aboutsummaryrefslogtreecommitdiffstatshomepage
path: root/linden/indra/llmath/llplane.h
blob: 44721f3677ff3f03c92fd96461a7e8dca814e380 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
/** 
 * @file llplane.h
 *
 * Copyright (c) 2001-2007, Linden Research, Inc.
 * 
 * The source code in this file ("Source Code") is provided by Linden Lab
 * to you under the terms of the GNU General Public License, version 2.0
 * ("GPL"), unless you have obtained a separate licensing agreement
 * ("Other License"), formally executed by you and Linden Lab.  Terms of
 * the GPL can be found in doc/GPL-license.txt in this distribution, or
 * online at http://secondlife.com/developers/opensource/gplv2
 * 
 * There are special exceptions to the terms and conditions of the GPL as
 * it is applied to this Source Code. View the full text of the exception
 * in the file doc/FLOSS-exception.txt in this software distribution, or
 * online at http://secondlife.com/developers/opensource/flossexception
 * 
 * By copying, modifying or distributing this software, you acknowledge
 * that you have read and understood your obligations described above,
 * and agree to abide by those obligations.
 * 
 * ALL LINDEN LAB SOURCE CODE IS PROVIDED "AS IS." LINDEN LAB MAKES NO
 * WARRANTIES, EXPRESS, IMPLIED OR OTHERWISE, REGARDING ITS ACCURACY,
 * COMPLETENESS OR PERFORMANCE.
 */

#ifndef LL_LLPLANE_H
#define LL_LLPLANE_H

#include "v3math.h"
#include "v4math.h"

// A simple way to specify a plane is to give its normal,
// and it's nearest approach to the origin.
// 
// Given the equation for a plane : A*x + B*y + C*z + D = 0
// The plane normal = [A, B, C]
// The closest approach = D / sqrt(A*A + B*B + C*C)

class LLPlane : public LLVector4
{
public:
	LLPlane() {}; // no default constructor
	LLPlane(const LLVector3 &p0, F32 d) { setVec(p0, d); }
	LLPlane(const LLVector3 &p0, const LLVector3 &n) { setVec(p0, n); }
	void setVec(const LLVector3 &p0, F32 d) { LLVector4::setVec(p0[0], p0[1], p0[2], d); }
	void setVec(const LLVector3 &p0, const LLVector3 &n)
	{
		F32 d = -(p0 * n);
		setVec(n, d);
	}
	void setVec(const LLVector3 &p0, const LLVector3 &p1, const LLVector3 &p2)
	{
		LLVector3 u, v, w;
		u = p1 - p0;
		v = p2 - p0;
		w = u % v;
		w.normVec();
		F32 d = -(w * p0);
		setVec(w, d);
	}
	LLPlane& operator=(const LLVector4& v2) {  LLVector4::setVec(v2[0],v2[1],v2[2],v2[3]); return *this;}
	F32 dist(const LLVector3 &v2) const { return mV[0]*v2[0] + mV[1]*v2[1] + mV[2]*v2[2] + mV[3]; }
};



#endif // LL_LLPLANE_H