1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
|
/**
* @file noise.h
* @brief Perlin noise routines for procedural textures, etc
*
* Copyright (c) 2000-2007, Linden Research, Inc.
*
* The source code in this file ("Source Code") is provided by Linden Lab
* to you under the terms of the GNU General Public License, version 2.0
* ("GPL"), unless you have obtained a separate licensing agreement
* ("Other License"), formally executed by you and Linden Lab. Terms of
* the GPL can be found in doc/GPL-license.txt in this distribution, or
* online at http://secondlife.com/developers/opensource/gplv2
*
* There are special exceptions to the terms and conditions of the GPL as
* it is applied to this Source Code. View the full text of the exception
* in the file doc/FLOSS-exception.txt in this software distribution, or
* online at http://secondlife.com/developers/opensource/flossexception
*
* By copying, modifying or distributing this software, you acknowledge
* that you have read and understood your obligations described above,
* and agree to abide by those obligations.
*
* ALL LINDEN LAB SOURCE CODE IS PROVIDED "AS IS." LINDEN LAB MAKES NO
* WARRANTIES, EXPRESS, IMPLIED OR OTHERWISE, REGARDING ITS ACCURACY,
* COMPLETENESS OR PERFORMANCE.
*/
#ifndef LL_NOISE_H
#define LL_NOISE_H
#include "llmath.h"
F32 turbulence2(F32 *v, F32 freq);
F32 turbulence3(float *v, float freq);
F32 clouds3(float *v, float freq);
F32 noise2(float *vec);
F32 noise3(float *vec);
inline F32 bias(F32 a, F32 b)
{
return (F32)pow(a, (F32)(log(b) / log(0.5f)));
}
inline F32 gain(F32 a, F32 b)
{
F32 p = (F32) (log(1.f - b) / log(0.5f));
if (a < .001f)
return 0.f;
else if (a > .999f)
return 1.f;
if (a < 0.5f)
return (F32)(pow(2 * a, p) / 2.f);
else
return (F32)(1.f - pow(2 * (1.f - a), p) / 2.f);
}
inline F32 turbulence2(F32 *v, F32 freq)
{
F32 t, vec[2];
for (t = 0.f ; freq >= 1.f ; freq *= 0.5f) {
vec[0] = freq * v[0];
vec[1] = freq * v[1];
t += noise2(vec)/freq;
}
return t;
}
inline F32 turbulence3(F32 *v, F32 freq)
{
F32 t, vec[3];
for (t = 0.f ; freq >= 1.f ; freq *= 0.5f) {
vec[0] = freq * v[0];
vec[1] = freq * v[1];
vec[2] = freq * v[2];
t += noise3(vec)/freq;
// t += fabs(noise3(vec)) / freq; // Like snow - bubbly at low frequencies
// t += sqrt(fabs(noise3(vec))) / freq; // Better at low freq
// t += (noise3(vec)*noise3(vec)) / freq;
}
return t;
}
inline F32 clouds3(F32 *v, F32 freq)
{
F32 t, vec[3];
for (t = 0.f ; freq >= 1.f ; freq *= 0.5f) {
vec[0] = freq * v[0];
vec[1] = freq * v[1];
vec[2] = freq * v[2];
//t += noise3(vec)/freq;
// t += fabs(noise3(vec)) / freq; // Like snow - bubbly at low frequencies
// t += sqrt(fabs(noise3(vec))) / freq; // Better at low freq
t += (noise3(vec)*noise3(vec)) / freq;
}
return t;
}
/* noise functions over 1, 2, and 3 dimensions */
#define B 0x100
#define BM 0xff
#define N 0x1000
#define NF32 (4096.f)
#define NP 12 /* 2^N */
#define NM 0xfff
extern S32 p[B + B + 2];
extern F32 g3[B + B + 2][3];
extern F32 g2[B + B + 2][2];
extern F32 g1[B + B + 2];
extern S32 gNoiseStart;
static void init(void);
#define s_curve(t) ( t * t * (3.f - 2.f * t) )
#define lerp_m(t, a, b) ( a + t * (b - a) )
#define setup_noise(i,b0,b1,r0,r1)\
t = vec[i] + N;\
b0 = (lltrunc(t)) & BM;\
b1 = (b0+1) & BM;\
r0 = t - lltrunc(t);\
r1 = r0 - 1.f;
inline void fast_setup(F32 vec, U8 &b0, U8 &b1, F32 &r0, F32 &r1)
{
S32 t_S32;
r1 = vec + NF32;
t_S32 = lltrunc(r1);
b0 = (U8)t_S32;
b1 = b0 + 1;
r0 = r1 - t_S32;
r1 = r0 - 1.f;
}
inline F32 noise1(const F32 arg)
{
int bx0, bx1;
F32 rx0, rx1, sx, t, u, v, vec[1];
vec[0] = arg;
if (gNoiseStart) {
gNoiseStart = 0;
init();
}
setup_noise(0, bx0,bx1, rx0,rx1);
sx = s_curve(rx0);
u = rx0 * g1[ p[ bx0 ] ];
v = rx1 * g1[ p[ bx1 ] ];
return lerp_m(sx, u, v);
}
inline F32 fast_at2(F32 rx, F32 ry, F32 *q)
{
return rx * (*q) + ry * (*(q + 1));
}
inline F32 fast_at3(F32 rx, F32 ry, F32 rz, F32 *q)
{
return rx * (*q) + ry * (*(q + 1)) + rz * (*(q + 2));
}
inline F32 noise3(F32 *vec)
{
U8 bx0, bx1, by0, by1, bz0, bz1;
S32 b00, b10, b01, b11;
F32 rx0, rx1, ry0, ry1, rz0, rz1, *q, sy, sz, a, b, c, d, t, u, v;
S32 i, j;
if (gNoiseStart) {
gNoiseStart = 0;
init();
}
fast_setup(*vec, bx0,bx1, rx0,rx1);
fast_setup(*(vec + 1), by0,by1, ry0,ry1);
fast_setup(*(vec + 2), bz0,bz1, rz0,rz1);
i = p[ bx0 ];
j = p[ bx1 ];
b00 = p[ i + by0 ];
b10 = p[ j + by0 ];
b01 = p[ i + by1 ];
b11 = p[ j + by1 ];
t = s_curve(rx0);
sy = s_curve(ry0);
sz = s_curve(rz0);
q = g3[ b00 + bz0 ];
u = fast_at3(rx0,ry0,rz0,q);
q = g3[ b10 + bz0 ];
v = fast_at3(rx1,ry0,rz0,q);
a = lerp_m(t, u, v);
q = g3[ b01 + bz0 ];
u = fast_at3(rx0,ry1,rz0,q);
q = g3[ b11 + bz0 ];
v = fast_at3(rx1,ry1,rz0,q);
b = lerp_m(t, u, v);
c = lerp_m(sy, a, b);
q = g3[ b00 + bz1 ];
u = fast_at3(rx0,ry0,rz1,q);
q = g3[ b10 + bz1 ];
v = fast_at3(rx1,ry0,rz1,q);
a = lerp_m(t, u, v);
q = g3[ b01 + bz1 ];
u = fast_at3(rx0,ry1,rz1,q);
q = g3[ b11 + bz1 ];
v = fast_at3(rx1,ry1,rz1,q);
b = lerp_m(t, u, v);
d = lerp_m(sy, a, b);
return lerp_m(sz, c, d);
}
/*
F32 noise3(F32 *vec)
{
int bx0, bx1, by0, by1, bz0, bz1, b00, b10, b01, b11;
F32 rx0, rx1, ry0, ry1, rz0, rz1, *q, sy, sz, a, b, c, d, t, u, v;
S32 i, j;
if (gNoiseStart) {
gNoiseStart = 0;
init();
}
setup_noise(0, bx0,bx1, rx0,rx1);
setup_noise(1, by0,by1, ry0,ry1);
setup_noise(2, bz0,bz1, rz0,rz1);
i = p[ bx0 ];
j = p[ bx1 ];
b00 = p[ i + by0 ];
b10 = p[ j + by0 ];
b01 = p[ i + by1 ];
b11 = p[ j + by1 ];
t = s_curve(rx0);
sy = s_curve(ry0);
sz = s_curve(rz0);
#define at3(rx,ry,rz) ( rx * q[0] + ry * q[1] + rz * q[2] )
q = g3[ b00 + bz0 ] ; u = at3(rx0,ry0,rz0);
q = g3[ b10 + bz0 ] ; v = at3(rx1,ry0,rz0);
a = lerp_m(t, u, v);
q = g3[ b01 + bz0 ] ; u = at3(rx0,ry1,rz0);
q = g3[ b11 + bz0 ] ; v = at3(rx1,ry1,rz0);
b = lerp_m(t, u, v);
c = lerp_m(sy, a, b);
q = g3[ b00 + bz1 ] ; u = at3(rx0,ry0,rz1);
q = g3[ b10 + bz1 ] ; v = at3(rx1,ry0,rz1);
a = lerp_m(t, u, v);
q = g3[ b01 + bz1 ] ; u = at3(rx0,ry1,rz1);
q = g3[ b11 + bz1 ] ; v = at3(rx1,ry1,rz1);
b = lerp_m(t, u, v);
d = lerp_m(sy, a, b);
return lerp_m(sz, c, d);
}
*/
static void normalize2(F32 v[2])
{
F32 s;
s = 1.f/(F32)sqrt(v[0] * v[0] + v[1] * v[1]);
v[0] = v[0] * s;
v[1] = v[1] * s;
}
static void normalize3(F32 v[3])
{
F32 s;
s = 1.f/(F32)sqrt(v[0] * v[0] + v[1] * v[1] + v[2] * v[2]);
v[0] = v[0] * s;
v[1] = v[1] * s;
v[2] = v[2] * s;
}
static void init(void)
{
int i, j, k;
for (i = 0 ; i < B ; i++) {
p[i] = i;
g1[i] = (F32)((rand() % (B + B)) - B) / B;
for (j = 0 ; j < 2 ; j++)
g2[i][j] = (F32)((rand() % (B + B)) - B) / B;
normalize2(g2[i]);
for (j = 0 ; j < 3 ; j++)
g3[i][j] = (F32)((rand() % (B + B)) - B) / B;
normalize3(g3[i]);
}
while (--i) {
k = p[i];
p[i] = p[j = rand() % B];
p[j] = k;
}
for (i = 0 ; i < B + 2 ; i++) {
p[B + i] = p[i];
g1[B + i] = g1[i];
for (j = 0 ; j < 2 ; j++)
g2[B + i][j] = g2[i][j];
for (j = 0 ; j < 3 ; j++)
g3[B + i][j] = g3[i][j];
}
}
#undef B
#undef BM
#undef N
#undef NF32
#undef NP
#undef NM
#endif // LL_NOISE_
|