/** * @file pipeline.cpp * @brief Rendering pipeline. * * $LicenseInfo:firstyear=2005&license=viewergpl$ * * Copyright (c) 2005-2008, Linden Research, Inc. * * Second Life Viewer Source Code * The source code in this file ("Source Code") is provided by Linden Lab * to you under the terms of the GNU General Public License, version 2.0 * ("GPL"), unless you have obtained a separate licensing agreement * ("Other License"), formally executed by you and Linden Lab. Terms of * the GPL can be found in doc/GPL-license.txt in this distribution, or * online at http://secondlifegrid.net/programs/open_source/licensing/gplv2 * * There are special exceptions to the terms and conditions of the GPL as * it is applied to this Source Code. View the full text of the exception * in the file doc/FLOSS-exception.txt in this software distribution, or * online at http://secondlifegrid.net/programs/open_source/licensing/flossexception * * By copying, modifying or distributing this software, you acknowledge * that you have read and understood your obligations described above, * and agree to abide by those obligations. * * ALL LINDEN LAB SOURCE CODE IS PROVIDED "AS IS." LINDEN LAB MAKES NO * WARRANTIES, EXPRESS, IMPLIED OR OTHERWISE, REGARDING ITS ACCURACY, * COMPLETENESS OR PERFORMANCE. * $/LicenseInfo$ */ #include "llviewerprecompiledheaders.h" #include "pipeline.h" // library includes #include "audioengine.h" // For MAX_BUFFERS for debugging. #include "imageids.h" #include "llerror.h" #include "llviewercontrol.h" #include "llfasttimer.h" #include "llfontgl.h" #include "llmemory.h" #include "llmemtype.h" #include "llnamevalue.h" #include "llprimitive.h" #include "llvolume.h" #include "material_codes.h" #include "timing.h" #include "v3color.h" #include "llui.h" #include "llglheaders.h" #include "llrender.h" // newview includes #include "llagent.h" #include "lldrawable.h" #include "lldrawpoolalpha.h" #include "lldrawpoolavatar.h" #include "lldrawpoolground.h" #include "lldrawpoolbump.h" #include "lldrawpooltree.h" #include "lldrawpoolwater.h" #include "llface.h" #include "llfeaturemanager.h" #include "llfloatertelehub.h" #include "llframestats.h" #include "llgldbg.h" #include "llhudmanager.h" #include "lllightconstants.h" #include "llresmgr.h" #include "llselectmgr.h" #include "llsky.h" #include "lltracker.h" #include "lltool.h" #include "lltoolmgr.h" #include "llviewercamera.h" #include "llviewerimagelist.h" #include "llviewerobject.h" #include "llviewerobjectlist.h" #include "llviewerparcelmgr.h" #include "llviewerregion.h" // for audio debugging. #include "llviewerwindow.h" // For getSpinAxis #include "llvoavatar.h" #include "llvoground.h" #include "llvosky.h" #include "llvotree.h" #include "llvovolume.h" #include "llvosurfacepatch.h" #include "llvowater.h" #include "llvotree.h" #include "llvopartgroup.h" #include "llworld.h" #include "llcubemap.h" #include "lldebugmessagebox.h" #include "llviewershadermgr.h" #include "llviewerjoystick.h" #include "llviewerdisplay.h" #include "llwlparammanager.h" #include "llwaterparammanager.h" #include "llspatialpartition.h" #include "llmutelist.h" #ifdef _DEBUG // Debug indices is disabled for now for debug performance - djs 4/24/02 //#define DEBUG_INDICES #else //#define DEBUG_INDICES #endif const F32 BACKLIGHT_DAY_MAGNITUDE_AVATAR = 0.2f; const F32 BACKLIGHT_NIGHT_MAGNITUDE_AVATAR = 0.1f; const F32 BACKLIGHT_DAY_MAGNITUDE_OBJECT = 0.1f; const F32 BACKLIGHT_NIGHT_MAGNITUDE_OBJECT = 0.08f; const S32 MAX_ACTIVE_OBJECT_QUIET_FRAMES = 40; const S32 MAX_OFFSCREEN_GEOMETRY_CHANGES_PER_FRAME = 10; const U32 REFLECTION_MAP_RES = 128; // Max number of occluders to search for. JC const S32 MAX_OCCLUDER_COUNT = 2; extern S32 gBoxFrame; extern BOOL gRenderLightGlows; extern BOOL gHideSelectedObjects; extern BOOL gDisplaySwapBuffers; extern BOOL gDebugGL; // hack counter for rendering a fixed number of frames after toggling // fullscreen to work around DEV-5361 static S32 sDelayedVBOEnable = 0; BOOL gAvatarBacklight = FALSE; BOOL gRenderForSelect = FALSE; BOOL gDebugPipeline = FALSE; LLPipeline gPipeline; const LLMatrix4* gGLLastMatrix = NULL; //---------------------------------------- std::string gPoolNames[] = { // Correspond to LLDrawpool enum render type "NONE", "POOL_SIMPLE", "POOL_TERRAIN", "POOL_TREE", "POOL_SKY", "POOL_WL_SKY", "POOL_GROUND", "POOL_BUMP", "POOL_INVISIBLE", "POOL_AVATAR", "POOL_WATER", "POOL_GLOW", "POOL_ALPHA", }; U32 nhpo2(U32 v) { U32 r = 1; while (r < v) { r *= 2; } return r; } glh::matrix4f glh_copy_matrix(GLdouble* src) { glh::matrix4f ret; for (U32 i = 0; i < 16; i++) { ret.m[i] = (F32) src[i]; } return ret; } glh::matrix4f glh_get_current_modelview() { return glh_copy_matrix(gGLModelView); } glh::matrix4f glh_get_current_projection() { return glh_copy_matrix(gGLProjection); } void glh_copy_matrix(const glh::matrix4f& src, GLdouble* dst) { for (U32 i = 0; i < 16; i++) { dst[i] = src.m[i]; } } void glh_set_current_modelview(const glh::matrix4f& mat) { glh_copy_matrix(mat, gGLModelView); } void glh_set_current_projection(glh::matrix4f& mat) { glh_copy_matrix(mat, gGLProjection); } glh::matrix4f gl_ortho(GLfloat left, GLfloat right, GLfloat bottom, GLfloat top, GLfloat znear, GLfloat zfar) { glh::matrix4f ret( 2.f/(right-left), 0.f, 0.f, -(right+left)/(right-left), 0.f, 2.f/(top-bottom), 0.f, -(top+bottom)/(top-bottom), 0.f, 0.f, -2.f/(zfar-znear), -(zfar+znear)/(zfar-znear), 0.f, 0.f, 0.f, 1.f); return ret; } void display_update_camera(); //---------------------------------------- S32 LLPipeline::sCompiles = 0; BOOL LLPipeline::sDynamicLOD = TRUE; BOOL LLPipeline::sShowHUDAttachments = TRUE; BOOL LLPipeline::sRenderPhysicalBeacons = TRUE; BOOL LLPipeline::sRenderScriptedBeacons = FALSE; BOOL LLPipeline::sRenderScriptedTouchBeacons = TRUE; BOOL LLPipeline::sRenderParticleBeacons = FALSE; BOOL LLPipeline::sRenderSoundBeacons = FALSE; BOOL LLPipeline::sRenderBeacons = FALSE; BOOL LLPipeline::sRenderHighlight = TRUE; S32 LLPipeline::sUseOcclusion = 0; BOOL LLPipeline::sFastAlpha = TRUE; BOOL LLPipeline::sDisableShaders = FALSE; BOOL LLPipeline::sRenderBump = TRUE; BOOL LLPipeline::sUseFarClip = TRUE; BOOL LLPipeline::sSkipUpdate = FALSE; BOOL LLPipeline::sWaterReflections = FALSE; BOOL LLPipeline::sRenderGlow = FALSE; BOOL LLPipeline::sReflectionRender = FALSE; BOOL LLPipeline::sImpostorRender = FALSE; BOOL LLPipeline::sUnderWaterRender = FALSE; BOOL LLPipeline::sTextureBindTest = FALSE; BOOL LLPipeline::sRenderFrameTest = FALSE; BOOL LLPipeline::sRenderAttachedLights = TRUE; BOOL LLPipeline::sRenderAttachedParticles = TRUE; static LLCullResult* sCull = NULL; static const U32 gl_cube_face[] = { GL_TEXTURE_CUBE_MAP_POSITIVE_X_ARB, GL_TEXTURE_CUBE_MAP_NEGATIVE_X_ARB, GL_TEXTURE_CUBE_MAP_POSITIVE_Y_ARB, GL_TEXTURE_CUBE_MAP_NEGATIVE_Y_ARB, GL_TEXTURE_CUBE_MAP_POSITIVE_Z_ARB, GL_TEXTURE_CUBE_MAP_NEGATIVE_Z_ARB, }; void validate_framebuffer_object(); LLPipeline::LLPipeline() : mBackfaceCull(FALSE), mBatchCount(0), mMatrixOpCount(0), mTextureMatrixOps(0), mMaxBatchSize(0), mMinBatchSize(0), mMeanBatchSize(0), mTrianglesDrawn(0), mNumVisibleNodes(0), mVerticesRelit(0), mLightingChanges(0), mGeometryChanges(0), mNumVisibleFaces(0), mCubeBuffer(NULL), mCubeFrameBuffer(0), mCubeDepth(0), mInitialized(FALSE), mVertexShadersEnabled(FALSE), mVertexShadersLoaded(0), mRenderTypeMask(0), mRenderDebugFeatureMask(0), mRenderDebugMask(0), mOldRenderDebugMask(0), mLastRebuildPool(NULL), mAlphaPool(NULL), mSkyPool(NULL), mTerrainPool(NULL), mWaterPool(NULL), mGroundPool(NULL), mSimplePool(NULL), mInvisiblePool(NULL), mGlowPool(NULL), mBumpPool(NULL), mWLSkyPool(NULL), mLightMask(0), mLightMovingMask(0), mLightingDetail(0) { mBlurCubeBuffer[0] = mBlurCubeBuffer[1] = mBlurCubeBuffer[2] = 0; mBlurCubeTexture[0] = mBlurCubeTexture[1] = mBlurCubeTexture[2] = 0; } void LLPipeline::init() { LLMemType mt(LLMemType::MTYPE_PIPELINE); sDynamicLOD = gSavedSettings.getBOOL("RenderDynamicLOD"); sRenderBump = gSavedSettings.getBOOL("RenderObjectBump"); sRenderAttachedLights = gSavedSettings.getBOOL("RenderAttachedLights"); sRenderAttachedParticles = gSavedSettings.getBOOL("RenderAttachedParticles"); mInitialized = TRUE; stop_glerror(); //create render pass pools getPool(LLDrawPool::POOL_ALPHA); getPool(LLDrawPool::POOL_SIMPLE); getPool(LLDrawPool::POOL_INVISIBLE); getPool(LLDrawPool::POOL_BUMP); getPool(LLDrawPool::POOL_GLOW); mTrianglesDrawnStat.reset(); resetFrameStats(); mRenderTypeMask = 0xffffffff; // All render types start on mRenderDebugFeatureMask = 0xffffffff; // All debugging features on mRenderDebugMask = 0; // All debug starts off mOldRenderDebugMask = mRenderDebugMask; mBackfaceCull = TRUE; stop_glerror(); // Enable features LLViewerShaderMgr::instance()->setShaders(); stop_glerror(); } LLPipeline::~LLPipeline() { } void LLPipeline::cleanup() { assertInitialized(); for(pool_set_t::iterator iter = mPools.begin(); iter != mPools.end(); ) { pool_set_t::iterator curiter = iter++; LLDrawPool* poolp = *curiter; if (poolp->isFacePool()) { LLFacePool* face_pool = (LLFacePool*) poolp; if (face_pool->mReferences.empty()) { mPools.erase(curiter); removeFromQuickLookup( poolp ); delete poolp; } } else { mPools.erase(curiter); removeFromQuickLookup( poolp ); delete poolp; } } if (!mTerrainPools.empty()) { llwarns << "Terrain Pools not cleaned up" << llendl; } if (!mTreePools.empty()) { llwarns << "Tree Pools not cleaned up" << llendl; } delete mAlphaPool; mAlphaPool = NULL; delete mSkyPool; mSkyPool = NULL; delete mTerrainPool; mTerrainPool = NULL; delete mWaterPool; mWaterPool = NULL; delete mGroundPool; mGroundPool = NULL; delete mSimplePool; mSimplePool = NULL; delete mInvisiblePool; mInvisiblePool = NULL; delete mGlowPool; mGlowPool = NULL; delete mBumpPool; mBumpPool = NULL; // don't delete wl sky pool it was handled above in the for loop //delete mWLSkyPool; mWLSkyPool = NULL; releaseGLBuffers(); mBloomImagep = NULL; mBloomImage2p = NULL; mFaceSelectImagep = NULL; mMovedBridge.clear(); mInitialized = FALSE; } //============================================================================ void LLPipeline::destroyGL() { stop_glerror(); unloadShaders(); mHighlightFaces.clear(); resetDrawOrders(); resetVertexBuffers(); releaseGLBuffers(); if (LLVertexBuffer::sEnableVBOs) { // render 30 frames after switching to work around DEV-5361 sDelayedVBOEnable = 30; LLVertexBuffer::sEnableVBOs = FALSE; } } void LLPipeline::resizeScreenTexture() { if (gPipeline.canUseVertexShaders() && assertInitialized()) { GLuint resX = gViewerWindow->getWindowDisplayWidth(); GLuint resY = gViewerWindow->getWindowDisplayHeight(); U32 res_mod = gSavedSettings.getU32("RenderResolutionDivisor"); if (res_mod > 1) { resX /= res_mod; resY /= res_mod; } mScreen.release(); mScreen.allocate(resX, resY, GL_RGBA, TRUE, GL_TEXTURE_RECTANGLE_ARB); llinfos << "RESIZED SCREEN TEXTURE: " << resX << "x" << resY << llendl; } } void LLPipeline::releaseGLBuffers() { assertInitialized(); if (mCubeBuffer) { mCubeBuffer = NULL; } if (mCubeFrameBuffer) { glDeleteFramebuffersEXT(1, &mCubeFrameBuffer); glDeleteRenderbuffersEXT(1, &mCubeDepth); mCubeDepth = mCubeFrameBuffer = 0; } if (mBlurCubeBuffer[0]) { glDeleteFramebuffersEXT(3, mBlurCubeBuffer); mBlurCubeBuffer[0] = mBlurCubeBuffer[1] = mBlurCubeBuffer[2] = 0; } if (mBlurCubeTexture[0]) { glDeleteTextures(3, mBlurCubeTexture); mBlurCubeTexture[0] = mBlurCubeTexture[1] = mBlurCubeTexture[2] = 0; } mWaterRef.release(); mWaterDis.release(); mScreen.release(); for (U32 i = 0; i < 3; i++) { mGlow[i].release(); } LLVOAvatar::resetImpostors(); } void LLPipeline::createGLBuffers() { assertInitialized(); if (LLPipeline::sWaterReflections) { //water reflection texture U32 res = (U32) gSavedSettings.getS32("RenderWaterRefResolution"); mWaterRef.allocate(res,res,GL_RGBA,TRUE); mWaterDis.allocate(res,res,GL_RGBA,TRUE); #if 0 //cube map buffers (keep for future work) { //reflection map generation buffers if (mCubeFrameBuffer == 0) { glGenFramebuffersEXT(1, &mCubeFrameBuffer); glGenRenderbuffersEXT(1, &mCubeDepth); U32 res = REFLECTION_MAP_RES; glBindRenderbufferEXT(GL_RENDERBUFFER_EXT, mCubeDepth); glRenderbufferStorageEXT(GL_RENDERBUFFER_EXT,GL_DEPTH_COMPONENT,res,res); glBindRenderbufferEXT(GL_RENDERBUFFER_EXT, 0); } if (mCubeBuffer.isNull()) { res = 128; mCubeBuffer = new LLCubeMap(); mCubeBuffer->initGL(); mCubeBuffer->setReflection(); for (U32 i = 0; i < 6; i++) { glTexImage2D(gl_cube_face[i], 0, GL_RGBA, res, res, 0, GL_RGBA, GL_FLOAT, NULL); } } if (mBlurCubeBuffer[0] == 0) { glGenFramebuffersEXT(3, mBlurCubeBuffer); } if (mBlurCubeTexture[0] == 0) { glGenTextures(3, mBlurCubeTexture); } res = (U32) gSavedSettings.getS32("RenderReflectionRes"); for (U32 j = 0; j < 3; j++) { glBindTexture(GL_TEXTURE_CUBE_MAP_ARB, mBlurCubeTexture[j]); glTexParameteri(GL_TEXTURE_CUBE_MAP_ARB, GL_TEXTURE_MIN_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_CUBE_MAP_ARB, GL_TEXTURE_MAG_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_CUBE_MAP_ARB, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_CUBE_MAP_ARB, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); for (U32 i = 0; i < 6; i++) { glTexImage2D(gl_cube_face[i], 0, GL_RGBA, res, res, 0, GL_RGBA, GL_FLOAT, NULL); } } } #endif } stop_glerror(); if (LLPipeline::sRenderGlow) { //screen space glow buffers const U32 glow_res = llmax(1, llmin(512, 1 << gSavedSettings.getS32("RenderGlowResolutionPow"))); for (U32 i = 0; i < 3; i++) { mGlow[i].allocate(512,glow_res,GL_RGBA,FALSE); } GLuint resX = gViewerWindow->getWindowDisplayWidth(); GLuint resY = gViewerWindow->getWindowDisplayHeight(); mScreen.allocate(resX, resY, GL_RGBA, TRUE, GL_TEXTURE_RECTANGLE_ARB); } } void LLPipeline::restoreGL() { assertInitialized(); if (mVertexShadersEnabled) { LLViewerShaderMgr::instance()->setShaders(); } for (LLWorld::region_list_t::iterator iter = LLWorld::getInstance()->getRegionList().begin(); iter != LLWorld::getInstance()->getRegionList().end(); ++iter) { LLViewerRegion* region = *iter; for (U32 i = 0; i < LLViewerRegion::NUM_PARTITIONS; i++) { LLSpatialPartition* part = region->getSpatialPartition(i); if (part) { part->restoreGL(); } } } } BOOL LLPipeline::canUseVertexShaders() { if (!gGLManager.mHasVertexShader || !gGLManager.mHasFragmentShader || !LLFeatureManager::getInstance()->isFeatureAvailable("VertexShaderEnable") || (assertInitialized() && mVertexShadersLoaded != 1) ) { return FALSE; } else { return TRUE; } } BOOL LLPipeline::canUseWindLightShaders() const { return (!LLPipeline::sDisableShaders && gWLSkyProgram.mProgramObject != 0 && LLViewerShaderMgr::instance()->getVertexShaderLevel(LLViewerShaderMgr::SHADER_WINDLIGHT) > 1); } BOOL LLPipeline::canUseWindLightShadersOnObjects() const { return (canUseWindLightShaders() && LLViewerShaderMgr::instance()->getVertexShaderLevel(LLViewerShaderMgr::SHADER_OBJECT) > 0); } void LLPipeline::unloadShaders() { LLViewerShaderMgr::instance()->unloadShaders(); mVertexShadersLoaded = 0; } void LLPipeline::assertInitializedDoError() { llerrs << "LLPipeline used when uninitialized." << llendl; } //============================================================================ void LLPipeline::enableShadows(const BOOL enable_shadows) { //should probably do something here to wrangle shadows.... } S32 LLPipeline::getMaxLightingDetail() const { /*if (mVertexShaderLevel[SHADER_OBJECT] >= LLDrawPoolSimple::SHADER_LEVEL_LOCAL_LIGHTS) { return 3; } else*/ { return 1; } } S32 LLPipeline::setLightingDetail(S32 level) { assertInitialized(); if (level < 0) { level = gSavedSettings.getS32("RenderLightingDetail"); } level = llclamp(level, 0, getMaxLightingDetail()); if (level != mLightingDetail) { gSavedSettings.setS32("RenderLightingDetail", level); mLightingDetail = level; if (mVertexShadersLoaded == 1) { LLViewerShaderMgr::instance()->setShaders(); } } return mLightingDetail; } class LLOctreeDirtyTexture : public LLOctreeTraveler { public: const std::set& mTextures; LLOctreeDirtyTexture(const std::set& textures) : mTextures(textures) { } virtual void visit(const LLOctreeNode* node) { LLSpatialGroup* group = (LLSpatialGroup*) node->getListener(0); if (!group->isState(LLSpatialGroup::GEOM_DIRTY) && !group->getData().empty()) { for (LLSpatialGroup::draw_map_t::iterator i = group->mDrawMap.begin(); i != group->mDrawMap.end(); ++i) { for (LLSpatialGroup::drawmap_elem_t::iterator j = i->second.begin(); j != i->second.end(); ++j) { LLDrawInfo* params = *j; if (mTextures.find(params->mTexture) != mTextures.end()) { group->setState(LLSpatialGroup::GEOM_DIRTY); } } } } for (LLSpatialGroup::bridge_list_t::iterator i = group->mBridgeList.begin(); i != group->mBridgeList.end(); ++i) { LLSpatialBridge* bridge = *i; traverse(bridge->mOctree); } } }; // Called when a texture changes # of channels (causes faces to move to alpha pool) void LLPipeline::dirtyPoolObjectTextures(const std::set& textures) { assertInitialized(); // *TODO: This is inefficient and causes frame spikes; need a better way to do this // Most of the time is spent in dirty.traverse. for (pool_set_t::iterator iter = mPools.begin(); iter != mPools.end(); ++iter) { LLDrawPool *poolp = *iter; if (poolp->isFacePool()) { ((LLFacePool*) poolp)->dirtyTextures(textures); } } LLOctreeDirtyTexture dirty(textures); for (LLWorld::region_list_t::iterator iter = LLWorld::getInstance()->getRegionList().begin(); iter != LLWorld::getInstance()->getRegionList().end(); ++iter) { LLViewerRegion* region = *iter; for (U32 i = 0; i < LLViewerRegion::NUM_PARTITIONS; i++) { LLSpatialPartition* part = region->getSpatialPartition(i); if (part) { dirty.traverse(part->mOctree); } } } } LLDrawPool *LLPipeline::findPool(const U32 type, LLViewerImage *tex0) { assertInitialized(); LLDrawPool *poolp = NULL; switch( type ) { case LLDrawPool::POOL_SIMPLE: poolp = mSimplePool; break; case LLDrawPool::POOL_INVISIBLE: poolp = mInvisiblePool; break; case LLDrawPool::POOL_GLOW: poolp = mGlowPool; break; case LLDrawPool::POOL_TREE: poolp = get_if_there(mTreePools, (uintptr_t)tex0, (LLDrawPool*)0 ); break; case LLDrawPool::POOL_TERRAIN: poolp = get_if_there(mTerrainPools, (uintptr_t)tex0, (LLDrawPool*)0 ); break; case LLDrawPool::POOL_BUMP: poolp = mBumpPool; break; case LLDrawPool::POOL_ALPHA: poolp = mAlphaPool; break; case LLDrawPool::POOL_AVATAR: break; // Do nothing case LLDrawPool::POOL_SKY: poolp = mSkyPool; break; case LLDrawPool::POOL_WATER: poolp = mWaterPool; break; case LLDrawPool::POOL_GROUND: poolp = mGroundPool; break; case LLDrawPool::POOL_WL_SKY: poolp = mWLSkyPool; break; default: llassert(0); llerrs << "Invalid Pool Type in LLPipeline::findPool() type=" << type << llendl; break; } return poolp; } LLDrawPool *LLPipeline::getPool(const U32 type, LLViewerImage *tex0) { LLMemType mt(LLMemType::MTYPE_PIPELINE); LLDrawPool *poolp = findPool(type, tex0); if (poolp) { return poolp; } LLDrawPool *new_poolp = LLDrawPool::createPool(type, tex0); addPool( new_poolp ); return new_poolp; } // static LLDrawPool* LLPipeline::getPoolFromTE(const LLTextureEntry* te, LLViewerImage* imagep) { LLMemType mt(LLMemType::MTYPE_PIPELINE); U32 type = getPoolTypeFromTE(te, imagep); return gPipeline.getPool(type, imagep); } //static U32 LLPipeline::getPoolTypeFromTE(const LLTextureEntry* te, LLViewerImage* imagep) { LLMemType mt(LLMemType::MTYPE_PIPELINE); if (!te || !imagep) { return 0; } bool alpha = te->getColor().mV[3] < 0.999f; if (imagep) { alpha = alpha || (imagep->getComponents() == 4 && ! imagep->mIsMediaTexture) || (imagep->getComponents() == 2); } if (alpha) { return LLDrawPool::POOL_ALPHA; } else if ((te->getBumpmap() || te->getShiny())) { return LLDrawPool::POOL_BUMP; } else { return LLDrawPool::POOL_SIMPLE; } } void LLPipeline::addPool(LLDrawPool *new_poolp) { LLMemType mt(LLMemType::MTYPE_PIPELINE); assertInitialized(); mPools.insert(new_poolp); addToQuickLookup( new_poolp ); } void LLPipeline::allocDrawable(LLViewerObject *vobj) { LLMemType mt(LLMemType::MTYPE_DRAWABLE); LLDrawable *drawable = new LLDrawable(); vobj->mDrawable = drawable; drawable->mVObjp = vobj; //encompass completely sheared objects by taking //the most extreme point possible (<1,1,0.5>) drawable->setRadius(LLVector3(1,1,0.5f).scaleVec(vobj->getScale()).length()); if (vobj->isOrphaned()) { drawable->setState(LLDrawable::FORCE_INVISIBLE); } drawable->updateXform(TRUE); } void LLPipeline::unlinkDrawable(LLDrawable *drawable) { LLFastTimer t(LLFastTimer::FTM_PIPELINE); assertInitialized(); LLPointer drawablep = drawable; // make sure this doesn't get deleted before we are done // Based on flags, remove the drawable from the queues that it's on. if (drawablep->isState(LLDrawable::ON_MOVE_LIST)) { LLDrawable::drawable_vector_t::iterator iter = std::find(mMovedList.begin(), mMovedList.end(), drawablep); if (iter != mMovedList.end()) { mMovedList.erase(iter); } } if (drawablep->getSpatialGroup()) { if (!drawablep->getSpatialGroup()->mSpatialPartition->remove(drawablep, drawablep->getSpatialGroup())) { #ifdef LL_RELEASE_FOR_DOWNLOAD llwarns << "Couldn't remove object from spatial group!" << llendl; #else llerrs << "Couldn't remove object from spatial group!" << llendl; #endif } } mLights.erase(drawablep); for (light_set_t::iterator iter = mNearbyLights.begin(); iter != mNearbyLights.end(); iter++) { if (iter->drawable == drawablep) { mNearbyLights.erase(iter); break; } } } U32 LLPipeline::addObject(LLViewerObject *vobj) { LLMemType mt(LLMemType::MTYPE_DRAWABLE); if (gNoRender) { return 0; } LLDrawable* drawablep = vobj->mDrawable; if (!drawablep) { drawablep = vobj->createDrawable(this); } llassert(drawablep); if (vobj->getParent()) { vobj->setDrawableParent(((LLViewerObject*)vobj->getParent())->mDrawable); // LLPipeline::addObject 1 } else { vobj->setDrawableParent(NULL); // LLPipeline::addObject 2 } markRebuild(drawablep, LLDrawable::REBUILD_ALL, TRUE); return 1; } void LLPipeline::resetFrameStats() { assertInitialized(); mTrianglesDrawnStat.addValue(mTrianglesDrawn/1000.f); if (mBatchCount > 0) { mMeanBatchSize = gPipeline.mTrianglesDrawn/gPipeline.mBatchCount; } mTrianglesDrawn = 0; sCompiles = 0; mVerticesRelit = 0; mLightingChanges = 0; mGeometryChanges = 0; mNumVisibleFaces = 0; if (mOldRenderDebugMask != mRenderDebugMask) { gObjectList.clearDebugText(); mOldRenderDebugMask = mRenderDebugMask; } } //external functions for asynchronous updating void LLPipeline::updateMoveDampedAsync(LLDrawable* drawablep) { if (gSavedSettings.getBOOL("FreezeTime")) { return; } if (!drawablep) { llerrs << "updateMove called with NULL drawablep" << llendl; return; } if (drawablep->isState(LLDrawable::EARLY_MOVE)) { return; } assertInitialized(); // update drawable now drawablep->clearState(LLDrawable::MOVE_UNDAMPED); // force to DAMPED drawablep->updateMove(); // returns done drawablep->setState(LLDrawable::EARLY_MOVE); // flag says we already did an undamped move this frame // Put on move list so that EARLY_MOVE gets cleared if (!drawablep->isState(LLDrawable::ON_MOVE_LIST)) { mMovedList.push_back(drawablep); drawablep->setState(LLDrawable::ON_MOVE_LIST); } } void LLPipeline::updateMoveNormalAsync(LLDrawable* drawablep) { if (gSavedSettings.getBOOL("FreezeTime")) { return; } if (!drawablep) { llerrs << "updateMove called with NULL drawablep" << llendl; } if (drawablep->isState(LLDrawable::EARLY_MOVE)) { return; } assertInitialized(); // update drawable now drawablep->setState(LLDrawable::MOVE_UNDAMPED); // force to UNDAMPED drawablep->updateMove(); drawablep->setState(LLDrawable::EARLY_MOVE); // flag says we already did an undamped move this frame // Put on move list so that EARLY_MOVE gets cleared if (!drawablep->isState(LLDrawable::ON_MOVE_LIST)) { mMovedList.push_back(drawablep); drawablep->setState(LLDrawable::ON_MOVE_LIST); } } void LLPipeline::updateMovedList(LLDrawable::drawable_vector_t& moved_list) { for (LLDrawable::drawable_vector_t::iterator iter = moved_list.begin(); iter != moved_list.end(); ) { LLDrawable::drawable_vector_t::iterator curiter = iter++; LLDrawable *drawablep = *curiter; BOOL done = TRUE; if (!drawablep->isDead() && (!drawablep->isState(LLDrawable::EARLY_MOVE))) { done = drawablep->updateMove(); } drawablep->clearState(LLDrawable::EARLY_MOVE | LLDrawable::MOVE_UNDAMPED); if (done) { drawablep->clearState(LLDrawable::ON_MOVE_LIST); iter = moved_list.erase(curiter); } } } void LLPipeline::updateMove() { LLFastTimer t(LLFastTimer::FTM_UPDATE_MOVE); LLMemType mt(LLMemType::MTYPE_PIPELINE); if (gSavedSettings.getBOOL("FreezeTime")) { return; } assertInitialized(); for (LLDrawable::drawable_set_t::iterator iter = mRetexturedList.begin(); iter != mRetexturedList.end(); ++iter) { LLDrawable* drawablep = *iter; if (drawablep && !drawablep->isDead()) { drawablep->updateTexture(); } } mRetexturedList.clear(); updateMovedList(mMovedList); for (LLDrawable::drawable_set_t::iterator iter = mActiveQ.begin(); iter != mActiveQ.end(); ) { LLDrawable::drawable_set_t::iterator curiter = iter++; LLDrawable* drawablep = *curiter; if (drawablep && !drawablep->isDead()) { if (drawablep->isRoot() && drawablep->mQuietCount++ > MAX_ACTIVE_OBJECT_QUIET_FRAMES && (!drawablep->getParent() || !drawablep->getParent()->isActive())) { drawablep->makeStatic(); // removes drawable and its children from mActiveQ iter = mActiveQ.upper_bound(drawablep); // next valid entry } } else { mActiveQ.erase(curiter); } } //balance octrees { LLFastTimer ot(LLFastTimer::FTM_OCTREE_BALANCE); for (LLWorld::region_list_t::iterator iter = LLWorld::getInstance()->getRegionList().begin(); iter != LLWorld::getInstance()->getRegionList().end(); ++iter) { LLViewerRegion* region = *iter; for (U32 i = 0; i < LLViewerRegion::NUM_PARTITIONS; i++) { LLSpatialPartition* part = region->getSpatialPartition(i); if (part) { part->mOctree->balance(); } } } } } ///////////////////////////////////////////////////////////////////////////// // Culling and occlusion testing ///////////////////////////////////////////////////////////////////////////// //static F32 LLPipeline::calcPixelArea(LLVector3 center, LLVector3 size, LLCamera &camera) { LLVector3 lookAt = center - camera.getOrigin(); F32 dist = lookAt.length(); //ramp down distance for nearby objects if (dist < 16.f) { dist /= 16.f; dist *= dist; dist *= 16.f; } //get area of circle around node F32 app_angle = atanf(size.length()/dist); F32 radius = app_angle*LLDrawable::sCurPixelAngle; return radius*radius * 3.14159f; } void LLPipeline::grabReferences(LLCullResult& result) { sCull = &result; } void LLPipeline::updateCull(LLCamera& camera, LLCullResult& result, S32 water_clip) { LLFastTimer t(LLFastTimer::FTM_CULL); LLMemType mt(LLMemType::MTYPE_PIPELINE); grabReferences(result); sCull->clear(); BOOL to_texture = LLPipeline::sUseOcclusion > 1 && !hasRenderType(LLPipeline::RENDER_TYPE_HUD) && !sReflectionRender && gPipeline.canUseVertexShaders() && sRenderGlow; if (to_texture) { mScreen.bindTarget(); } glPushMatrix(); gGLLastMatrix = NULL; glLoadMatrixd(gGLLastModelView); LLVertexBuffer::unbind(); LLGLDisable blend(GL_BLEND); LLGLDisable test(GL_ALPHA_TEST); LLViewerImage::unbindTexture(0, GL_TEXTURE_2D); gGL.setColorMask(false, false); LLGLDepthTest depth(GL_TRUE, GL_FALSE); for (LLWorld::region_list_t::iterator iter = LLWorld::getInstance()->getRegionList().begin(); iter != LLWorld::getInstance()->getRegionList().end(); ++iter) { LLViewerRegion* region = *iter; if (water_clip != 0) { LLPlane plane(LLVector3(0,0, (F32) -water_clip), (F32) water_clip*region->getWaterHeight()); camera.setUserClipPlane(plane); } else { camera.disableUserClipPlane(); } for (U32 i = 0; i < LLViewerRegion::NUM_PARTITIONS; i++) { LLSpatialPartition* part = region->getSpatialPartition(i); if (part) { if (hasRenderType(part->mDrawableType)) { part->cull(camera); } } } } camera.disableUserClipPlane(); if (gSky.mVOSkyp.notNull() && gSky.mVOSkyp->mDrawable.notNull()) { // Hack for sky - always visible. if (hasRenderType(LLPipeline::RENDER_TYPE_SKY)) { gSky.mVOSkyp->mDrawable->setVisible(camera); sCull->pushDrawable(gSky.mVOSkyp->mDrawable); gSky.updateCull(); stop_glerror(); } } else { llinfos << "No sky drawable!" << llendl; } if (hasRenderType(LLPipeline::RENDER_TYPE_GROUND) && !gPipeline.canUseWindLightShaders() && gSky.mVOGroundp.notNull() && gSky.mVOGroundp->mDrawable.notNull() && !LLPipeline::sWaterReflections) { gSky.mVOGroundp->mDrawable->setVisible(camera); sCull->pushDrawable(gSky.mVOGroundp->mDrawable); } gGL.setColorMask(true, false); glPopMatrix(); if (to_texture) { mScreen.flush(); LLRenderTarget::unbindTarget(); } else if (LLPipeline::sUseOcclusion > 1) { glFlush(); } } void LLPipeline::markNotCulled(LLSpatialGroup* group, LLCamera& camera) { if (group->getData().empty()) { return; } group->setVisible(); if (!sSkipUpdate) { group->updateDistance(camera); } const F32 MINIMUM_PIXEL_AREA = 16.f; if (group->mPixelArea < MINIMUM_PIXEL_AREA) { return; } assertInitialized(); if (!group->mSpatialPartition->mRenderByGroup) { //render by drawable sCull->pushDrawableGroup(group); } else { //render by group sCull->pushVisibleGroup(group); } mNumVisibleNodes++; } void LLPipeline::markOccluder(LLSpatialGroup* group) { if (sUseOcclusion > 1 && group && !group->isState(LLSpatialGroup::ACTIVE_OCCLUSION)) { LLSpatialGroup* parent = group->getParent(); if (!parent || !parent->isState(LLSpatialGroup::OCCLUDED)) { //only mark top most occluders as active occlusion sCull->pushOcclusionGroup(group); group->setState(LLSpatialGroup::ACTIVE_OCCLUSION); if (parent && !parent->isState(LLSpatialGroup::ACTIVE_OCCLUSION) && parent->getElementCount() == 0 && parent->needsUpdate()) { sCull->pushOcclusionGroup(group); parent->setState(LLSpatialGroup::ACTIVE_OCCLUSION); } } } } void LLPipeline::doOcclusion(LLCamera& camera) { LLVertexBuffer::unbind(); if (hasRenderDebugMask(LLPipeline::RENDER_DEBUG_OCCLUSION)) { gGL.setColorMask(true, false, false, false); } else { gGL.setColorMask(false, false); } LLGLDisable blend(GL_BLEND); LLGLDisable test(GL_ALPHA_TEST); LLViewerImage::unbindTexture(0, GL_TEXTURE_2D); LLGLDepthTest depth(GL_TRUE, GL_FALSE); if (LLPipeline::sUseOcclusion > 1) { for (LLCullResult::sg_list_t::iterator iter = sCull->beginOcclusionGroups(); iter != sCull->endOcclusionGroups(); ++iter) { LLSpatialGroup* group = *iter; group->doOcclusion(&camera); group->clearState(LLSpatialGroup::ACTIVE_OCCLUSION); } } gGL.setColorMask(true, false); glFlush(); } BOOL LLPipeline::updateDrawableGeom(LLDrawable* drawablep, BOOL priority) { BOOL update_complete = drawablep->updateGeometry(priority); if (update_complete && assertInitialized()) { drawablep->setState(LLDrawable::BUILT); mGeometryChanges++; } return update_complete; } void LLPipeline::updateGeom(F32 max_dtime) { LLTimer update_timer; LLMemType mt(LLMemType::MTYPE_PIPELINE); LLPointer drawablep; LLFastTimer t(LLFastTimer::FTM_GEO_UPDATE); assertInitialized(); if (sDelayedVBOEnable > 0) { if (--sDelayedVBOEnable <= 0) { resetVertexBuffers(); LLVertexBuffer::sEnableVBOs = TRUE; } } // notify various object types to reset internal cost metrics, etc. // for now, only LLVOVolume does this to throttle LOD changes LLVOVolume::preUpdateGeom(); // Iterate through all drawables on the priority build queue, for (LLDrawable::drawable_list_t::iterator iter = mBuildQ1.begin(); iter != mBuildQ1.end();) { LLDrawable::drawable_list_t::iterator curiter = iter++; LLDrawable* drawablep = *curiter; if (drawablep && !drawablep->isDead()) { if (drawablep->isState(LLDrawable::IN_REBUILD_Q2)) { drawablep->clearState(LLDrawable::IN_REBUILD_Q2); LLDrawable::drawable_list_t::iterator find = std::find(mBuildQ2.begin(), mBuildQ2.end(), drawablep); if (find != mBuildQ2.end()) { mBuildQ2.erase(find); } } if (updateDrawableGeom(drawablep, TRUE)) { drawablep->clearState(LLDrawable::IN_REBUILD_Q1); mBuildQ1.erase(curiter); } } else { mBuildQ1.erase(curiter); } } // Iterate through some drawables on the non-priority build queue S32 min_count = 16; S32 size = (S32) mBuildQ2.size(); if (size > 1024) { min_count = llclamp((S32) (size * (F32) size/4096), 16, size); } S32 count = 0; max_dtime = llmax(update_timer.getElapsedTimeF32()+0.001f, max_dtime); LLSpatialGroup* last_group = NULL; LLSpatialBridge* last_bridge = NULL; for (LLDrawable::drawable_list_t::iterator iter = mBuildQ2.begin(); iter != mBuildQ2.end(); ) { LLDrawable::drawable_list_t::iterator curiter = iter++; LLDrawable* drawablep = *curiter; LLSpatialBridge* bridge = drawablep->isRoot() ? drawablep->getSpatialBridge() : drawablep->getParent()->getSpatialBridge(); if (drawablep->getSpatialGroup() != last_group && (!last_bridge || bridge != last_bridge) && (update_timer.getElapsedTimeF32() >= max_dtime) && count > min_count) { break; } //make sure updates don't stop in the middle of a spatial group //to avoid thrashing (objects are enqueued by group) last_group = drawablep->getSpatialGroup(); last_bridge = bridge; BOOL update_complete = TRUE; if (!drawablep->isDead()) { update_complete = updateDrawableGeom(drawablep, FALSE); count++; } if (update_complete) { drawablep->clearState(LLDrawable::IN_REBUILD_Q2); mBuildQ2.erase(curiter); } } updateMovedList(mMovedBridge); } void LLPipeline::markVisible(LLDrawable *drawablep, LLCamera& camera) { LLMemType mt(LLMemType::MTYPE_PIPELINE); if(!drawablep || drawablep->isDead()) { return; } if (drawablep->isSpatialBridge()) { sCull->pushBridge((LLSpatialBridge*) drawablep); } else { sCull->pushDrawable(drawablep); } drawablep->setVisible(camera); } void LLPipeline::markMoved(LLDrawable *drawablep, BOOL damped_motion) { LLMemType mt(LLMemType::MTYPE_PIPELINE); if (!drawablep) { llerrs << "Sending null drawable to moved list!" << llendl; return; } if (drawablep->isDead()) { llwarns << "Marking NULL or dead drawable moved!" << llendl; return; } if (drawablep->getParent()) { //ensure that parent drawables are moved first markMoved(drawablep->getParent(), damped_motion); } assertInitialized(); if (!drawablep->isState(LLDrawable::ON_MOVE_LIST)) { if (drawablep->isSpatialBridge()) { mMovedBridge.push_back(drawablep); } else { mMovedList.push_back(drawablep); } drawablep->setState(LLDrawable::ON_MOVE_LIST); } if (damped_motion == FALSE) { drawablep->setState(LLDrawable::MOVE_UNDAMPED); // UNDAMPED trumps DAMPED } else if (drawablep->isState(LLDrawable::MOVE_UNDAMPED)) { drawablep->clearState(LLDrawable::MOVE_UNDAMPED); } } void LLPipeline::markShift(LLDrawable *drawablep) { LLMemType mt(LLMemType::MTYPE_PIPELINE); if (!drawablep || drawablep->isDead()) { return; } assertInitialized(); if (!drawablep->isState(LLDrawable::ON_SHIFT_LIST)) { drawablep->getVObj()->setChanged(LLXform::SHIFTED | LLXform::SILHOUETTE); if (drawablep->getParent()) { markShift(drawablep->getParent()); } mShiftList.push_back(drawablep); drawablep->setState(LLDrawable::ON_SHIFT_LIST); } } void LLPipeline::shiftObjects(const LLVector3 &offset) { LLMemType mt(LLMemType::MTYPE_PIPELINE); assertInitialized(); glClear(GL_DEPTH_BUFFER_BIT); gDepthDirty = FALSE; for (LLDrawable::drawable_vector_t::iterator iter = mShiftList.begin(); iter != mShiftList.end(); iter++) { LLDrawable *drawablep = *iter; if (drawablep->isDead()) { continue; } drawablep->shiftPos(offset); drawablep->clearState(LLDrawable::ON_SHIFT_LIST); } mShiftList.resize(0); for (LLWorld::region_list_t::iterator iter = LLWorld::getInstance()->getRegionList().begin(); iter != LLWorld::getInstance()->getRegionList().end(); ++iter) { LLViewerRegion* region = *iter; for (U32 i = 0; i < LLViewerRegion::NUM_PARTITIONS; i++) { LLSpatialPartition* part = region->getSpatialPartition(i); if (part) { part->shift(offset); } } } LLHUDText::shiftAll(offset); display_update_camera(); } void LLPipeline::markTextured(LLDrawable *drawablep) { LLMemType mt(LLMemType::MTYPE_PIPELINE); if (drawablep && !drawablep->isDead() && assertInitialized()) { mRetexturedList.insert(drawablep); } } void LLPipeline::markRebuild(LLDrawable *drawablep, LLDrawable::EDrawableFlags flag, BOOL priority) { LLMemType mt(LLMemType::MTYPE_PIPELINE); if (drawablep && !drawablep->isDead() && assertInitialized()) { if (!drawablep->isState(LLDrawable::BUILT)) { priority = TRUE; } if (priority) { if (!drawablep->isState(LLDrawable::IN_REBUILD_Q1)) { mBuildQ1.push_back(drawablep); drawablep->setState(LLDrawable::IN_REBUILD_Q1); // mark drawable as being in priority queue } } else if (!drawablep->isState(LLDrawable::IN_REBUILD_Q2)) { mBuildQ2.push_back(drawablep); drawablep->setState(LLDrawable::IN_REBUILD_Q2); // need flag here because it is just a list } if (flag & (LLDrawable::REBUILD_VOLUME | LLDrawable::REBUILD_POSITION)) { drawablep->getVObj()->setChanged(LLXform::SILHOUETTE); } drawablep->setState(flag); } } void LLPipeline::stateSort(LLCamera& camera, LLCullResult &result) { const U32 face_mask = (1 << LLPipeline::RENDER_TYPE_AVATAR) | (1 << LLPipeline::RENDER_TYPE_GROUND) | (1 << LLPipeline::RENDER_TYPE_TERRAIN) | (1 << LLPipeline::RENDER_TYPE_TREE) | (1 << LLPipeline::RENDER_TYPE_SKY) | (1 << LLPipeline::RENDER_TYPE_WATER); if (mRenderTypeMask & face_mask) { //clear faces from face pools LLFastTimer t(LLFastTimer::FTM_RESET_DRAWORDER); gPipeline.resetDrawOrders(); } LLFastTimer ftm(LLFastTimer::FTM_STATESORT); LLMemType mt(LLMemType::MTYPE_PIPELINE); //LLVertexBuffer::unbind(); grabReferences(result); { for (LLCullResult::sg_list_t::iterator iter = sCull->beginDrawableGroups(); iter != sCull->endDrawableGroups(); ++iter) { LLSpatialGroup* group = *iter; group->checkOcclusion(); if (sUseOcclusion && group->isState(LLSpatialGroup::OCCLUDED)) { markOccluder(group); } else { group->setVisible(); for (LLSpatialGroup::element_iter i = group->getData().begin(); i != group->getData().end(); ++i) { markVisible(*i, camera); } } } for (LLCullResult::sg_list_t::iterator iter = sCull->beginVisibleGroups(); iter != sCull->endVisibleGroups(); ++iter) { LLSpatialGroup* group = *iter; group->checkOcclusion(); if (sUseOcclusion && group->isState(LLSpatialGroup::OCCLUDED)) { markOccluder(group); } else { group->setVisible(); stateSort(group, camera); } } } { for (LLCullResult::bridge_list_t::iterator i = sCull->beginVisibleBridge(); i != sCull->endVisibleBridge(); ++i) { LLCullResult::bridge_list_t::iterator cur_iter = i; LLSpatialBridge* bridge = *cur_iter; LLSpatialGroup* group = bridge->getSpatialGroup(); if (!bridge->isDead() && group && !group->isState(LLSpatialGroup::OCCLUDED)) { stateSort(bridge, camera); } } } { LLFastTimer ftm(LLFastTimer::FTM_STATESORT_DRAWABLE); for (LLCullResult::drawable_list_t::iterator iter = sCull->beginVisibleList(); iter != sCull->endVisibleList(); ++iter) { LLDrawable *drawablep = *iter; if (!drawablep->isDead()) { stateSort(drawablep, camera); } } } { LLFastTimer ftm(LLFastTimer::FTM_CLIENT_COPY); LLVertexBuffer::clientCopy(); } postSort(camera); } void LLPipeline::stateSort(LLSpatialGroup* group, LLCamera& camera) { LLMemType mt(LLMemType::MTYPE_PIPELINE); if (!sSkipUpdate && group->changeLOD()) { for (LLSpatialGroup::element_iter i = group->getData().begin(); i != group->getData().end(); ++i) { LLDrawable* drawablep = *i; stateSort(drawablep, camera); } } } void LLPipeline::stateSort(LLSpatialBridge* bridge, LLCamera& camera) { LLMemType mt(LLMemType::MTYPE_PIPELINE); if (!sSkipUpdate && bridge->getSpatialGroup()->changeLOD()) { bridge->updateDistance(camera); } } void LLPipeline::stateSort(LLDrawable* drawablep, LLCamera& camera) { LLMemType mt(LLMemType::MTYPE_PIPELINE); if (!drawablep || drawablep->isDead() || !hasRenderType(drawablep->getRenderType())) { return; } if (gHideSelectedObjects) { if (drawablep->getVObj().notNull() && drawablep->getVObj()->isSelected()) { return; } } if (drawablep->isAvatar()) { //don't draw avatars beyond render distance or if we don't have a spatial group. if ((drawablep->getSpatialGroup() == NULL) || (drawablep->getSpatialGroup()->mDistance > LLVOAvatar::sRenderDistance)) { return; } LLVOAvatar* avatarp = (LLVOAvatar*) drawablep->getVObj().get(); if (!avatarp->isVisible()) { return; } } assertInitialized(); if (hasRenderType(drawablep->mRenderType)) { if (!drawablep->isState(LLDrawable::INVISIBLE|LLDrawable::FORCE_INVISIBLE)) { drawablep->setVisible(camera, NULL, FALSE); } else if (drawablep->isState(LLDrawable::CLEAR_INVISIBLE)) { // clear invisible flag here to avoid single frame glitch drawablep->clearState(LLDrawable::FORCE_INVISIBLE|LLDrawable::CLEAR_INVISIBLE); } } LLSpatialGroup* group = drawablep->getSpatialGroup(); if (!group || group->changeLOD()) { if (drawablep->isVisible() && !sSkipUpdate) { if (!drawablep->isActive()) { drawablep->updateDistance(camera); } else if (drawablep->isAvatar()) { drawablep->updateDistance(camera); // calls vobj->updateLOD() which calls LLVOAvatar::updateVisibility() } } } for (LLDrawable::face_list_t::iterator iter = drawablep->mFaces.begin(); iter != drawablep->mFaces.end(); iter++) { LLFace* facep = *iter; if (facep->hasGeometry()) { if (facep->getPool()) { facep->getPool()->enqueue(facep); } else { break; } } } mNumVisibleFaces += drawablep->getNumFaces(); } void forAllDrawables(LLCullResult::sg_list_t::iterator begin, LLCullResult::sg_list_t::iterator end, void (*func)(LLDrawable*)) { for (LLCullResult::sg_list_t::iterator i = begin; i != end; ++i) { for (LLSpatialGroup::element_iter j = (*i)->getData().begin(); j != (*i)->getData().end(); ++j) { func(*j); } } } void LLPipeline::forAllVisibleDrawables(void (*func)(LLDrawable*)) { forAllDrawables(sCull->beginDrawableGroups(), sCull->endDrawableGroups(), func); forAllDrawables(sCull->beginVisibleGroups(), sCull->endVisibleGroups(), func); } //function for creating scripted beacons void renderScriptedBeacons(LLDrawable* drawablep) { LLViewerObject *vobj = drawablep->getVObj(); if (vobj && !vobj->isAvatar() && !vobj->getParent() && vobj->flagScripted()) { if (gPipeline.sRenderBeacons) { gObjectList.addDebugBeacon(vobj->getPositionAgent(), "", LLColor4(1.f, 0.f, 0.f, 0.5f), LLColor4(1.f, 1.f, 1.f, 0.5f), gSavedSettings.getS32("DebugBeaconLineWidth")); } if (gPipeline.sRenderHighlight) { S32 face_id; S32 count = drawablep->getNumFaces(); for (face_id = 0; face_id < count; face_id++) { gPipeline.mHighlightFaces.push_back(drawablep->getFace(face_id) ); } } } } void renderScriptedTouchBeacons(LLDrawable* drawablep) { LLViewerObject *vobj = drawablep->getVObj(); if (vobj && !vobj->isAvatar() && !vobj->getParent() && vobj->flagScripted() && vobj->flagHandleTouch()) { if (gPipeline.sRenderBeacons) { gObjectList.addDebugBeacon(vobj->getPositionAgent(), "", LLColor4(1.f, 0.f, 0.f, 0.5f), LLColor4(1.f, 1.f, 1.f, 0.5f), gSavedSettings.getS32("DebugBeaconLineWidth")); } if (gPipeline.sRenderHighlight) { S32 face_id; S32 count = drawablep->getNumFaces(); for (face_id = 0; face_id < count; face_id++) { gPipeline.mHighlightFaces.push_back(drawablep->getFace(face_id) ); } } } } void renderPhysicalBeacons(LLDrawable* drawablep) { LLViewerObject *vobj = drawablep->getVObj(); if (vobj && !vobj->isAvatar() //&& !vobj->getParent() && vobj->usePhysics()) { if (gPipeline.sRenderBeacons) { gObjectList.addDebugBeacon(vobj->getPositionAgent(), "", LLColor4(0.f, 1.f, 0.f, 0.5f), LLColor4(1.f, 1.f, 1.f, 0.5f), gSavedSettings.getS32("DebugBeaconLineWidth")); } if (gPipeline.sRenderHighlight) { S32 face_id; S32 count = drawablep->getNumFaces(); for (face_id = 0; face_id < count; face_id++) { gPipeline.mHighlightFaces.push_back(drawablep->getFace(face_id) ); } } } } void renderParticleBeacons(LLDrawable* drawablep) { // Look for attachments, objects, etc. LLViewerObject *vobj = drawablep->getVObj(); if (vobj && vobj->isParticleSource()) { if (gPipeline.sRenderBeacons) { LLColor4 light_blue(0.5f, 0.5f, 1.f, 0.5f); gObjectList.addDebugBeacon(vobj->getPositionAgent(), "", light_blue, LLColor4(1.f, 1.f, 1.f, 0.5f), gSavedSettings.getS32("DebugBeaconLineWidth")); } if (gPipeline.sRenderHighlight) { S32 face_id; S32 count = drawablep->getNumFaces(); for (face_id = 0; face_id < count; face_id++) { gPipeline.mHighlightFaces.push_back(drawablep->getFace(face_id) ); } } } } void renderSoundHighlights(LLDrawable* drawablep) { // Look for attachments, objects, etc. LLViewerObject *vobj = drawablep->getVObj(); if (vobj && vobj->isAudioSource()) { if (gPipeline.sRenderHighlight) { S32 face_id; S32 count = drawablep->getNumFaces(); for (face_id = 0; face_id < count; face_id++) { gPipeline.mHighlightFaces.push_back(drawablep->getFace(face_id) ); } } } } void LLPipeline::postSort(LLCamera& camera) { LLMemType mt(LLMemType::MTYPE_PIPELINE); LLFastTimer ftm(LLFastTimer::FTM_STATESORT_POSTSORT); assertInitialized(); //rebuild drawable geometry for (LLCullResult::sg_list_t::iterator i = sCull->beginDrawableGroups(); i != sCull->endDrawableGroups(); ++i) { LLSpatialGroup* group = *i; if (!sUseOcclusion || !group->isState(LLSpatialGroup::OCCLUDED)) { group->rebuildGeom(); } } //rebuild groups sCull->assertDrawMapsEmpty(); LLSpatialGroup::sNoDelete = FALSE; for (LLCullResult::sg_list_t::iterator i = sCull->beginVisibleGroups(); i != sCull->endVisibleGroups(); ++i) { LLSpatialGroup* group = *i; if (sUseOcclusion && group->isState(LLSpatialGroup::OCCLUDED)) { continue; } group->rebuildGeom(); } LLSpatialGroup::sNoDelete = TRUE; //build render map for (LLCullResult::sg_list_t::iterator i = sCull->beginVisibleGroups(); i != sCull->endVisibleGroups(); ++i) { LLSpatialGroup* group = *i; if (sUseOcclusion && group->isState(LLSpatialGroup::OCCLUDED)) { continue; } for (LLSpatialGroup::draw_map_t::iterator j = group->mDrawMap.begin(); j != group->mDrawMap.end(); ++j) { LLSpatialGroup::drawmap_elem_t& src_vec = j->second; for (LLSpatialGroup::drawmap_elem_t::iterator k = src_vec.begin(); k != src_vec.end(); ++k) { sCull->pushDrawInfo(j->first, *k); } } LLSpatialGroup::draw_map_t::iterator alpha = group->mDrawMap.find(LLRenderPass::PASS_ALPHA); if (alpha != group->mDrawMap.end()) { //store alpha groups for sorting LLSpatialBridge* bridge = group->mSpatialPartition->asBridge(); if (!sSkipUpdate) { if (bridge) { LLCamera trans_camera = bridge->transformCamera(camera); group->updateDistance(trans_camera); } else { group->updateDistance(camera); } } if (hasRenderType(LLDrawPool::POOL_ALPHA)) { sCull->pushAlphaGroup(group); } } } { //sort by texture or bump map for (U32 i = 0; i < LLRenderPass::NUM_RENDER_TYPES; ++i) { //if (!mRenderMap[i].empty()) { if (i == LLRenderPass::PASS_BUMP) { std::sort(sCull->beginRenderMap(i), sCull->endRenderMap(i), LLDrawInfo::CompareBump()); } else { std::sort(sCull->beginRenderMap(i), sCull->endRenderMap(i), LLDrawInfo::CompareTexturePtrMatrix()); } } } std::sort(sCull->beginAlphaGroups(), sCull->endAlphaGroups(), LLSpatialGroup::CompareDepthGreater()); } // only render if the flag is set. The flag is only set if we are in edit mode or the toggle is set in the menus if (gSavedSettings.getBOOL("BeaconsEnabled")) { if (sRenderScriptedTouchBeacons) { // Only show the beacon on the root object. forAllVisibleDrawables(renderScriptedTouchBeacons); } else if (sRenderScriptedBeacons) { // Only show the beacon on the root object. forAllVisibleDrawables(renderScriptedBeacons); } if (sRenderPhysicalBeacons) { // Only show the beacon on the root object. forAllVisibleDrawables(renderPhysicalBeacons); } if (sRenderParticleBeacons) { forAllVisibleDrawables(renderParticleBeacons); } // If god mode, also show audio cues if (sRenderSoundBeacons && gAudiop) { // Walk all sound sources and render out beacons for them. Note, this isn't done in the ForAllVisibleDrawables function, because some are not visible. LLAudioEngine::source_map::iterator iter; for (iter = gAudiop->mAllSources.begin(); iter != gAudiop->mAllSources.end(); ++iter) { LLAudioSource *sourcep = iter->second; LLVector3d pos_global = sourcep->getPositionGlobal(); LLVector3 pos = gAgent.getPosAgentFromGlobal(pos_global); if (gPipeline.sRenderBeacons) { //pos += LLVector3(0.f, 0.f, 0.2f); gObjectList.addDebugBeacon(pos, "", LLColor4(1.f, 1.f, 0.f, 0.5f), LLColor4(1.f, 1.f, 1.f, 0.5f), gSavedSettings.getS32("DebugBeaconLineWidth")); } } // now deal with highlights for all those seeable sound sources forAllVisibleDrawables(renderSoundHighlights); } } // If managing your telehub, draw beacons at telehub and currently selected spawnpoint. if (LLFloaterTelehub::renderBeacons()) { LLFloaterTelehub::addBeacons(); } mSelectedFaces.clear(); // Draw face highlights for selected faces. if (LLSelectMgr::getInstance()->getTEMode()) { struct f : public LLSelectedTEFunctor { virtual bool apply(LLViewerObject* object, S32 te) { if (object->mDrawable) { gPipeline.mSelectedFaces.push_back(object->mDrawable->getFace(te)); } return true; } } func; LLSelectMgr::getInstance()->getSelection()->applyToTEs(&func); } LLSpatialGroup::sNoDelete = FALSE; } void render_hud_elements() { LLFastTimer t(LLFastTimer::FTM_RENDER_UI); gPipeline.disableLights(); LLGLDisable fog(GL_FOG); LLGLSUIDefault gls_ui; LLGLEnable stencil(GL_STENCIL_TEST); glStencilFunc(GL_ALWAYS, 255, 0xFFFFFFFF); glStencilMask(0xFFFFFFFF); glStencilOp(GL_KEEP, GL_KEEP, GL_REPLACE); gGL.color4f(1,1,1,1); if (!LLPipeline::sReflectionRender && gPipeline.hasRenderDebugFeatureMask(LLPipeline::RENDER_DEBUG_FEATURE_UI)) { LLGLEnable multisample(GL_MULTISAMPLE_ARB); gViewerWindow->renderSelections(FALSE, FALSE, FALSE); // For HUD version in render_ui_3d() // Draw the tracking overlays LLTracker::render3D(); // Show the property lines LLWorld::getInstance()->renderPropertyLines(); LLViewerParcelMgr::getInstance()->render(); LLViewerParcelMgr::getInstance()->renderParcelCollision(); // Render debugging beacons. //gObjectList.renderObjectBeacons(); //LLHUDObject::renderAll(); //gObjectList.resetObjectBeacons(); } else if (gForceRenderLandFence) { // This is only set when not rendering the UI, for parcel snapshots LLViewerParcelMgr::getInstance()->render(); } else if (gPipeline.hasRenderType(LLPipeline::RENDER_TYPE_HUD)) { LLHUDText::renderAllHUD(); } gGL.flush(); } void LLPipeline::renderHighlights() { LLMemType mt(LLMemType::MTYPE_PIPELINE); assertInitialized(); // Draw 3D UI elements here (before we clear the Z buffer in POOL_HUD) // Render highlighted faces. LLGLSPipelineAlpha gls_pipeline_alpha; LLColor4 color(1.f, 1.f, 1.f, 0.5f); LLGLEnable color_mat(GL_COLOR_MATERIAL); disableLights(); if ((LLViewerShaderMgr::instance()->getVertexShaderLevel(LLViewerShaderMgr::SHADER_INTERFACE) > 0)) { gHighlightProgram.bind(); gHighlightProgram.vertexAttrib4f(LLViewerShaderMgr::MATERIAL_COLOR,1,1,1,0.5f); } if (hasRenderDebugFeatureMask(RENDER_DEBUG_FEATURE_SELECTED)) { // Make sure the selection image gets downloaded and decoded if (!mFaceSelectImagep) { mFaceSelectImagep = gImageList.getImage(IMG_FACE_SELECT); } mFaceSelectImagep->addTextureStats((F32)MAX_IMAGE_AREA); U32 count = mSelectedFaces.size(); for (U32 i = 0; i < count; i++) { LLFace *facep = mSelectedFaces[i]; if (!facep || facep->getDrawable()->isDead()) { llerrs << "Bad face on selection" << llendl; return; } facep->renderSelected(mFaceSelectImagep, color); } } if (hasRenderDebugFeatureMask(RENDER_DEBUG_FEATURE_SELECTED)) { // Paint 'em red! color.setVec(1.f, 0.f, 0.f, 0.5f); if ((LLViewerShaderMgr::instance()->getVertexShaderLevel(LLViewerShaderMgr::SHADER_INTERFACE) > 0)) { gHighlightProgram.vertexAttrib4f(LLViewerShaderMgr::MATERIAL_COLOR,1,0,0,0.5f); } int count = mHighlightFaces.size(); for (S32 i = 0; i < count; i++) { LLFace* facep = mHighlightFaces[i]; facep->renderSelected(LLViewerImage::sNullImagep, color); } } // Contains a list of the faces of objects that are physical or // have touch-handlers. mHighlightFaces.clear(); if (LLViewerShaderMgr::instance()->getVertexShaderLevel(LLViewerShaderMgr::SHADER_INTERFACE) > 0) { gHighlightProgram.unbind(); } } void LLPipeline::renderGeom(LLCamera& camera, BOOL forceVBOUpdate) { LLMemType mt(LLMemType::MTYPE_PIPELINE); LLFastTimer t(LLFastTimer::FTM_RENDER_GEOMETRY); assertInitialized(); F64 saved_modelview[16]; F64 saved_projection[16]; //HACK: preserve/restore matrices around HUD render if (gPipeline.hasRenderType(LLPipeline::RENDER_TYPE_HUD)) { for (U32 i = 0; i < 16; i++) { saved_modelview[i] = gGLModelView[i]; saved_projection[i] = gGLProjection[i]; } } /////////////////////////////////////////// // // Sync and verify GL state // // stop_glerror(); gFrameStats.start(LLFrameStats::RENDER_SYNC); glEnableClientState(GL_VERTEX_ARRAY); LLVertexBuffer::unbind(); // Do verification of GL state LLGLState::checkStates(); LLGLState::checkTextureChannels(); LLGLState::checkClientArrays(); if (mRenderDebugMask & RENDER_DEBUG_VERIFY) { if (!verify()) { llerrs << "Pipeline verification failed!" << llendl; } } //by bao //fake vertex buffer updating //to guaranttee at least updating one VBO buffer every frame //to walk around the bug caused by ATI card --> DEV-3855 // if(forceVBOUpdate) gSky.mVOSkyp->updateDummyVertexBuffer() ; gFrameStats.start(LLFrameStats::RENDER_GEOM); // Initialize lots of GL state to "safe" values glMatrixMode(GL_TEXTURE); glLoadIdentity(); glMatrixMode(GL_MODELVIEW); LLGLSPipeline gls_pipeline; LLGLEnable multisample(GL_MULTISAMPLE_ARB); LLGLState gls_color_material(GL_COLOR_MATERIAL, mLightingDetail < 2); // Toggle backface culling for debugging LLGLEnable cull_face(mBackfaceCull ? GL_CULL_FACE : 0); // Set fog BOOL use_fog = hasRenderDebugFeatureMask(LLPipeline::RENDER_DEBUG_FEATURE_FOG); LLGLEnable fog_enable(use_fog && !gPipeline.canUseWindLightShadersOnObjects() ? GL_FOG : 0); gSky.updateFog(camera.getFar()); if (!use_fog) { sUnderWaterRender = FALSE; } LLViewerImage::sDefaultImagep->bind(0); LLViewerImage::sDefaultImagep->setClamp(FALSE, FALSE); ////////////////////////////////////////////// // // Actually render all of the geometry // // stop_glerror(); BOOL occlude = sUseOcclusion > 1; U32 cur_type = 0; if (gPipeline.hasRenderDebugMask(LLPipeline::RENDER_DEBUG_PICKING)) { gObjectList.renderObjectsForSelect(camera, gViewerWindow->getVirtualWindowRect()); } else if (gSavedSettings.getBOOL("RenderDeferred")) { renderGeomDeferred(); } else { for (pool_set_t::iterator iter = mPools.begin(); iter != mPools.end(); ++iter) { LLDrawPool *poolp = *iter; if (hasRenderType(poolp->getType())) { poolp->prerender(); } } LLFastTimer t(LLFastTimer::FTM_POOLS); calcNearbyLights(camera); setupHWLights(NULL); pool_set_t::iterator iter1 = mPools.begin(); while ( iter1 != mPools.end() ) { LLDrawPool *poolp = *iter1; cur_type = poolp->getType(); if (occlude && cur_type > LLDrawPool::POOL_AVATAR) { occlude = FALSE; gGLLastMatrix = NULL; glLoadMatrixd(gGLModelView); doOcclusion(camera); } pool_set_t::iterator iter2 = iter1; if (hasRenderType(poolp->getType()) && poolp->getNumPasses() > 0) { LLFastTimer t(LLFastTimer::FTM_POOLRENDER); gGLLastMatrix = NULL; glLoadMatrixd(gGLModelView); for( S32 i = 0; i < poolp->getNumPasses(); i++ ) { poolp->beginRenderPass(i); for (iter2 = iter1; iter2 != mPools.end(); iter2++) { LLDrawPool *p = *iter2; if (p->getType() != cur_type) { break; } p->render(i); } poolp->endRenderPass(i); LLVertexBuffer::unbind(); if (gDebugGL || gDebugPipeline) { GLint depth; glGetIntegerv(GL_MODELVIEW_STACK_DEPTH, &depth); if (depth > 3) { llerrs << "GL matrix stack corrupted!" << llendl; } std::string msg = llformat("%s pass %d", gPoolNames[cur_type].c_str(), i); LLGLState::checkStates(msg); LLGLState::checkTextureChannels(msg); LLGLState::checkClientArrays(msg); } } } else { // Skip all pools of this type for (iter2 = iter1; iter2 != mPools.end(); iter2++) { LLDrawPool *p = *iter2; if (p->getType() != cur_type) { break; } } } iter1 = iter2; stop_glerror(); } } LLVertexBuffer::unbind(); LLGLState::checkStates(); LLGLState::checkTextureChannels(); LLGLState::checkClientArrays(); gGLLastMatrix = NULL; glLoadMatrixd(gGLModelView); if (occlude) { occlude = FALSE; gGLLastMatrix = NULL; glLoadMatrixd(gGLModelView); doOcclusion(camera); } stop_glerror(); LLGLState::checkStates(); LLGLState::checkTextureChannels(); LLGLState::checkClientArrays(); if (!sReflectionRender) { renderHighlights(); } // Contains a list of the faces of objects that are physical or // have touch-handlers. mHighlightFaces.clear(); renderDebug(); LLVertexBuffer::unbind(); if (!LLPipeline::sReflectionRender && gPipeline.hasRenderDebugFeatureMask(LLPipeline::RENDER_DEBUG_FEATURE_UI)) { // Render debugging beacons. gObjectList.renderObjectBeacons(); LLHUDObject::renderAll(); gObjectList.resetObjectBeacons(); } //HACK: preserve/restore matrices around HUD render if (gPipeline.hasRenderType(LLPipeline::RENDER_TYPE_HUD)) { for (U32 i = 0; i < 16; i++) { gGLModelView[i] = saved_modelview[i]; gGLProjection[i] = saved_projection[i]; } } LLVertexBuffer::unbind(); LLGLState::checkStates(); LLGLState::checkTextureChannels(); LLGLState::checkClientArrays(); } void LLPipeline::renderGeomDeferred() { gDeferredDiffuseProgram.bind(); gPipeline.renderObjects(LLRenderPass::PASS_SIMPLE, LLVertexBuffer::MAP_VERTEX | LLVertexBuffer::MAP_TEXCOORD | LLVertexBuffer::MAP_COLOR | LLVertexBuffer::MAP_NORMAL, TRUE); gDeferredDiffuseProgram.unbind(); } void LLPipeline::addTrianglesDrawn(S32 count) { assertInitialized(); mTrianglesDrawn += count; mBatchCount++; mMaxBatchSize = llmax(mMaxBatchSize, count); mMinBatchSize = llmin(mMinBatchSize, count); if (LLPipeline::sRenderFrameTest) { gViewerWindow->getWindow()->swapBuffers(); ms_sleep(16); } } void LLPipeline::renderDebug() { LLMemType mt(LLMemType::MTYPE_PIPELINE); assertInitialized(); gGL.color4f(1,1,1,1); gGLLastMatrix = NULL; glLoadMatrixd(gGLModelView); gGL.setColorMask(true, false); // Debug stuff. for (LLWorld::region_list_t::iterator iter = LLWorld::getInstance()->getRegionList().begin(); iter != LLWorld::getInstance()->getRegionList().end(); ++iter) { LLViewerRegion* region = *iter; for (U32 i = 0; i < LLViewerRegion::NUM_PARTITIONS; i++) { LLSpatialPartition* part = region->getSpatialPartition(i); if (part) { if (hasRenderType(part->mDrawableType)) { part->renderDebug(); } } } } for (LLCullResult::bridge_list_t::iterator i = sCull->beginVisibleBridge(); i != sCull->endVisibleBridge(); ++i) { LLSpatialBridge* bridge = *i; if (!bridge->isDead() && !bridge->isState(LLSpatialGroup::OCCLUDED) && hasRenderType(bridge->mDrawableType)) { glPushMatrix(); glMultMatrixf((F32*)bridge->mDrawable->getRenderMatrix().mMatrix); bridge->renderDebug(); glPopMatrix(); } } if (mRenderDebugMask & RENDER_DEBUG_COMPOSITION) { // Debug composition layers F32 x, y; LLGLSNoTexture gls_no_texture; if (gAgent.getRegion()) { gGL.begin(LLVertexBuffer::POINTS); // Draw the composition layer for the region that I'm in. for (x = 0; x <= 260; x++) { for (y = 0; y <= 260; y++) { if ((x > 255) || (y > 255)) { gGL.color4f(1.f, 0.f, 0.f, 1.f); } else { gGL.color4f(0.f, 0.f, 1.f, 1.f); } F32 z = gAgent.getRegion()->getCompositionXY((S32)x, (S32)y); z *= 5.f; z += 50.f; gGL.vertex3f(x, y, z); } } gGL.end(); } } gGL.flush(); } void LLPipeline::renderForSelect(std::set& objects, BOOL render_transparent, const LLRect& screen_rect) { assertInitialized(); gGL.setColorMask(true, false); gPipeline.resetDrawOrders(); for (std::set::iterator iter = objects.begin(); iter != objects.end(); ++iter) { stateSort((*iter)->mDrawable, *LLViewerCamera::getInstance()); } LLMemType mt(LLMemType::MTYPE_PIPELINE); glMatrixMode(GL_MODELVIEW); LLGLSDefault gls_default; LLGLSObjectSelect gls_object_select; LLGLDepthTest gls_depth(GL_TRUE,GL_TRUE); disableLights(); LLVertexBuffer::unbind(); //for each drawpool LLGLState::checkStates(); LLGLState::checkTextureChannels(); LLGLState::checkClientArrays(); U32 last_type = 0; for (pool_set_t::iterator iter = mPools.begin(); iter != mPools.end(); ++iter) { LLDrawPool *poolp = *iter; if (poolp->isFacePool() && hasRenderType(poolp->getType())) { LLFacePool* face_pool = (LLFacePool*) poolp; face_pool->renderForSelect(); LLVertexBuffer::unbind(); gGLLastMatrix = NULL; glLoadMatrixd(gGLModelView); if (poolp->getType() != last_type) { last_type = poolp->getType(); LLGLState::checkStates(); LLGLState::checkTextureChannels(); LLGLState::checkClientArrays(); } } } LLGLEnable alpha_test(GL_ALPHA_TEST); if (render_transparent) { gGL.setAlphaRejectSettings(LLRender::CF_GREATER_EQUAL, 0.f); } else { gGL.setAlphaRejectSettings(LLRender::CF_GREATER, 0.2f); } gGL.getTexUnit(0)->setTextureColorBlend(LLTexUnit::TBO_REPLACE, LLTexUnit::TBS_VERT_COLOR); gGL.getTexUnit(0)->setTextureAlphaBlend(LLTexUnit::TBO_MULT, LLTexUnit::TBS_TEX_ALPHA, LLTexUnit::TBS_VERT_ALPHA); U32 prim_mask = LLVertexBuffer::MAP_VERTEX | LLVertexBuffer::MAP_TEXCOORD; for (std::set::iterator i = objects.begin(); i != objects.end(); ++i) { LLViewerObject* vobj = *i; LLDrawable* drawable = vobj->mDrawable; if (vobj->isDead() || vobj->isHUDAttachment() || (gHideSelectedObjects && vobj->isSelected()) || drawable->isDead() || !hasRenderType(drawable->getRenderType())) { continue; } for (S32 j = 0; j < drawable->getNumFaces(); ++j) { LLFace* facep = drawable->getFace(j); if (!facep->getPool()) { facep->renderForSelect(prim_mask); } } } // pick HUD objects LLVOAvatar* avatarp = gAgent.getAvatarObject(); if (avatarp && sShowHUDAttachments) { glh::matrix4f save_proj(glh_get_current_projection()); glh::matrix4f save_model(glh_get_current_modelview()); setup_hud_matrices(screen_rect); for (LLVOAvatar::attachment_map_t::iterator iter = avatarp->mAttachmentPoints.begin(); iter != avatarp->mAttachmentPoints.end(); ) { LLVOAvatar::attachment_map_t::iterator curiter = iter++; LLViewerJointAttachment* attachmentp = curiter->second; if (attachmentp->getIsHUDAttachment()) { LLViewerObject* objectp = attachmentp->getObject(); if (objectp) { LLDrawable* drawable = objectp->mDrawable; if (drawable->isDead()) { continue; } for (S32 j = 0; j < drawable->getNumFaces(); ++j) { LLFace* facep = drawable->getFace(j); if (!facep->getPool()) { facep->renderForSelect(prim_mask); } } //render child faces LLViewerObject::const_child_list_t& child_list = objectp->getChildren(); for (LLViewerObject::child_list_t::const_iterator iter = child_list.begin(); iter != child_list.end(); iter++) { LLViewerObject* child = *iter; LLDrawable* child_drawable = child->mDrawable; for (S32 l = 0; l < child_drawable->getNumFaces(); ++l) { LLFace* facep = child_drawable->getFace(l); if (!facep->getPool()) { facep->renderForSelect(prim_mask); } } } } } } glMatrixMode(GL_PROJECTION); glLoadMatrixf(save_proj.m); glh_set_current_projection(save_proj); glMatrixMode(GL_MODELVIEW); glLoadMatrixf(save_model.m); glh_set_current_modelview(save_model); } gGL.getTexUnit(0)->setTextureBlendType(LLTexUnit::TB_MULT); LLVertexBuffer::unbind(); gGL.setColorMask(true, true); } void LLPipeline::rebuildPools() { LLMemType mt(LLMemType::MTYPE_PIPELINE); assertInitialized(); S32 max_count = mPools.size(); pool_set_t::iterator iter1 = mPools.upper_bound(mLastRebuildPool); while(max_count > 0 && mPools.size() > 0) // && num_rebuilds < MAX_REBUILDS) { if (iter1 == mPools.end()) { iter1 = mPools.begin(); } LLDrawPool* poolp = *iter1; if (poolp->isDead()) { mPools.erase(iter1++); removeFromQuickLookup( poolp ); if (poolp == mLastRebuildPool) { mLastRebuildPool = NULL; } delete poolp; } else { mLastRebuildPool = poolp; iter1++; } max_count--; } if (gAgent.getAvatarObject()) { gAgent.getAvatarObject()->rebuildHUD(); } } void LLPipeline::addToQuickLookup( LLDrawPool* new_poolp ) { LLMemType mt(LLMemType::MTYPE_PIPELINE); assertInitialized(); switch( new_poolp->getType() ) { case LLDrawPool::POOL_SIMPLE: if (mSimplePool) { llassert(0); llwarns << "Ignoring duplicate simple pool." << llendl; } else { mSimplePool = (LLRenderPass*) new_poolp; } break; case LLDrawPool::POOL_INVISIBLE: if (mInvisiblePool) { llassert(0); llwarns << "Ignoring duplicate simple pool." << llendl; } else { mInvisiblePool = (LLRenderPass*) new_poolp; } break; case LLDrawPool::POOL_GLOW: if (mGlowPool) { llassert(0); llwarns << "Ignoring duplicate glow pool." << llendl; } else { mGlowPool = (LLRenderPass*) new_poolp; } break; case LLDrawPool::POOL_TREE: mTreePools[ uintptr_t(new_poolp->getTexture()) ] = new_poolp ; break; case LLDrawPool::POOL_TERRAIN: mTerrainPools[ uintptr_t(new_poolp->getTexture()) ] = new_poolp ; break; case LLDrawPool::POOL_BUMP: if (mBumpPool) { llassert(0); llwarns << "Ignoring duplicate bump pool." << llendl; } else { mBumpPool = new_poolp; } break; case LLDrawPool::POOL_ALPHA: if( mAlphaPool ) { llassert(0); llwarns << "LLPipeline::addPool(): Ignoring duplicate Alpha pool" << llendl; } else { mAlphaPool = new_poolp; } break; case LLDrawPool::POOL_AVATAR: break; // Do nothing case LLDrawPool::POOL_SKY: if( mSkyPool ) { llassert(0); llwarns << "LLPipeline::addPool(): Ignoring duplicate Sky pool" << llendl; } else { mSkyPool = new_poolp; } break; case LLDrawPool::POOL_WATER: if( mWaterPool ) { llassert(0); llwarns << "LLPipeline::addPool(): Ignoring duplicate Water pool" << llendl; } else { mWaterPool = new_poolp; } break; case LLDrawPool::POOL_GROUND: if( mGroundPool ) { llassert(0); llwarns << "LLPipeline::addPool(): Ignoring duplicate Ground Pool" << llendl; } else { mGroundPool = new_poolp; } break; case LLDrawPool::POOL_WL_SKY: if( mWLSkyPool ) { llassert(0); llwarns << "LLPipeline::addPool(): Ignoring duplicate WLSky Pool" << llendl; } else { mWLSkyPool = new_poolp; } break; default: llassert(0); llwarns << "Invalid Pool Type in LLPipeline::addPool()" << llendl; break; } } void LLPipeline::removePool( LLDrawPool* poolp ) { assertInitialized(); removeFromQuickLookup(poolp); mPools.erase(poolp); delete poolp; } void LLPipeline::removeFromQuickLookup( LLDrawPool* poolp ) { assertInitialized(); LLMemType mt(LLMemType::MTYPE_PIPELINE); switch( poolp->getType() ) { case LLDrawPool::POOL_SIMPLE: llassert(mSimplePool == poolp); mSimplePool = NULL; break; case LLDrawPool::POOL_INVISIBLE: llassert(mInvisiblePool == poolp); mInvisiblePool = NULL; break; case LLDrawPool::POOL_WL_SKY: llassert(mWLSkyPool == poolp); mWLSkyPool = NULL; break; case LLDrawPool::POOL_GLOW: llassert(mGlowPool == poolp); mGlowPool = NULL; break; case LLDrawPool::POOL_TREE: #ifdef _DEBUG { BOOL found = mTreePools.erase( (uintptr_t)poolp->getTexture() ); llassert( found ); } #else mTreePools.erase( (uintptr_t)poolp->getTexture() ); #endif break; case LLDrawPool::POOL_TERRAIN: #ifdef _DEBUG { BOOL found = mTerrainPools.erase( (uintptr_t)poolp->getTexture() ); llassert( found ); } #else mTerrainPools.erase( (uintptr_t)poolp->getTexture() ); #endif break; case LLDrawPool::POOL_BUMP: llassert( poolp == mBumpPool ); mBumpPool = NULL; break; case LLDrawPool::POOL_ALPHA: llassert( poolp == mAlphaPool ); mAlphaPool = NULL; break; case LLDrawPool::POOL_AVATAR: break; // Do nothing case LLDrawPool::POOL_SKY: llassert( poolp == mSkyPool ); mSkyPool = NULL; break; case LLDrawPool::POOL_WATER: llassert( poolp == mWaterPool ); mWaterPool = NULL; break; case LLDrawPool::POOL_GROUND: llassert( poolp == mGroundPool ); mGroundPool = NULL; break; default: llassert(0); llwarns << "Invalid Pool Type in LLPipeline::removeFromQuickLookup() type=" << poolp->getType() << llendl; break; } } void LLPipeline::resetDrawOrders() { assertInitialized(); // Iterate through all of the draw pools and rebuild them. for (pool_set_t::iterator iter = mPools.begin(); iter != mPools.end(); ++iter) { LLDrawPool *poolp = *iter; poolp->resetDrawOrders(); } } //============================================================================ // Once-per-frame setup of hardware lights, // including sun/moon, avatar backlight, and up to 6 local lights void LLPipeline::setupAvatarLights(BOOL for_edit) { assertInitialized(); if (for_edit) { LLColor4 diffuse(0.8f, 0.8f, 0.8f, 0.f); LLVector4 light_pos_cam(-8.f, 0.25f, 10.f, 0.f); // w==0 => directional light LLMatrix4 camera_mat = LLViewerCamera::getInstance()->getModelview(); LLMatrix4 camera_rot(camera_mat.getMat3()); camera_rot.invert(); LLVector4 light_pos = light_pos_cam * camera_rot; light_pos.normVec(); mHWLightColors[1] = diffuse; glLightfv(GL_LIGHT1, GL_DIFFUSE, diffuse.mV); glLightfv(GL_LIGHT1, GL_AMBIENT, LLColor4::black.mV); glLightfv(GL_LIGHT1, GL_SPECULAR, LLColor4::black.mV); glLightfv(GL_LIGHT1, GL_POSITION, light_pos.mV); glLightf (GL_LIGHT1, GL_CONSTANT_ATTENUATION, 1.0f); glLightf (GL_LIGHT1, GL_LINEAR_ATTENUATION, 0.0f); glLightf (GL_LIGHT1, GL_QUADRATIC_ATTENUATION, 0.0f); glLightf (GL_LIGHT1, GL_SPOT_EXPONENT, 0.0f); glLightf (GL_LIGHT1, GL_SPOT_CUTOFF, 180.0f); } else if (gAvatarBacklight) // Always true (unless overridden in a devs .ini) { LLVector3 opposite_pos = -1.f * mSunDir; LLVector3 orthog_light_pos = mSunDir % LLVector3::z_axis; LLVector4 backlight_pos = LLVector4(lerp(opposite_pos, orthog_light_pos, 0.3f), 0.0f); backlight_pos.normVec(); LLColor4 light_diffuse = mSunDiffuse; LLColor4 backlight_diffuse(1.f - light_diffuse.mV[VRED], 1.f - light_diffuse.mV[VGREEN], 1.f - light_diffuse.mV[VBLUE], 1.f); F32 max_component = 0.001f; for (S32 i = 0; i < 3; i++) { if (backlight_diffuse.mV[i] > max_component) { max_component = backlight_diffuse.mV[i]; } } F32 backlight_mag; if (gSky.getSunDirection().mV[2] >= NIGHTTIME_ELEVATION_COS) { backlight_mag = BACKLIGHT_DAY_MAGNITUDE_OBJECT; } else { backlight_mag = BACKLIGHT_NIGHT_MAGNITUDE_OBJECT; } backlight_diffuse *= backlight_mag / max_component; mHWLightColors[1] = backlight_diffuse; glLightfv(GL_LIGHT1, GL_POSITION, backlight_pos.mV); // this is just sun/moon direction glLightfv(GL_LIGHT1, GL_DIFFUSE, backlight_diffuse.mV); glLightfv(GL_LIGHT1, GL_AMBIENT, LLColor4::black.mV); glLightfv(GL_LIGHT1, GL_SPECULAR, LLColor4::black.mV); glLightf (GL_LIGHT1, GL_CONSTANT_ATTENUATION, 1.0f); glLightf (GL_LIGHT1, GL_LINEAR_ATTENUATION, 0.0f); glLightf (GL_LIGHT1, GL_QUADRATIC_ATTENUATION, 0.0f); glLightf (GL_LIGHT1, GL_SPOT_EXPONENT, 0.0f); glLightf (GL_LIGHT1, GL_SPOT_CUTOFF, 180.0f); } else { mHWLightColors[1] = LLColor4::black; glLightfv(GL_LIGHT1, GL_DIFFUSE, LLColor4::black.mV); glLightfv(GL_LIGHT1, GL_AMBIENT, LLColor4::black.mV); glLightfv(GL_LIGHT1, GL_SPECULAR, LLColor4::black.mV); } } static F32 calc_light_dist(LLVOVolume* light, const LLVector3& cam_pos, F32 max_dist) { F32 inten = light->getLightIntensity(); if (inten < .001f) { return max_dist; } F32 radius = light->getLightRadius(); BOOL selected = light->isSelected(); LLVector3 dpos = light->getRenderPosition() - cam_pos; F32 dist2 = dpos.lengthSquared(); if (!selected && dist2 > (max_dist + radius)*(max_dist + radius)) { return max_dist; } F32 dist = fsqrtf(dist2); dist *= 1.f / inten; dist -= radius; if (selected) { dist -= 10000.f; // selected lights get highest priority } if (light->mDrawable.notNull() && light->mDrawable->isState(LLDrawable::ACTIVE)) { // moving lights get a little higher priority (too much causes artifacts) dist -= light->getLightRadius()*0.25f; } return dist; } void LLPipeline::calcNearbyLights(LLCamera& camera) { assertInitialized(); if (LLPipeline::sReflectionRender) { return; } if (mLightingDetail >= 1) { // mNearbyLight (and all light_set_t's) are sorted such that // begin() == the closest light and rbegin() == the farthest light const S32 MAX_LOCAL_LIGHTS = 6; // LLVector3 cam_pos = gAgent.getCameraPositionAgent(); LLVector3 cam_pos = LLViewerJoystick::getInstance()->getOverrideCamera() ? camera.getOrigin() : gAgent.getPositionAgent(); F32 max_dist = LIGHT_MAX_RADIUS * 4.f; // ignore enitrely lights > 4 * max light rad // UPDATE THE EXISTING NEARBY LIGHTS if (!LLPipeline::sSkipUpdate) { light_set_t cur_nearby_lights; for (light_set_t::iterator iter = mNearbyLights.begin(); iter != mNearbyLights.end(); iter++) { const Light* light = &(*iter); LLDrawable* drawable = light->drawable; LLVOVolume* volight = drawable->getVOVolume(); if (!volight || !drawable->isState(LLDrawable::LIGHT)) { drawable->clearState(LLDrawable::NEARBY_LIGHT); continue; } if (light->fade <= -LIGHT_FADE_TIME) { drawable->clearState(LLDrawable::NEARBY_LIGHT); continue; } if (!sRenderAttachedLights && volight && volight->isAttachment()) { drawable->clearState(LLDrawable::NEARBY_LIGHT); continue; } F32 dist = calc_light_dist(volight, cam_pos, max_dist); cur_nearby_lights.insert(Light(drawable, dist, light->fade)); } mNearbyLights = cur_nearby_lights; } // FIND NEW LIGHTS THAT ARE IN RANGE light_set_t new_nearby_lights; for (LLDrawable::drawable_set_t::iterator iter = mLights.begin(); iter != mLights.end(); ++iter) { LLDrawable* drawable = *iter; LLVOVolume* light = drawable->getVOVolume(); if (!light || drawable->isState(LLDrawable::NEARBY_LIGHT)) { continue; } if (light->isHUDAttachment()) { continue; // no lighting from HUD objects } F32 dist = calc_light_dist(light, cam_pos, max_dist); if (dist >= max_dist) { continue; } new_nearby_lights.insert(Light(drawable, dist, 0.f)); if (new_nearby_lights.size() > (U32)MAX_LOCAL_LIGHTS) { new_nearby_lights.erase(--new_nearby_lights.end()); const Light& last = *new_nearby_lights.rbegin(); max_dist = last.dist; } } // INSERT ANY NEW LIGHTS for (light_set_t::iterator iter = new_nearby_lights.begin(); iter != new_nearby_lights.end(); iter++) { const Light* light = &(*iter); if (mNearbyLights.size() < (U32)MAX_LOCAL_LIGHTS) { mNearbyLights.insert(*light); ((LLDrawable*) light->drawable)->setState(LLDrawable::NEARBY_LIGHT); } else { // crazy cast so that we can overwrite the fade value // even though gcc enforces sets as const // (fade value doesn't affect sort so this is safe) Light* farthest_light = ((Light*) (&(*(mNearbyLights.rbegin())))); if (light->dist < farthest_light->dist) { if (farthest_light->fade >= 0.f) { farthest_light->fade = -gFrameIntervalSeconds; } } else { break; // none of the other lights are closer } } } } } void LLPipeline::setupHWLights(LLDrawPool* pool) { assertInitialized(); // Ambient LLColor4 ambient = gSky.getTotalAmbientColor(); glLightModelfv(GL_LIGHT_MODEL_AMBIENT,ambient.mV); // Light 0 = Sun or Moon (All objects) { if (gSky.getSunDirection().mV[2] >= NIGHTTIME_ELEVATION_COS) { mSunDir.setVec(gSky.getSunDirection()); mSunDiffuse.setVec(gSky.getSunDiffuseColor()); } else { mSunDir.setVec(gSky.getMoonDirection()); mSunDiffuse.setVec(gSky.getMoonDiffuseColor()); } F32 max_color = llmax(mSunDiffuse.mV[0], mSunDiffuse.mV[1], mSunDiffuse.mV[2]); if (max_color > 1.f) { mSunDiffuse *= 1.f/max_color; } mSunDiffuse.clamp(); LLVector4 light_pos(mSunDir, 0.0f); LLColor4 light_diffuse = mSunDiffuse; mHWLightColors[0] = light_diffuse; glLightfv(GL_LIGHT0, GL_POSITION, light_pos.mV); // this is just sun/moon direction glLightfv(GL_LIGHT0, GL_DIFFUSE, light_diffuse.mV); glLightfv(GL_LIGHT0, GL_AMBIENT, LLColor4::black.mV); glLightfv(GL_LIGHT0, GL_SPECULAR, LLColor4::black.mV); glLightf (GL_LIGHT0, GL_CONSTANT_ATTENUATION, 1.0f); glLightf (GL_LIGHT0, GL_LINEAR_ATTENUATION, 0.0f); glLightf (GL_LIGHT0, GL_QUADRATIC_ATTENUATION, 0.0f); glLightf (GL_LIGHT0, GL_SPOT_EXPONENT, 0.0f); glLightf (GL_LIGHT0, GL_SPOT_CUTOFF, 180.0f); } // Light 1 = Backlight (for avatars) // (set by enableLightsAvatar) S32 cur_light = 2; // Nearby lights = LIGHT 2-7 mLightMovingMask = 0; if (mLightingDetail >= 1) { for (light_set_t::iterator iter = mNearbyLights.begin(); iter != mNearbyLights.end(); ++iter) { LLDrawable* drawable = iter->drawable; LLVOVolume* light = drawable->getVOVolume(); if (!light) { continue; } if (drawable->isState(LLDrawable::ACTIVE)) { mLightMovingMask |= (1<getLightColor(); light_color.mV[3] = 0.0f; F32 fade = iter->fade; if (fade < LIGHT_FADE_TIME) { // fade in/out light if (fade >= 0.f) { fade = fade / LIGHT_FADE_TIME; ((Light*) (&(*iter)))->fade += gFrameIntervalSeconds; } else { fade = 1.f + fade / LIGHT_FADE_TIME; ((Light*) (&(*iter)))->fade -= gFrameIntervalSeconds; } fade = llclamp(fade,0.f,1.f); light_color *= fade; } LLVector3 light_pos(light->getRenderPosition()); LLVector4 light_pos_gl(light_pos, 1.0f); F32 light_radius = llmax(light->getLightRadius(), 0.001f); F32 atten, quad; #if 0 //1.9.1 if (pool->getVertexShaderLevel() > 0) { atten = light_radius; quad = llmax(light->getLightFalloff(), 0.0001f); } else #endif { F32 x = (3.f * (1.f + light->getLightFalloff())); atten = x / (light_radius); // % of brightness at radius quad = 0.0f; } mHWLightColors[cur_light] = light_color; S32 gllight = GL_LIGHT0+cur_light; glLightfv(gllight, GL_POSITION, light_pos_gl.mV); glLightfv(gllight, GL_DIFFUSE, light_color.mV); glLightfv(gllight, GL_AMBIENT, LLColor4::black.mV); glLightfv(gllight, GL_SPECULAR, LLColor4::black.mV); glLightf (gllight, GL_CONSTANT_ATTENUATION, 0.0f); glLightf (gllight, GL_LINEAR_ATTENUATION, atten); glLightf (gllight, GL_QUADRATIC_ATTENUATION, quad); glLightf (gllight, GL_SPOT_EXPONENT, 0.0f); glLightf (gllight, GL_SPOT_CUTOFF, 180.0f); cur_light++; if (cur_light >= 8) { break; // safety } } } for ( ; cur_light < 8 ; cur_light++) { mHWLightColors[cur_light] = LLColor4::black; S32 gllight = GL_LIGHT0+cur_light; glLightfv(gllight, GL_DIFFUSE, LLColor4::black.mV); glLightfv(gllight, GL_AMBIENT, LLColor4::black.mV); glLightfv(gllight, GL_SPECULAR, LLColor4::black.mV); } if (gAgent.getAvatarObject() && gAgent.getAvatarObject()->mSpecialRenderMode == 3) { LLColor4 light_color = LLColor4::white; light_color.mV[3] = 0.0f; LLVector3 light_pos(LLViewerCamera::getInstance()->getOrigin()); LLVector4 light_pos_gl(light_pos, 1.0f); F32 light_radius = 16.f; F32 atten, quad; { F32 x = 3.f; atten = x / (light_radius); // % of brightness at radius quad = 0.0f; } //mHWLightColors[cur_light] = light_color; S32 gllight = GL_LIGHT2; glLightfv(gllight, GL_POSITION, light_pos_gl.mV); glLightfv(gllight, GL_DIFFUSE, light_color.mV); glLightfv(gllight, GL_AMBIENT, LLColor4::black.mV); glLightfv(gllight, GL_SPECULAR, LLColor4::black.mV); glLightf (gllight, GL_CONSTANT_ATTENUATION, 0.0f); glLightf (gllight, GL_LINEAR_ATTENUATION, atten); glLightf (gllight, GL_QUADRATIC_ATTENUATION, quad); glLightf (gllight, GL_SPOT_EXPONENT, 0.0f); glLightf (gllight, GL_SPOT_CUTOFF, 180.0f); } // Init GL state glDisable(GL_LIGHTING); for (S32 gllight=GL_LIGHT0; gllight<=GL_LIGHT7; gllight++) { glDisable(gllight); } mLightMask = 0; } void LLPipeline::enableLights(U32 mask) { assertInitialized(); if (mLightingDetail == 0) { mask &= 0xf003; // sun and backlight only (and fullbright bit) } if (mLightMask != mask) { if (!mLightMask) { glEnable(GL_LIGHTING); } if (mask) { for (S32 i=0; i<8; i++) { if (mask & (1<= 2) { mask |= mLightMovingMask; // Hardware moving lights glColor4f(0.f, 0.f, 0.f, 1.0f); // no local lighting by default } else { mask |= 0xff & (~2); // Hardware local lights } enableLights(mask); } void LLPipeline::enableLightsDynamic() { assertInitialized(); U32 mask = 0xff & (~2); // Local lights enableLights(mask); if (mLightingDetail >= 2) { glColor4f(0.f, 0.f, 0.f, 1.f); // no local lighting by default } LLVOAvatar* avatarp = gAgent.getAvatarObject(); if (avatarp && getLightingDetail() <= 0) { if (avatarp->mSpecialRenderMode == 0) // normal { gPipeline.enableLightsAvatar(); } else if (avatarp->mSpecialRenderMode >= 1) // anim preview { gPipeline.enableLightsAvatarEdit(LLColor4(0.7f, 0.6f, 0.3f, 1.f)); } } } void LLPipeline::enableLightsAvatar() { U32 mask = 0xff; // All lights setupAvatarLights(FALSE); enableLights(mask); } void LLPipeline::enableLightsAvatarEdit(const LLColor4& color) { U32 mask = 0x2002; // Avatar backlight only, set ambient setupAvatarLights(TRUE); enableLights(mask); glLightModelfv(GL_LIGHT_MODEL_AMBIENT,color.mV); } void LLPipeline::enableLightsFullbright(const LLColor4& color) { assertInitialized(); U32 mask = 0x1000; // Non-0 mask, set ambient enableLights(mask); glLightModelfv(GL_LIGHT_MODEL_AMBIENT,color.mV); if (mLightingDetail >= 2) { glColor4f(0.f, 0.f, 0.f, 1.f); // no local lighting by default } } void LLPipeline::disableLights() { enableLights(0); // no lighting (full bright) glColor4f(1.f, 1.f, 1.f, 1.f); // lighting color = white by default } //============================================================================ class LLMenuItemGL; class LLInvFVBridge; struct cat_folder_pair; class LLVOBranch; class LLVOLeaf; void LLPipeline::findReferences(LLDrawable *drawablep) { assertInitialized(); if (mLights.find(drawablep) != mLights.end()) { llinfos << "In mLights" << llendl; } if (std::find(mMovedList.begin(), mMovedList.end(), drawablep) != mMovedList.end()) { llinfos << "In mMovedList" << llendl; } if (std::find(mShiftList.begin(), mShiftList.end(), drawablep) != mShiftList.end()) { llinfos << "In mShiftList" << llendl; } if (mRetexturedList.find(drawablep) != mRetexturedList.end()) { llinfos << "In mRetexturedList" << llendl; } if (mActiveQ.find(drawablep) != mActiveQ.end()) { llinfos << "In mActiveQ" << llendl; } if (std::find(mBuildQ1.begin(), mBuildQ1.end(), drawablep) != mBuildQ1.end()) { llinfos << "In mBuildQ1" << llendl; } if (std::find(mBuildQ2.begin(), mBuildQ2.end(), drawablep) != mBuildQ2.end()) { llinfos << "In mBuildQ2" << llendl; } S32 count; count = gObjectList.findReferences(drawablep); if (count) { llinfos << "In other drawables: " << count << " references" << llendl; } } BOOL LLPipeline::verify() { BOOL ok = assertInitialized(); if (ok) { for (pool_set_t::iterator iter = mPools.begin(); iter != mPools.end(); ++iter) { LLDrawPool *poolp = *iter; if (!poolp->verify()) { ok = FALSE; } } } if (!ok) { llwarns << "Pipeline verify failed!" << llendl; } return ok; } ////////////////////////////// // // Collision detection // // /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// /** * A method to compute a ray-AABB intersection. * Original code by Andrew Woo, from "Graphics Gems", Academic Press, 1990 * Optimized code by Pierre Terdiman, 2000 (~20-30% faster on my Celeron 500) * Epsilon value added by Klaus Hartmann. (discarding it saves a few cycles only) * * Hence this version is faster as well as more robust than the original one. * * Should work provided: * 1) the integer representation of 0.0f is 0x00000000 * 2) the sign bit of the float is the most significant one * * Report bugs: p.terdiman@codercorner.com * * \param aabb [in] the axis-aligned bounding box * \param origin [in] ray origin * \param dir [in] ray direction * \param coord [out] impact coordinates * \return true if ray intersects AABB */ /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //#define RAYAABB_EPSILON 0.00001f #define IR(x) ((U32&)x) bool LLRayAABB(const LLVector3 ¢er, const LLVector3 &size, const LLVector3& origin, const LLVector3& dir, LLVector3 &coord, F32 epsilon) { BOOL Inside = TRUE; LLVector3 MinB = center - size; LLVector3 MaxB = center + size; LLVector3 MaxT; MaxT.mV[VX]=MaxT.mV[VY]=MaxT.mV[VZ]=-1.0f; // Find candidate planes. for(U32 i=0;i<3;i++) { if(origin.mV[i] < MinB.mV[i]) { coord.mV[i] = MinB.mV[i]; Inside = FALSE; // Calculate T distances to candidate planes if(IR(dir.mV[i])) MaxT.mV[i] = (MinB.mV[i] - origin.mV[i]) / dir.mV[i]; } else if(origin.mV[i] > MaxB.mV[i]) { coord.mV[i] = MaxB.mV[i]; Inside = FALSE; // Calculate T distances to candidate planes if(IR(dir.mV[i])) MaxT.mV[i] = (MaxB.mV[i] - origin.mV[i]) / dir.mV[i]; } } // Ray origin inside bounding box if(Inside) { coord = origin; return true; } // Get largest of the maxT's for final choice of intersection U32 WhichPlane = 0; if(MaxT.mV[1] > MaxT.mV[WhichPlane]) WhichPlane = 1; if(MaxT.mV[2] > MaxT.mV[WhichPlane]) WhichPlane = 2; // Check final candidate actually inside box if(IR(MaxT.mV[WhichPlane])&0x80000000) return false; for(U32 i=0;i<3;i++) { if(i!=WhichPlane) { coord.mV[i] = origin.mV[i] + MaxT.mV[WhichPlane] * dir.mV[i]; if (epsilon > 0) { if(coord.mV[i] < MinB.mV[i] - epsilon || coord.mV[i] > MaxB.mV[i] + epsilon) return false; } else { if(coord.mV[i] < MinB.mV[i] || coord.mV[i] > MaxB.mV[i]) return false; } } } return true; // ray hits box } ////////////////////////////// // // Macros, functions, and inline methods from other classes // // void LLPipeline::setLight(LLDrawable *drawablep, BOOL is_light) { if (drawablep && assertInitialized()) { if (is_light) { mLights.insert(drawablep); drawablep->setState(LLDrawable::LIGHT); } else { drawablep->clearState(LLDrawable::LIGHT); mLights.erase(drawablep); } } } void LLPipeline::setActive(LLDrawable *drawablep, BOOL active) { assertInitialized(); if (active) { mActiveQ.insert(drawablep); } else { mActiveQ.erase(drawablep); } } //static void LLPipeline::toggleRenderType(U32 type) { U32 bit = (1<getRegionList().begin(); iter != LLWorld::getInstance()->getRegionList().end(); ++iter) { LLViewerRegion* region = *iter; for (U32 j = 0; j < LLViewerRegion::NUM_PARTITIONS; j++) { if ((j == LLViewerRegion::PARTITION_VOLUME) || (j == LLViewerRegion::PARTITION_BRIDGE)) // only check these partitions for now { LLSpatialPartition* part = region->getSpatialPartition(j); if (part) { LLDrawable* hit = part->lineSegmentIntersect(start, end, face_hit, intersection, tex_coord, normal, bi_normal); if (hit) { drawable = hit; } } } } } return drawable ? drawable->getVObj().get() : NULL; } LLViewerObject* LLPipeline::lineSegmentIntersectInHUD(const LLVector3& start, const LLVector3& end, S32* face_hit, LLVector3* intersection, // return the intersection point LLVector2* tex_coord, // return the texture coordinates of the intersection point LLVector3* normal, // return the surface normal at the intersection point LLVector3* bi_normal // return the surface bi-normal at the intersection point ) { LLDrawable* drawable = NULL; for (LLWorld::region_list_t::iterator iter = LLWorld::getInstance()->getRegionList().begin(); iter != LLWorld::getInstance()->getRegionList().end(); ++iter) { LLViewerRegion* region = *iter; LLSpatialPartition* part = region->getSpatialPartition(LLViewerRegion::PARTITION_HUD); if (part) { LLDrawable* hit = part->lineSegmentIntersect(start, end, face_hit, intersection, tex_coord, normal, bi_normal); if (hit) { drawable = hit; } } } return drawable ? drawable->getVObj().get() : NULL; } LLSpatialPartition* LLPipeline::getSpatialPartition(LLViewerObject* vobj) { if (vobj) { LLViewerRegion* region = vobj->getRegion(); if (region) { return region->getSpatialPartition(vobj->getPartitionType()); } } return NULL; } void LLPipeline::resetVertexBuffers(LLDrawable* drawable) { if (!drawable || drawable->isDead()) { return; } for (S32 i = 0; i < drawable->getNumFaces(); i++) { LLFace* facep = drawable->getFace(i); facep->mVertexBuffer = NULL; facep->mLastVertexBuffer = NULL; } } void LLPipeline::resetVertexBuffers() { sRenderBump = gSavedSettings.getBOOL("RenderObjectBump"); for (LLWorld::region_list_t::iterator iter = LLWorld::getInstance()->getRegionList().begin(); iter != LLWorld::getInstance()->getRegionList().end(); ++iter) { LLViewerRegion* region = *iter; for (U32 i = 0; i < LLViewerRegion::NUM_PARTITIONS; i++) { LLSpatialPartition* part = region->getSpatialPartition(i); if (part) { part->resetVertexBuffers(); } } } resetDrawOrders(); gSky.resetVertexBuffers(); if (LLVertexBuffer::sGLCount > 0) { LLVertexBuffer::cleanupClass(); } //delete all name pool caches LLGLNamePool::cleanupPools(); if (LLVertexBuffer::sGLCount > 0) { llwarns << "VBO wipe failed." << llendl; } if (!LLVertexBuffer::sStreamIBOPool.mNameList.empty() || !LLVertexBuffer::sStreamVBOPool.mNameList.empty() || !LLVertexBuffer::sDynamicIBOPool.mNameList.empty() || !LLVertexBuffer::sDynamicVBOPool.mNameList.empty()) { llwarns << "VBO name pool cleanup failed." << llendl; } LLVertexBuffer::unbind(); LLPipeline::sTextureBindTest = gSavedSettings.getBOOL("RenderDebugTextureBind"); } void LLPipeline::renderObjects(U32 type, U32 mask, BOOL texture) { assertInitialized(); gGLLastMatrix = NULL; glLoadMatrixd(gGLLastModelView); mSimplePool->renderGroups(type, mask, texture); gGLLastMatrix = NULL; glLoadMatrixd(gGLLastModelView); } void LLPipeline::setUseVBO(BOOL use_vbo) { if (use_vbo != LLVertexBuffer::sEnableVBOs) { if (use_vbo) { llinfos << "Enabling VBO." << llendl; } else { llinfos << "Disabling VBO." << llendl; } resetVertexBuffers(); LLVertexBuffer::initClass(use_vbo); } } void apply_cube_face_rotation(U32 face) { switch (face) { case 0: glRotatef(90.f, 0, 1, 0); glRotatef(180.f, 1, 0, 0); break; case 2: glRotatef(-90.f, 1, 0, 0); break; case 4: glRotatef(180.f, 0, 1, 0); glRotatef(180.f, 0, 0, 1); break; case 1: glRotatef(-90.f, 0, 1, 0); glRotatef(180.f, 1, 0, 0); break; case 3: glRotatef(90, 1, 0, 0); break; case 5: glRotatef(180, 0, 0, 1); break; } } void LLPipeline::generateReflectionMap(LLCubeMap* cube_map, LLCamera& cube_cam) { LLGLState::checkStates(); LLGLState::checkTextureChannels(); LLGLState::checkClientArrays(); assertInitialized(); //render dynamic cube map U32 type_mask = gPipeline.getRenderTypeMask(); S32 use_occlusion = LLPipeline::sUseOcclusion; LLPipeline::sUseOcclusion = 0; LLPipeline::sSkipUpdate = TRUE; U32 res = REFLECTION_MAP_RES; LLPipeline::sReflectionRender = TRUE; cube_map->bind(); GLint width; glGetTexLevelParameteriv(GL_TEXTURE_CUBE_MAP_POSITIVE_X_ARB, 0, GL_TEXTURE_WIDTH, &width); if (width != res) { cube_map->setReflection(); for (U32 i = 0; i < 6; i++) { glTexImage2D(gl_cube_face[i], 0, GL_RGBA, res, res, 0, GL_RGBA, GL_FLOAT, NULL); } } glBindTexture(GL_TEXTURE_CUBE_MAP_ARB, 0); cube_map->disable(); BOOL toggle_ui = gPipeline.hasRenderDebugFeatureMask(LLPipeline::RENDER_DEBUG_FEATURE_UI); if (toggle_ui) { gPipeline.toggleRenderDebugFeature((void*) LLPipeline::RENDER_DEBUG_FEATURE_UI); } U32 cube_mask = (1 << LLPipeline::RENDER_TYPE_SIMPLE) | (1 << LLPipeline::RENDER_TYPE_WATER) | //(1 << LLPipeline::RENDER_TYPE_BUMP) | (1 << LLPipeline::RENDER_TYPE_ALPHA) | (1 << LLPipeline::RENDER_TYPE_TREE) | //(1 << LLPipeline::RENDER_TYPE_PARTICLES) | (1 << LLPipeline::RENDER_TYPE_CLOUDS) | //(1 << LLPipeline::RENDER_TYPE_STARS) | //(1 << LLPipeline::RENDER_TYPE_AVATAR) | (1 << LLPipeline::RENDER_TYPE_GLOW) | (1 << LLPipeline::RENDER_TYPE_GRASS) | (1 << LLPipeline::RENDER_TYPE_VOLUME) | (1 << LLPipeline::RENDER_TYPE_TERRAIN) | (1 << LLPipeline::RENDER_TYPE_SKY) | (1 << LLPipeline::RENDER_TYPE_WL_SKY) | (1 << LLPipeline::RENDER_TYPE_GROUND); LLDrawPoolWater::sSkipScreenCopy = TRUE; LLPipeline::sSkipUpdate = TRUE; cube_mask = cube_mask & type_mask; gPipeline.setRenderTypeMask(cube_mask); glMatrixMode(GL_PROJECTION); glPushMatrix(); glMatrixMode(GL_MODELVIEW); glPushMatrix(); glViewport(0,0,res,res); glClearColor(0,0,0,0); LLVector3 origin = cube_cam.getOrigin(); gPipeline.calcNearbyLights(cube_cam); stop_glerror(); LLViewerImage::unbindTexture(0, GL_TEXTURE_2D); glBindFramebufferEXT(GL_FRAMEBUFFER_EXT, mCubeFrameBuffer); glFramebufferRenderbufferEXT(GL_FRAMEBUFFER_EXT, GL_DEPTH_ATTACHMENT_EXT, GL_RENDERBUFFER_EXT, mCubeDepth); stop_glerror(); for (S32 i = 0; i < 6; i++) { glBindFramebufferEXT(GL_FRAMEBUFFER_EXT, mCubeFrameBuffer); glFramebufferTexture2DEXT(GL_FRAMEBUFFER_EXT, GL_COLOR_ATTACHMENT0_EXT, gl_cube_face[i], cube_map->getGLName(), 0); validate_framebuffer_object(); glMatrixMode(GL_PROJECTION); glLoadIdentity(); gluPerspective(90.f, 1.f, 0.1f, 1024.f); glMatrixMode(GL_MODELVIEW); glLoadIdentity(); apply_cube_face_rotation(i); glTranslatef(-origin.mV[0], -origin.mV[1], -origin.mV[2]); cube_cam.setOrigin(origin); LLViewerCamera::updateFrustumPlanes(cube_cam); cube_cam.setOrigin(LLViewerCamera::getInstance()->getOrigin()); static LLCullResult result; gPipeline.updateCull(cube_cam, result); gPipeline.stateSort(cube_cam, result); glClearColor(0,0,0,0); gGL.setColorMask(true, true); glClear(GL_DEPTH_BUFFER_BIT | GL_COLOR_BUFFER_BIT); gGL.setColorMask(true, false); stop_glerror(); gPipeline.renderGeom(cube_cam); } glBindFramebufferEXT(GL_FRAMEBUFFER_EXT, 0); cube_cam.setOrigin(origin); gShinyOrigin.setVec(cube_cam.getOrigin(), cube_cam.getFar()*2.f); glMatrixMode(GL_PROJECTION); glPopMatrix(); glMatrixMode(GL_MODELVIEW); glPopMatrix(); gViewerWindow->setupViewport(); gPipeline.setRenderTypeMask(type_mask); LLPipeline::sUseOcclusion = use_occlusion; LLPipeline::sSkipUpdate = FALSE; if (toggle_ui) { gPipeline.toggleRenderDebugFeature((void*)LLPipeline::RENDER_DEBUG_FEATURE_UI); } LLDrawPoolWater::sSkipScreenCopy = FALSE; LLPipeline::sSkipUpdate = FALSE; LLPipeline::sReflectionRender = FALSE; LLGLState::checkStates(); LLGLState::checkTextureChannels(); LLGLState::checkClientArrays(); } //send cube map vertices and texture coordinates void render_cube_map() { U16 idx[36]; idx[0] = 1; idx[1] = 0; idx[2] = 2; //front idx[3] = 3; idx[4] = 2; idx[5] = 0; idx[6] = 4; idx[7] = 5; idx[8] = 1; //top idx[9] = 0; idx[10] = 1; idx[11] = 5; idx[12] = 5; idx[13] = 4; idx[14] = 6; //back idx[15] = 7; idx[16] = 6; idx[17] = 4; idx[18] = 6; idx[19] = 7; idx[20] = 3; //bottom idx[21] = 2; idx[22] = 3; idx[23] = 7; idx[24] = 0; idx[25] = 5; idx[26] = 3; //left idx[27] = 6; idx[28] = 3; idx[29] = 5; idx[30] = 4; idx[31] = 1; idx[32] = 7; //right idx[33] = 2; idx[34] = 7; idx[35] = 1; LLVector3 vert[8]; LLVector3 r = LLVector3(1,1,1); vert[0] = r.scaledVec(LLVector3(-1,1,1)); // 0 - left top front vert[1] = r.scaledVec(LLVector3(1,1,1)); // 1 - right top front vert[2] = r.scaledVec(LLVector3(1,-1,1)); // 2 - right bottom front vert[3] = r.scaledVec(LLVector3(-1,-1,1)); // 3 - left bottom front vert[4] = r.scaledVec(LLVector3(1,1,-1)); // 4 - left top back vert[5] = r.scaledVec(LLVector3(-1,1,-1)); // 5 - right top back vert[6] = r.scaledVec(LLVector3(-1,-1,-1)); // 6 - right bottom back vert[7] = r.scaledVec(LLVector3(1,-1,-1)); // 7 -left bottom back glEnableClientState(GL_TEXTURE_COORD_ARRAY); glTexCoordPointer(3, GL_FLOAT, 0, vert); glVertexPointer(3, GL_FLOAT, 0, vert); glDrawElements(GL_TRIANGLES, 36, GL_UNSIGNED_SHORT, (GLushort*) idx); glDisableClientState(GL_TEXTURE_COORD_ARRAY); } void validate_framebuffer_object() { GLenum status; status = glCheckFramebufferStatusEXT(GL_FRAMEBUFFER_EXT); switch(status) { case GL_FRAMEBUFFER_COMPLETE_EXT: //framebuffer OK, no error. break; case GL_FRAMEBUFFER_INCOMPLETE_DIMENSIONS_EXT: // frame buffer not OK: probably means unsupported depth buffer format llerrs << "Framebuffer Incomplete Dimensions." << llendl; break; case GL_FRAMEBUFFER_INCOMPLETE_ATTACHMENT_EXT: // frame buffer not OK: probably means unsupported depth buffer format llerrs << "Framebuffer Incomplete Attachment." << llendl; break; case GL_FRAMEBUFFER_UNSUPPORTED_EXT: /* choose different formats */ llerrs << "Framebuffer unsupported." << llendl; break; default: llerrs << "Unknown framebuffer status." << llendl; break; } } void LLPipeline::blurReflectionMap(LLCubeMap* cube_in, LLCubeMap* cube_out) { LLGLState::checkStates(); LLGLState::checkTextureChannels(); LLGLState::checkClientArrays(); assertInitialized(); U32 res = (U32) gSavedSettings.getS32("RenderReflectionRes"); enableLightsFullbright(LLColor4::white); LLGLDepthTest depth(GL_FALSE); gGL.setColorMask(true, true); glMatrixMode(GL_PROJECTION); glPushMatrix(); glLoadIdentity(); gluPerspective(90.f+45.f/res, 1.f, 0.1f, 1024.f); glMatrixMode(GL_MODELVIEW); glPushMatrix(); cube_out->enableTexture(0); cube_out->bind(); GLint width; glGetTexLevelParameteriv(GL_TEXTURE_CUBE_MAP_POSITIVE_X_ARB, 0, GL_TEXTURE_WIDTH, &width); if (width != res) { cube_out->setReflection(); for (U32 i = 0; i < 6; i++) { glTexImage2D(gl_cube_face[i], 0, GL_RGBA, res, res, 0, GL_RGBA, GL_FLOAT, NULL); } } glBindTexture(GL_TEXTURE_CUBE_MAP_ARB, 0); glViewport(0, 0, res, res); LLGLEnable blend(GL_BLEND); S32 kernel = 2; F32 step = 90.f/res; F32 alpha = 1.f / ((kernel*2)+1); gGL.color4f(alpha,alpha,alpha,alpha*1.25f); LLVector3 axis[] = { LLVector3(1,0,0), LLVector3(0,1,0), LLVector3(0,0,1) }; stop_glerror(); glViewport(0,0,res, res); gGL.setSceneBlendType(LLRender::BT_ADD); cube_in->enableTexture(0); //3-axis blur for (U32 j = 0; j < 3; j++) { stop_glerror(); if (j == 0) { cube_in->bind(); } else { glBindTexture(GL_TEXTURE_CUBE_MAP_ARB, mBlurCubeTexture[j-1]); } stop_glerror(); LLViewerImage::unbindTexture(0, GL_TEXTURE_2D); glBindFramebufferEXT(GL_FRAMEBUFFER_EXT, mBlurCubeBuffer[j]); stop_glerror(); for (U32 i = 0; i < 6; i++) { stop_glerror(); glFramebufferTexture2DEXT(GL_FRAMEBUFFER_EXT, GL_COLOR_ATTACHMENT0_EXT, gl_cube_face[i], j < 2 ? mBlurCubeTexture[j] : cube_out->getGLName(), 0); validate_framebuffer_object(); gGL.setColorMask(true, true); glClear(GL_COLOR_BUFFER_BIT); glLoadIdentity(); apply_cube_face_rotation(i); for (S32 x = -kernel; x <= kernel; ++x) { glPushMatrix(); glRotatef(x*step, axis[j].mV[0], axis[j].mV[1], axis[j].mV[2]); render_cube_map(); glPopMatrix(); } stop_glerror(); } } stop_glerror(); glBindTexture(GL_TEXTURE_CUBE_MAP_ARB, 0); glBindFramebufferEXT(GL_FRAMEBUFFER_EXT, 0); gGL.setColorMask(true, false); glMatrixMode(GL_PROJECTION); glPopMatrix(); glMatrixMode(GL_MODELVIEW); glPopMatrix(); cube_in->disableTexture(); gViewerWindow->setupViewport(); gGL.setSceneBlendType(LLRender::BT_ALPHA); LLGLState::checkStates(); LLGLState::checkTextureChannels(); LLGLState::checkClientArrays(); } void LLPipeline::bindScreenToTexture() { } void LLPipeline::renderBloom(BOOL for_snapshot) { if (!(gPipeline.canUseVertexShaders() && sRenderGlow)) { return; } LLVertexBuffer::unbind(); LLGLState::checkStates(); LLGLState::checkTextureChannels(); assertInitialized(); if (gUseWireframe) { glPolygonMode(GL_FRONT_AND_BACK, GL_FILL); } U32 res_mod = gSavedSettings.getU32("RenderResolutionDivisor"); LLVector2 tc1(0,0); LLVector2 tc2((F32) gViewerWindow->getWindowDisplayWidth(), (F32) gViewerWindow->getWindowDisplayHeight()); if (res_mod > 1) { tc2 /= (F32) res_mod; } gGL.setColorMask(true, true); LLFastTimer ftm(LLFastTimer::FTM_RENDER_BLOOM); gGL.color4f(1,1,1,1); LLGLDepthTest depth(GL_FALSE); LLGLDisable blend(GL_BLEND); LLGLDisable cull(GL_CULL_FACE); enableLightsFullbright(LLColor4(1,1,1,1)); glMatrixMode(GL_PROJECTION); glPushMatrix(); glLoadIdentity(); glMatrixMode(GL_MODELVIEW); glPushMatrix(); glLoadIdentity(); LLGLDisable test(GL_ALPHA_TEST); gGL.setColorMask(true, true); glClearColor(0,0,0,0); if (for_snapshot) { mGlow[1].bindTexture(); { //LLGLEnable stencil(GL_STENCIL_TEST); //glStencilFunc(GL_NOTEQUAL, 255, 0xFFFFFFFF); //glStencilOp(GL_KEEP, GL_KEEP, GL_KEEP); //LLGLDisable blend(GL_BLEND); LLGLEnable blend(GL_BLEND); gGL.setSceneBlendType(LLRender::BT_ADD); tc2.setVec(1,1); gGL.begin(LLVertexBuffer::TRIANGLE_STRIP); gGL.color4f(1,1,1,1); gGL.texCoord2f(tc1.mV[0], tc1.mV[1]); gGL.vertex2f(-1,-1); gGL.texCoord2f(tc1.mV[0], tc2.mV[1]); gGL.vertex2f(-1,1); gGL.texCoord2f(tc2.mV[0], tc1.mV[1]); gGL.vertex2f(1,-1); gGL.texCoord2f(tc2.mV[0], tc2.mV[1]); gGL.vertex2f(1,1); gGL.end(); gGL.flush(); gGL.setSceneBlendType(LLRender::BT_ALPHA); } gGL.flush(); glMatrixMode(GL_PROJECTION); glPopMatrix(); glMatrixMode(GL_MODELVIEW); glPopMatrix(); return; } { { LLFastTimer ftm(LLFastTimer::FTM_RENDER_BLOOM_FBO); mGlow[2].bindTarget(); mGlow[2].clear(); } gGlowExtractProgram.bind(); F32 minLum = llclamp(gSavedSettings.getF32("RenderGlowMinLuminance"), 0.0f, 1.0f); F32 maxAlpha = gSavedSettings.getF32("RenderGlowMaxExtractAlpha"); F32 warmthAmount = gSavedSettings.getF32("RenderGlowWarmthAmount"); LLVector3 lumWeights = gSavedSettings.getVector3("RenderGlowLumWeights"); LLVector3 warmthWeights = gSavedSettings.getVector3("RenderGlowWarmthWeights"); gGlowExtractProgram.uniform1f("minLuminance", minLum); gGlowExtractProgram.uniform1f("maxExtractAlpha", maxAlpha); gGlowExtractProgram.uniform3f("lumWeights", lumWeights.mV[0], lumWeights.mV[1], lumWeights.mV[2]); gGlowExtractProgram.uniform3f("warmthWeights", warmthWeights.mV[0], warmthWeights.mV[1], warmthWeights.mV[2]); gGlowExtractProgram.uniform1f("warmthAmount", warmthAmount); LLGLEnable blend_on(GL_BLEND); LLGLEnable test(GL_ALPHA_TEST); gGL.setAlphaRejectSettings(LLRender::CF_DEFAULT); gGL.setSceneBlendType(LLRender::BT_ADD_WITH_ALPHA); LLViewerImage::unbindTexture(0, GL_TEXTURE_2D); glDisable(GL_TEXTURE_2D); glEnable(GL_TEXTURE_RECTANGLE_ARB); mScreen.bindTexture(); gGL.color4f(1,1,1,1); gPipeline.enableLightsFullbright(LLColor4(1,1,1,1)); gGL.begin(LLVertexBuffer::TRIANGLE_STRIP); gGL.texCoord2f(tc1.mV[0], tc1.mV[1]); gGL.vertex2f(-1,-1); gGL.texCoord2f(tc1.mV[0], tc2.mV[1]); gGL.vertex2f(-1,1); gGL.texCoord2f(tc2.mV[0], tc1.mV[1]); gGL.vertex2f(1,-1); gGL.texCoord2f(tc2.mV[0], tc2.mV[1]); gGL.vertex2f(1,1); gGL.end(); glEnable(GL_TEXTURE_2D); glDisable(GL_TEXTURE_RECTANGLE_ARB); mGlow[2].flush(); } tc1.setVec(0,0); tc2.setVec(1,1); // power of two between 1 and 1024 U32 glowResPow = gSavedSettings.getS32("RenderGlowResolutionPow"); const U32 glow_res = llmax(1, llmin(1024, 1 << glowResPow)); S32 kernel = gSavedSettings.getS32("RenderGlowIterations")*2; F32 delta = gSavedSettings.getF32("RenderGlowWidth") / glow_res; // Use half the glow width if we have the res set to less than 9 so that it looks // almost the same in either case. if (glowResPow < 9) { delta *= 0.5f; } F32 strength = gSavedSettings.getF32("RenderGlowStrength"); gGlowProgram.bind(); gGlowProgram.uniform1f("glowStrength", strength); for (S32 i = 0; i < kernel; i++) { LLViewerImage::unbindTexture(0, GL_TEXTURE_2D); { LLFastTimer ftm(LLFastTimer::FTM_RENDER_BLOOM_FBO); mGlow[i%2].bindTarget(); mGlow[i%2].clear(); } if (i == 0) { mGlow[2].bindTexture(); } else { mGlow[(i-1)%2].bindTexture(); } if (i%2 == 0) { gGlowProgram.uniform2f("glowDelta", delta, 0); } else { gGlowProgram.uniform2f("glowDelta", 0, delta); } gGL.begin(LLVertexBuffer::TRIANGLE_STRIP); gGL.texCoord2f(tc1.mV[0], tc1.mV[1]); gGL.vertex2f(-1,-1); gGL.texCoord2f(tc1.mV[0], tc2.mV[1]); gGL.vertex2f(-1,1); gGL.texCoord2f(tc2.mV[0], tc1.mV[1]); gGL.vertex2f(1,-1); gGL.texCoord2f(tc2.mV[0], tc2.mV[1]); gGL.vertex2f(1,1); gGL.end(); mGlow[i%2].flush(); } gGlowProgram.unbind(); if (LLRenderTarget::sUseFBO) { LLFastTimer ftm(LLFastTimer::FTM_RENDER_BLOOM_FBO); glBindFramebufferEXT(GL_FRAMEBUFFER_EXT, 0); } gViewerWindow->setupViewport(); /*mGlow[1].bindTexture(); { LLGLEnable stencil(GL_STENCIL_TEST); glStencilFunc(GL_NOTEQUAL, 255, 0xFFFFFFFF); glStencilOp(GL_KEEP, GL_KEEP, GL_KEEP); LLGLDisable blend(GL_BLEND); gGL.begin(LLVertexBuffer::TRIANGLE_STRIP); gGL.color4f(1,1,1,1); gGL.texCoord2f(tc1.mV[0], tc1.mV[1]); gGL.vertex2f(-1,-1); gGL.texCoord2f(tc1.mV[0], tc2.mV[1]); gGL.vertex2f(-1,1); gGL.texCoord2f(tc2.mV[0], tc1.mV[1]); gGL.vertex2f(1,-1); gGL.texCoord2f(tc2.mV[0], tc2.mV[1]); gGL.vertex2f(1,1); gGL.end(); gGL.flush(); } if (!gPipeline.hasRenderDebugMask(LLPipeline::RENDER_DEBUG_GLOW)) { tc2.setVec((F32) gViewerWindow->getWindowDisplayWidth(), (F32) gViewerWindow->getWindowDisplayHeight()); if (res_mod > 1) { tc2 /= (F32) res_mod; } LLGLEnable blend(GL_BLEND); gGL.blendFunc(GL_ONE, GL_ONE); glDisable(GL_TEXTURE_2D); glEnable(GL_TEXTURE_RECTANGLE_ARB); mScreen.bindTexture(); gGL.begin(LLVertexBuffer::TRIANGLE_STRIP); gGL.color4f(1,1,1,1); gGL.texCoord2f(tc1.mV[0], tc1.mV[1]); gGL.vertex2f(-1,-1); gGL.texCoord2f(tc1.mV[0], tc2.mV[1]); gGL.vertex2f(-1,1); gGL.texCoord2f(tc2.mV[0], tc1.mV[1]); gGL.vertex2f(1,-1); gGL.texCoord2f(tc2.mV[0], tc2.mV[1]); gGL.vertex2f(1,1); gGL.end(); gGL.flush(); glEnable(GL_TEXTURE_2D); glDisable(GL_TEXTURE_RECTANGLE_ARB); gGL.blendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); }*/ gGL.flush(); { LLVertexBuffer::unbind(); F32 uv0[] = { tc1.mV[0], tc1.mV[1], tc1.mV[0], tc2.mV[1], tc2.mV[0], tc1.mV[1], tc2.mV[0], tc2.mV[1] }; tc2.setVec((F32) gViewerWindow->getWindowDisplayWidth(), (F32) gViewerWindow->getWindowDisplayHeight()); if (res_mod > 1) { tc2 /= (F32) res_mod; } F32 uv1[] = { tc1.mV[0], tc1.mV[1], tc1.mV[0], tc2.mV[1], tc2.mV[0], tc1.mV[1], tc2.mV[0], tc2.mV[1] }; F32 v[] = { -1,-1, -1,1, 1,-1, 1,1 }; LLGLDisable blend(GL_BLEND); //tex unit 0 gGL.getTexUnit(0)->setTextureColorBlend(LLTexUnit::TBO_REPLACE, LLTexUnit::TBS_TEX_COLOR); mGlow[1].bindTexture(); glEnableClientState(GL_TEXTURE_COORD_ARRAY); glTexCoordPointer(2, GL_FLOAT, 0, uv0); gGL.getTexUnit(1)->activate(); glEnable(GL_TEXTURE_RECTANGLE_ARB); //tex unit 1 gGL.getTexUnit(1)->setTextureColorBlend(LLTexUnit::TBO_ADD, LLTexUnit::TBS_TEX_COLOR, LLTexUnit::TBS_PREV_COLOR); glClientActiveTextureARB(GL_TEXTURE1_ARB); glEnableClientState(GL_TEXTURE_COORD_ARRAY); glTexCoordPointer(2, GL_FLOAT, 0, uv1); glVertexPointer(2, GL_FLOAT, 0, v); mScreen.bindTexture(); LLGLEnable multisample(GL_MULTISAMPLE_ARB); glDrawArrays(GL_TRIANGLE_STRIP, 0, 4); glDisable(GL_TEXTURE_RECTANGLE_ARB); glDisableClientState(GL_TEXTURE_COORD_ARRAY); gGL.getTexUnit(1)->setTextureBlendType(LLTexUnit::TB_MULT); glClientActiveTextureARB(GL_TEXTURE0_ARB); gGL.getTexUnit(0)->activate(); glDisableClientState(GL_TEXTURE_COORD_ARRAY); gGL.getTexUnit(0)->setTextureBlendType(LLTexUnit::TB_MULT); } gGL.setSceneBlendType(LLRender::BT_ALPHA); glMatrixMode(GL_PROJECTION); glPopMatrix(); glMatrixMode(GL_MODELVIEW); glPopMatrix(); LLVertexBuffer::unbind(); LLGLState::checkStates(); LLGLState::checkTextureChannels(); } inline float sgn(float a) { if (a > 0.0F) return (1.0F); if (a < 0.0F) return (-1.0F); return (0.0F); } void LLPipeline::generateWaterReflection(LLCamera& camera_in) { if (LLPipeline::sWaterReflections && assertInitialized() && LLDrawPoolWater::sNeedsReflectionUpdate) { LLVertexBuffer::unbind(); LLGLState::checkStates(); LLGLState::checkTextureChannels(); LLGLState::checkClientArrays(); LLCamera camera = camera_in; camera.setFar(camera.getFar()*0.87654321f); LLPipeline::sReflectionRender = TRUE; S32 occlusion = LLPipeline::sUseOcclusion; LLPipeline::sUseOcclusion = llmin(occlusion, 1); U32 type_mask = gPipeline.mRenderTypeMask; glh::matrix4f projection = glh_get_current_projection(); glh::matrix4f mat; stop_glerror(); LLPlane plane; F32 height = gAgent.getRegion()->getWaterHeight(); F32 to_clip = fabsf(camera.getOrigin().mV[2]-height); F32 pad = -to_clip*0.05f; //amount to "pad" clip plane by //plane params LLVector3 pnorm; F32 pd; S32 water_clip = 0; if (!LLViewerCamera::getInstance()->cameraUnderWater()) { //camera is above water, clip plane points up pnorm.setVec(0,0,1); pd = -height; plane.setVec(pnorm, pd); water_clip = -1; } else { //camera is below water, clip plane points down pnorm = LLVector3(0,0,-1); pd = height; plane.setVec(pnorm, pd); water_clip = 1; } if (!LLViewerCamera::getInstance()->cameraUnderWater()) { //generate planar reflection map LLViewerImage::unbindTexture(0, GL_TEXTURE_2D); glClearColor(0,0,0,0); gGL.setColorMask(true, true); mWaterRef.bindTarget(); mWaterRef.getViewport(gGLViewport); mWaterRef.clear(); gGL.setColorMask(true, false); stop_glerror(); LLVector3 origin = camera.getOrigin(); glPushMatrix(); mat.set_scale(glh::vec3f(1,1,-1)); mat.set_translate(glh::vec3f(0,0,height*2.f)); glh::matrix4f current = glh_get_current_modelview(); mat = current * mat; glh_set_current_modelview(mat); glLoadMatrixf(mat.m); LLViewerCamera::updateFrustumPlanes(camera, FALSE, TRUE); glCullFace(GL_FRONT); //initial sky pass (no user clip plane) { //mask out everything but the sky U32 tmp = mRenderTypeMask; mRenderTypeMask &= ((1 << LLPipeline::RENDER_TYPE_SKY) | (1 << LLPipeline::RENDER_TYPE_CLOUDS) | (1 << LLPipeline::RENDER_TYPE_WL_SKY)); static LLCullResult result; updateCull(camera, result); stateSort(camera, result); renderGeom(camera, TRUE); mRenderTypeMask = tmp; } if (LLDrawPoolWater::sNeedsDistortionUpdate) { mRenderTypeMask &= ~((1<cameraUnderWater() ? FALSE : TRUE; if (LLPipeline::sUnderWaterRender) { mRenderTypeMask &= ~((1<setupViewport(); mRenderTypeMask = type_mask; LLDrawPoolWater::sNeedsReflectionUpdate = FALSE; LLDrawPoolWater::sNeedsDistortionUpdate = FALSE; LLViewerCamera::getInstance()->setUserClipPlane(LLPlane(-pnorm, -pd)); LLPipeline::sUseOcclusion = occlusion; LLGLState::checkStates(); LLGLState::checkTextureChannels(); LLGLState::checkClientArrays(); } } void LLPipeline::renderGroups(LLRenderPass* pass, U32 type, U32 mask, BOOL texture) { for (LLCullResult::sg_list_t::iterator i = sCull->beginVisibleGroups(); i != sCull->endVisibleGroups(); ++i) { LLSpatialGroup* group = *i; if (!group->isDead() && (!sUseOcclusion || !group->isState(LLSpatialGroup::OCCLUDED)) && gPipeline.hasRenderType(group->mSpatialPartition->mDrawableType) && group->mDrawMap.find(type) != group->mDrawMap.end()) { pass->renderGroup(group,type,mask,texture); } } } void LLPipeline::generateImpostor(LLVOAvatar* avatar) { static LLCullResult result; result.clear(); grabReferences(result); if (!avatar || !avatar->mDrawable) { return; } assertInitialized(); U32 mask; BOOL muted = LLMuteList::getInstance()->isMuted(avatar->getID()); if (muted) { mask = 1 << LLPipeline::RENDER_TYPE_AVATAR; } else { mask = (1<mDrawable, *LLViewerCamera::getInstance()); LLVOAvatar::sUseImpostors = FALSE; LLVOAvatar::attachment_map_t::iterator iter; for (iter = avatar->mAttachmentPoints.begin(); iter != avatar->mAttachmentPoints.end(); ++iter) { LLViewerObject* object = iter->second->getObject(); if (object) { markVisible(object->mDrawable->getSpatialBridge(), *LLViewerCamera::getInstance()); } } stateSort(*LLViewerCamera::getInstance(), result); const LLVector3* ext = avatar->mDrawable->getSpatialExtents(); LLVector3 pos(avatar->getRenderPosition()+avatar->getImpostorOffset()); LLCamera camera = *LLViewerCamera::getInstance(); camera.lookAt(LLViewerCamera::getInstance()->getOrigin(), pos, LLViewerCamera::getInstance()->getUpAxis()); LLVector2 tdim; LLVector3 half_height = (ext[1]-ext[0])*0.5f; LLVector3 left = camera.getLeftAxis(); left *= left; left.normVec(); LLVector3 up = camera.getUpAxis(); up *= up; up.normVec(); tdim.mV[0] = fabsf(half_height * left); tdim.mV[1] = fabsf(half_height * up); glMatrixMode(GL_PROJECTION); glPushMatrix(); //glh::matrix4f ortho = gl_ortho(-tdim.mV[0], tdim.mV[0], -tdim.mV[1], tdim.mV[1], 1.0, 256.0); F32 distance = (pos-camera.getOrigin()).length(); F32 fov = atanf(tdim.mV[1]/distance)*2.f*RAD_TO_DEG; F32 aspect = tdim.mV[0]/tdim.mV[1]; //128.f/256.f; glh::matrix4f persp = gl_perspective(fov, aspect, 1.f, 256.f); glh_set_current_projection(persp); glLoadMatrixf(persp.m); glMatrixMode(GL_MODELVIEW); glPushMatrix(); glh::matrix4f mat; camera.getOpenGLTransform(mat.m); mat = glh::matrix4f((GLfloat*) OGL_TO_CFR_ROTATION) * mat; glLoadMatrixf(mat.m); glh_set_current_modelview(mat); glClearColor(0.0f,0.0f,0.0f,0.0f); gGL.setColorMask(true, true); glStencilMask(0xFFFFFFFF); glClearStencil(0); // get the number of pixels per angle F32 pa = gViewerWindow->getWindowDisplayHeight() / (RAD_TO_DEG * LLViewerCamera::getInstance()->getView()); //get resolution based on angle width and height of impostor (double desired resolution to prevent aliasing) U32 resY = llmin(nhpo2((U32) (fov*pa)), (U32) 512); U32 resX = llmin(nhpo2((U32) (atanf(tdim.mV[0]/distance)*2.f*RAD_TO_DEG*pa)), (U32) 512); if (!avatar->mImpostor.isComplete() || resX != avatar->mImpostor.getWidth() || resY != avatar->mImpostor.getHeight()) { avatar->mImpostor.allocate(resX,resY,GL_RGBA,TRUE); avatar->mImpostor.bindTexture(); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST); LLImageGL::unbindTexture(0, GL_TEXTURE_2D); } { LLGLEnable scissor(GL_SCISSOR_TEST); glScissor(0, 0, resX, resY); avatar->mImpostor.bindTarget(); avatar->mImpostor.getViewport(gGLViewport); glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT | GL_STENCIL_BUFFER_BIT); } LLGLEnable stencil(GL_STENCIL_TEST); glStencilFunc(GL_ALWAYS, 1, 0xFFFFFFFF); glStencilOp(GL_KEEP, GL_KEEP, GL_REPLACE); renderGeom(camera); glStencilOp(GL_KEEP, GL_KEEP, GL_KEEP); glStencilFunc(GL_EQUAL, 1, 0xFFFFFF); { LLVector3 left = camera.getLeftAxis()*tdim.mV[0]*2.f; LLVector3 up = camera.getUpAxis()*tdim.mV[1]*2.f; LLGLEnable blend(muted ? 0 : GL_BLEND); if (muted) { gGL.setColorMask(true, true); } else { gGL.setColorMask(false, true); } gGL.setSceneBlendType(LLRender::BT_ADD); LLImageGL::unbindTexture(0, GL_TEXTURE_2D); LLGLDepthTest depth(GL_FALSE, GL_FALSE); gGL.color4f(1,1,1,1); gGL.color4ub(64,64,64,255); gGL.begin(LLVertexBuffer::QUADS); gGL.vertex3fv((pos+left-up).mV); gGL.vertex3fv((pos-left-up).mV); gGL.vertex3fv((pos-left+up).mV); gGL.vertex3fv((pos+left+up).mV); gGL.end(); gGL.flush(); gGL.setSceneBlendType(LLRender::BT_ALPHA); } avatar->mImpostor.flush(); avatar->setImpostorDim(tdim); LLVOAvatar::sUseImpostors = TRUE; sUseOcclusion = occlusion; sReflectionRender = FALSE; sImpostorRender = FALSE; gPipeline.mRenderTypeMask = saved_mask; glMatrixMode(GL_PROJECTION); glPopMatrix(); glMatrixMode(GL_MODELVIEW); glPopMatrix(); avatar->mNeedsImpostorUpdate = FALSE; avatar->cacheImpostorValues(); } BOOL LLPipeline::hasRenderBatches(const U32 type) const { return sCull->getRenderMapSize(type) > 0; } LLCullResult::drawinfo_list_t::iterator LLPipeline::beginRenderMap(U32 type) { return sCull->beginRenderMap(type); } LLCullResult::drawinfo_list_t::iterator LLPipeline::endRenderMap(U32 type) { return sCull->endRenderMap(type); } LLCullResult::sg_list_t::iterator LLPipeline::beginAlphaGroups() { return sCull->beginAlphaGroups(); } LLCullResult::sg_list_t::iterator LLPipeline::endAlphaGroups() { return sCull->endAlphaGroups(); }