aboutsummaryrefslogtreecommitdiffstatshomepage
path: root/linden/indra/llmath/v3math.h
blob: 68e60dee3f075ab60b9cd9feb6125deaf4cc8738 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
/** 
 * @file v3math.h
 * @brief LLVector3 class header file.
 *
 * Copyright (c) 2000-2007, Linden Research, Inc.
 * 
 * The source code in this file ("Source Code") is provided by Linden Lab
 * to you under the terms of the GNU General Public License, version 2.0
 * ("GPL"), unless you have obtained a separate licensing agreement
 * ("Other License"), formally executed by you and Linden Lab.  Terms of
 * the GPL can be found in doc/GPL-license.txt in this distribution, or
 * online at http://secondlife.com/developers/opensource/gplv2
 * 
 * There are special exceptions to the terms and conditions of the GPL as
 * it is applied to this Source Code. View the full text of the exception
 * in the file doc/FLOSS-exception.txt in this software distribution, or
 * online at http://secondlife.com/developers/opensource/flossexception
 * 
 * By copying, modifying or distributing this software, you acknowledge
 * that you have read and understood your obligations described above,
 * and agree to abide by those obligations.
 * 
 * ALL LINDEN LAB SOURCE CODE IS PROVIDED "AS IS." LINDEN LAB MAKES NO
 * WARRANTIES, EXPRESS, IMPLIED OR OTHERWISE, REGARDING ITS ACCURACY,
 * COMPLETENESS OR PERFORMANCE.
 */

#ifndef LL_V3MATH_H
#define LL_V3MATH_H

#include "llerror.h"
#include "llmath.h"

#include "llsd.h"
class LLVector4;
class LLMatrix3;
class LLVector3d;
class LLQuaternion;

//  Llvector3 = |x y z w|

static const U32 LENGTHOFVECTOR3 = 3;

class LLVector3
{
	public:
		F32 mV[LENGTHOFVECTOR3];

		static const LLVector3 zero;
		static const LLVector3 x_axis;
		static const LLVector3 y_axis;
		static const LLVector3 z_axis;
		static const LLVector3 x_axis_neg;
		static const LLVector3 y_axis_neg;
		static const LLVector3 z_axis_neg;
		static const LLVector3 all_one;

		inline LLVector3();							// Initializes LLVector3 to (0, 0, 0)
		inline LLVector3(const F32 x, const F32 y, const F32 z);			// Initializes LLVector3 to (x. y, z)
		inline explicit LLVector3(const F32 *vec);				// Initializes LLVector3 to (vec[0]. vec[1], vec[2])
		explicit LLVector3(const LLVector3d &vec);				// Initializes LLVector3 to (vec[0]. vec[1], vec[2])
		explicit LLVector3(const LLVector4 &vec);				// Initializes LLVector4 to (vec[0]. vec[1], vec[2])
		LLVector3(const LLSD& sd)
		{
			setValue(sd);
		}

		LLSD getValue() const
		{
			LLSD ret;
			ret[0] = mV[0];
			ret[1] = mV[1];
			ret[2] = mV[2];
			return ret;
		}

		void setValue(const LLSD& sd)
		{
			mV[0] = (F32) sd[0].asReal();
			mV[1] = (F32) sd[1].asReal();
			mV[2] = (F32) sd[2].asReal();
		}

		const LLVector3& operator=(const LLSD& sd)
		{
			setValue(sd);
			return *this;
		}

		inline BOOL isFinite() const;									// checks to see if all values of LLVector3 are finite
		BOOL		clamp(F32 min, F32 max);		// Clamps all values to (min,max), returns TRUE if data changed

		void		quantize16(F32 lowerxy, F32 upperxy, F32 lowerz, F32 upperz);	// changes the vector to reflect quatization
		void		quantize8(F32 lowerxy, F32 upperxy, F32 lowerz, F32 upperz);	// changes the vector to reflect quatization
		void 		snap(S32 sig_digits);											// snaps x,y,z to sig_digits decimal places

		BOOL		abs();						// sets all values to absolute value of original value (first octant), returns TRUE if changed
		
		inline void	clearVec();						// Clears LLVector3 to (0, 0, 0, 1)
		inline void	zeroVec();						// Zero LLVector3 to (0, 0, 0, 0)
		inline void	setVec(F32 x, F32 y, F32 z);	// Sets LLVector3 to (x, y, z, 1)
		inline void	setVec(const LLVector3 &vec);	// Sets LLVector3 to vec
		inline void	setVec(const F32 *vec);			// Sets LLVector3 to vec

		const LLVector3& setVec(const LLVector4 &vec);
		const LLVector3& setVec(const LLVector3d &vec);	// Sets LLVector3 to vec

		F32		magVec() const;				// Returns magnitude of LLVector3
		F32		magVecSquared() const;		// Returns magnitude squared of LLVector3
		inline F32		normVec();					// Normalizes and returns the magnitude of LLVector3

		const LLVector3&	rotVec(F32 angle, const LLVector3 &vec);	// Rotates about vec by angle radians
		const LLVector3&	rotVec(F32 angle, F32 x, F32 y, F32 z);		// Rotates about x,y,z by angle radians
		const LLVector3&	rotVec(const LLMatrix3 &mat);				// Rotates by LLMatrix4 mat
		const LLVector3&	rotVec(const LLQuaternion &q);				// Rotates by LLQuaternion q

		const LLVector3&	scaleVec(const LLVector3& vec);				// scales per component by vec
		LLVector3			scaledVec(const LLVector3& vec) const;			// get a copy of this vector scaled by vec

		BOOL isNull() const;			// Returns TRUE if vector has a _very_small_ length
		BOOL isExactlyZero() const		{ return !mV[VX] && !mV[VY] && !mV[VZ]; }

		F32 operator[](int idx) const { return mV[idx]; }
		F32 &operator[](int idx) { return mV[idx]; }
	
		friend LLVector3 operator+(const LLVector3 &a, const LLVector3 &b);	// Return vector a + b
		friend LLVector3 operator-(const LLVector3 &a, const LLVector3 &b);	// Return vector a minus b
		friend F32 operator*(const LLVector3 &a, const LLVector3 &b);		// Return a dot b
		friend LLVector3 operator%(const LLVector3 &a, const LLVector3 &b);	// Return a cross b
		friend LLVector3 operator*(const LLVector3 &a, F32 k);				// Return a times scaler k
		friend LLVector3 operator/(const LLVector3 &a, F32 k);				// Return a divided by scaler k
		friend LLVector3 operator*(F32 k, const LLVector3 &a);				// Return a times scaler k
		friend bool operator==(const LLVector3 &a, const LLVector3 &b);		// Return a == b
		friend bool operator!=(const LLVector3 &a, const LLVector3 &b);		// Return a != b
		// less than operator useful for using vectors as std::map keys
		friend bool operator<(const LLVector3 &a, const LLVector3 &b);		// Return a < b

		friend const LLVector3& operator+=(LLVector3 &a, const LLVector3 &b);	// Return vector a + b
		friend const LLVector3& operator-=(LLVector3 &a, const LLVector3 &b);	// Return vector a minus b
		friend const LLVector3& operator%=(LLVector3 &a, const LLVector3 &b);	// Return a cross b
		friend const LLVector3& operator*=(LLVector3 &a, const LLVector3 &b);	// Returns a * b;
		friend const LLVector3& operator*=(LLVector3 &a, F32 k);				// Return a times scaler k
		friend const LLVector3& operator/=(LLVector3 &a, F32 k);				// Return a divided by scaler k
		friend const LLVector3& operator*=(LLVector3 &a, const LLQuaternion &b);	// Returns a * b;

		friend LLVector3 operator-(const LLVector3 &a);					// Return vector -a

		friend std::ostream&	 operator<<(std::ostream& s, const LLVector3 &a);		// Stream a

		static BOOL parseVector3(const char* buf, LLVector3* value);
};

typedef LLVector3 LLSimLocalVec;

// Non-member functions 

F32	angle_between(const LLVector3 &a, const LLVector3 &b);	// Returns angle (radians) between a and b
BOOL are_parallel(const LLVector3 &a, const LLVector3 &b, F32 epsilon=F_APPROXIMATELY_ZERO);	// Returns TRUE if a and b are very close to parallel
F32	dist_vec(const LLVector3 &a, const LLVector3 &b);		// Returns distance between a and b
F32	dist_vec_squared(const LLVector3 &a, const LLVector3 &b);// Returns distance sqaured between a and b
F32	dist_vec_squared2D(const LLVector3 &a, const LLVector3 &b);// Returns distance sqaured between a and b ignoring Z component
LLVector3 projected_vec(const LLVector3 &a, const LLVector3 &b); // Returns vector a projected on vector b
LLVector3 lerp(const LLVector3 &a, const LLVector3 &b, F32 u); // Returns a vector that is a linear interpolation between a and b

inline LLVector3::LLVector3(void)
{
	mV[0] = 0.f;
	mV[1] = 0.f;
	mV[2] = 0.f;
}

inline LLVector3::LLVector3(const F32 x, const F32 y, const F32 z)
{
	mV[VX] = x;
	mV[VY] = y;
	mV[VZ] = z;
}

inline LLVector3::LLVector3(const F32 *vec)
{
	mV[VX] = vec[VX];
	mV[VY] = vec[VY];
	mV[VZ] = vec[VZ];
}

/*
inline LLVector3::LLVector3(const LLVector3 &copy)
{
	mV[VX] = copy.mV[VX];
	mV[VY] = copy.mV[VY];
	mV[VZ] = copy.mV[VZ];
}
*/

// Destructors

// checker
inline BOOL LLVector3::isFinite() const
{
	return (llfinite(mV[VX]) && llfinite(mV[VY]) && llfinite(mV[VZ]));
}


// Clear and Assignment Functions

inline void	LLVector3::clearVec(void)
{
	mV[0] = 0.f;
	mV[1] = 0.f;
	mV[2] = 0.f;
}

inline void	LLVector3::zeroVec(void)
{
	mV[0] = 0.f;
	mV[1] = 0.f;
	mV[2] = 0.f;
}

inline void	LLVector3::setVec(F32 x, F32 y, F32 z)
{
	mV[VX] = x;
	mV[VY] = y;
	mV[VZ] = z;
}

inline void	LLVector3::setVec(const LLVector3 &vec)
{
	mV[0] = vec.mV[0];
	mV[1] = vec.mV[1];
	mV[2] = vec.mV[2];
}

inline void	LLVector3::setVec(const F32 *vec)
{
	mV[0] = vec[0];
	mV[1] = vec[1];
	mV[2] = vec[2];
}

inline F32 LLVector3::normVec(void)
{
	F32 mag = fsqrtf(mV[0]*mV[0] + mV[1]*mV[1] + mV[2]*mV[2]);
	F32 oomag;

	if (mag > FP_MAG_THRESHOLD)
	{
		oomag = 1.f/mag;
		mV[0] *= oomag;
		mV[1] *= oomag;
		mV[2] *= oomag;
	}
	else
	{
		mV[0] = 0.f;
		mV[1] = 0.f;
		mV[2] = 0.f;
		mag = 0;
	}
	return (mag);
}

// LLVector3 Magnitude and Normalization Functions

inline F32	LLVector3::magVec(void) const
{
	return fsqrtf(mV[0]*mV[0] + mV[1]*mV[1] + mV[2]*mV[2]);
}

inline F32	LLVector3::magVecSquared(void) const
{
	return mV[0]*mV[0] + mV[1]*mV[1] + mV[2]*mV[2];
}

inline LLVector3 operator+(const LLVector3 &a, const LLVector3 &b)
{
	LLVector3 c(a);
	return c += b;
}

inline LLVector3 operator-(const LLVector3 &a, const LLVector3 &b)
{
	LLVector3 c(a);
	return c -= b;
}

inline F32  operator*(const LLVector3 &a, const LLVector3 &b)
{
	return (a.mV[0]*b.mV[0] + a.mV[1]*b.mV[1] + a.mV[2]*b.mV[2]);
}

inline LLVector3 operator%(const LLVector3 &a, const LLVector3 &b)
{
	return LLVector3( a.mV[1]*b.mV[2] - b.mV[1]*a.mV[2], a.mV[2]*b.mV[0] - b.mV[2]*a.mV[0], a.mV[0]*b.mV[1] - b.mV[0]*a.mV[1] );
}

inline LLVector3 operator/(const LLVector3 &a, F32 k)
{
	F32 t = 1.f / k;
	return LLVector3( a.mV[0] * t, a.mV[1] * t, a.mV[2] * t );
}

inline LLVector3 operator*(const LLVector3 &a, F32 k)
{
	return LLVector3( a.mV[0] * k, a.mV[1] * k, a.mV[2] * k );
}

inline LLVector3 operator*(F32 k, const LLVector3 &a)
{
	return LLVector3( a.mV[0] * k, a.mV[1] * k, a.mV[2] * k );
}

inline bool operator==(const LLVector3 &a, const LLVector3 &b)
{
	return (  (a.mV[0] == b.mV[0])
			&&(a.mV[1] == b.mV[1])
			&&(a.mV[2] == b.mV[2]));
}

inline bool operator!=(const LLVector3 &a, const LLVector3 &b)
{
	return (  (a.mV[0] != b.mV[0])
			||(a.mV[1] != b.mV[1])
			||(a.mV[2] != b.mV[2]));
}

inline bool operator<(const LLVector3 &a, const LLVector3 &b)
{
	return (a.mV[0] < b.mV[0]
			|| (a.mV[0] == b.mV[0]
				&& (a.mV[1] < b.mV[1]
					|| (a.mV[1] == b.mV[1])
						&& a.mV[2] < b.mV[2])));
}

inline const LLVector3& operator+=(LLVector3 &a, const LLVector3 &b)
{
	a.mV[0] += b.mV[0];
	a.mV[1] += b.mV[1];
	a.mV[2] += b.mV[2];
	return a;
}

inline const LLVector3& operator-=(LLVector3 &a, const LLVector3 &b)
{
	a.mV[0] -= b.mV[0];
	a.mV[1] -= b.mV[1];
	a.mV[2] -= b.mV[2];
	return a;
}

inline const LLVector3& operator%=(LLVector3 &a, const LLVector3 &b)
{
	LLVector3 ret( a.mV[1]*b.mV[2] - b.mV[1]*a.mV[2], a.mV[2]*b.mV[0] - b.mV[2]*a.mV[0], a.mV[0]*b.mV[1] - b.mV[0]*a.mV[1]);
	a = ret;
	return a;
}

inline const LLVector3& operator*=(LLVector3 &a, F32 k)
{
	a.mV[0] *= k;
	a.mV[1] *= k;
	a.mV[2] *= k;
	return a;
}

inline const LLVector3& operator*=(LLVector3 &a, const LLVector3 &b)
{
	a.mV[0] *= b.mV[0];
	a.mV[1] *= b.mV[1];
	a.mV[2] *= b.mV[2];
	return a;
}

inline const LLVector3& operator/=(LLVector3 &a, F32 k)
{
	F32 t = 1.f / k;
	a.mV[0] *= t;
	a.mV[1] *= t;
	a.mV[2] *= t;
	return a;
}

inline LLVector3 operator-(const LLVector3 &a)
{
	return LLVector3( -a.mV[0], -a.mV[1], -a.mV[2] );
}

inline F32	dist_vec(const LLVector3 &a, const LLVector3 &b)
{
	F32 x = a.mV[0] - b.mV[0];
	F32 y = a.mV[1] - b.mV[1];
	F32 z = a.mV[2] - b.mV[2];
	return fsqrtf( x*x + y*y + z*z );
}

inline F32	dist_vec_squared(const LLVector3 &a, const LLVector3 &b)
{
	F32 x = a.mV[0] - b.mV[0];
	F32 y = a.mV[1] - b.mV[1];
	F32 z = a.mV[2] - b.mV[2];
	return x*x + y*y + z*z;
}

inline F32	dist_vec_squared2D(const LLVector3 &a, const LLVector3 &b)
{
	F32 x = a.mV[0] - b.mV[0];
	F32 y = a.mV[1] - b.mV[1];
	return x*x + y*y;
}

inline LLVector3 projected_vec(const LLVector3 &a, const LLVector3 &b)
{
	LLVector3 project_axis = b;
	project_axis.normVec();
	return project_axis * (a * project_axis);
}

inline LLVector3 lerp(const LLVector3 &a, const LLVector3 &b, F32 u)
{
	return LLVector3(
		a.mV[VX] + (b.mV[VX] - a.mV[VX]) * u,
		a.mV[VY] + (b.mV[VY] - a.mV[VY]) * u,
		a.mV[VZ] + (b.mV[VZ] - a.mV[VZ]) * u);
}


inline BOOL	LLVector3::isNull() const
{
	if ( F_APPROXIMATELY_ZERO > mV[VX]*mV[VX] + mV[VY]*mV[VY] + mV[VZ]*mV[VZ] )
	{
		return TRUE;
	}
	return FALSE;
}


inline F32 angle_between(const LLVector3& a, const LLVector3& b)
{
	LLVector3 an = a;
	LLVector3 bn = b;
	an.normVec();
	bn.normVec();
	F32 cosine = an * bn;
	F32 angle = (cosine >= 1.0f) ? 0.0f :
				(cosine <= -1.0f) ? F_PI :
				(F32)acos(cosine);
	return angle;
}

inline BOOL are_parallel(const LLVector3 &a, const LLVector3 &b, F32 epsilon)
{
	LLVector3 an = a;
	LLVector3 bn = b;
	an.normVec();
	bn.normVec();
	F32 dot = an * bn;
	if ( (1.0f - fabs(dot)) < epsilon)
	{
		return TRUE;
	}
	return FALSE;
}

#endif