LLObjectMassProperties multiple_box;
F32 small_box_size = 0.5f;
LLVector3 small_scale( small_box_size, small_box_size, small_box_size);
{
// hijack the volume manager used by LLPrimitive
LLPhysicsVolumeManager* volume_manager = new LLPhysicsVolumeManager();
//volume_manager->setThreadSafe(false);
LLPrimitive::setVolumeManager(volume_manager);
std::vector< const LLPrimitive* > prim_list;
F32 angle = 0.f;
LLVector3 axis(0.f, 0.f, angle);
LLVector3 position;
LLQuaternion rotation(angle, axis);
S32 num_boxes_x = S32(big_scale.mV[VX] / small_box_size);
S32 num_boxes_y = S32(big_scale.mV[VY] / small_box_size);
S32 num_boxes_z = S32(big_scale.mV[VZ] / small_box_size);
for (S32 x = 0; x < num_boxes_x; ++x)
{
for (S32 y = 0; y < num_boxes_y; ++y)
{
for (S32 z = 0; z < num_boxes_z; ++z)
{
LLPrimitive* primp = new LLPrimitive();
primp->setVolume( volume_params, TEST_VOLUME_DETAIL);
position.set( F32(x) * small_box_size, F32(y) * small_box_size, F32(z) * small_box_size );
position *= rotation;
primp->setPosition(position);
primp->setRotation(rotation);
primp->setScale(small_scale);
prim_list.push_back(primp);
}
}
}
volume_manager->getObjectMassProperties(multiple_box, prim_list);
for (S32 i = 0; i < (S32)prim_list.size(); ++i)
{
delete prim_list[i];
prim_list[i] = NULL;
}
LLPrimitive::cleanupVolumeManager();
}
// mass
F32 big_mass = big_box.getMass();
F32 multiple_mass = multiple_box.getMass();
F32 error = (big_mass - multiple_mass) / big_mass;
ensure("Big box and equivalent multi-prim box should have same mass", error < SMALL_RELATIVE_ERROR);
// center of mass
LLVector3 big_center, multiple_center;
big_box.getCenterOfMass(big_center);
multiple_box.getCenterOfMass(multiple_center);
LLVector3 expected_shift = 0.5f * ( big_scale - small_scale );
error = ( big_center - (multiple_center - expected_shift) ).length();
ensure("Big box and equivalent multi-prim box should have same center", error < SMALL_RELATIVE_ERROR);
// inertia
LLMatrix3 big_inertia, multiple_inertia;
big_box.getInertiaLocal(big_inertia);
multiple_box.getInertiaLocal(multiple_inertia);
for (S32 i = 0; i < 3; ++i)
{
for (S32 j = 0; j < 3; ++j)
{
error = fabs(big_inertia.mMatrix[i][j] - multiple_inertia.mMatrix[i][j]);
if (error > 0.f
&& big_inertia.mMatrix[i][j] > SMALL_RELATIVE_ERROR)
{
error /= big_inertia.mMatrix[i][j];
}
bool ok = error < SMALL_RELATIVE_ERROR
|| (i != j
&& error < SMALL_RELATIVE_ERROR);
ensure("UnitBox and UnitMesh(box) should have same inertia", ok );
}
}
}
}
|