/** * @file llvotree.cpp * @brief LLVOTree class implementation * * $LicenseInfo:firstyear=2002&license=viewergpl$ * * Copyright (c) 2002-2009, Linden Research, Inc. * * Second Life Viewer Source Code * The source code in this file ("Source Code") is provided by Linden Lab * to you under the terms of the GNU General Public License, version 2.0 * ("GPL"), unless you have obtained a separate licensing agreement * ("Other License"), formally executed by you and Linden Lab. Terms of * the GPL can be found in doc/GPL-license.txt in this distribution, or * online at http://secondlifegrid.net/programs/open_source/licensing/gplv2 * * There are special exceptions to the terms and conditions of the GPL as * it is applied to this Source Code. View the full text of the exception * in the file doc/FLOSS-exception.txt in this software distribution, or * online at * http://secondlifegrid.net/programs/open_source/licensing/flossexception * * By copying, modifying or distributing this software, you acknowledge * that you have read and understood your obligations described above, * and agree to abide by those obligations. * * ALL LINDEN LAB SOURCE CODE IS PROVIDED "AS IS." LINDEN LAB MAKES NO * WARRANTIES, EXPRESS, IMPLIED OR OTHERWISE, REGARDING ITS ACCURACY, * COMPLETENESS OR PERFORMANCE. * $/LicenseInfo$ */ #include "llviewerprecompiledheaders.h" #include "llvotree.h" #include "lldrawpooltree.h" #include "llviewercontrol.h" #include "lldir.h" #include "llprimitive.h" #include "lltree_common.h" #include "llxmltree.h" #include "material_codes.h" #include "object_flags.h" #include "llagent.h" #include "lldrawable.h" #include "llface.h" #include "llviewercamera.h" #include "llviewerimagelist.h" #include "llviewerobjectlist.h" #include "llviewerregion.h" #include "llworld.h" #include "noise.h" #include "pipeline.h" #include "llspatialpartition.h" #include "llviewerwindow.h" extern LLPipeline gPipeline; const S32 MAX_SLICES = 32; const F32 LEAF_LEFT = 0.52f; const F32 LEAF_RIGHT = 0.98f; const F32 LEAF_TOP = 1.0f; const F32 LEAF_BOTTOM = 0.52f; const F32 LEAF_WIDTH = 1.f; S32 LLVOTree::sLODVertexOffset[4]; S32 LLVOTree::sLODVertexCount[4]; S32 LLVOTree::sLODIndexOffset[4]; S32 LLVOTree::sLODIndexCount[4]; S32 LLVOTree::sLODSlices[4] = {10, 5, 4, 3}; F32 LLVOTree::sLODAngles[4] = {30.f, 20.f, 15.f, 0.f}; F32 LLVOTree::sTreeFactor = 1.f; LLVOTree::SpeciesMap LLVOTree::sSpeciesTable; S32 LLVOTree::sMaxTreeSpecies = 0; LLVOTree::SpeciesNames LLVOTree::sSpeciesNames; // Tree variables and functions LLVOTree::LLVOTree(const LLUUID &id, const LLPCode pcode, LLViewerRegion *regionp): LLViewerObject(id, pcode, regionp) { mSpecies = 0; mFrameCount = 0; mWind = mRegionp->mWind.getVelocity(getPositionRegion()); mTrunkLOD = 0; } LLVOTree::~LLVOTree() { if (mData) { delete[] mData; mData = NULL; } } // static void LLVOTree::initClass() { std::string xml_filename = gDirUtilp->getExpandedFilename(LL_PATH_APP_SETTINGS,"trees.xml"); LLXmlTree tree_def_tree; if (!tree_def_tree.parseFile(xml_filename)) { llerrs << "Failed to parse tree file." << llendl; } LLXmlTreeNode* rootp = tree_def_tree.getRoot(); for (LLXmlTreeNode* tree_def = rootp->getFirstChild(); tree_def; tree_def = rootp->getNextChild()) { if (!tree_def->hasName("tree")) { llwarns << "Invalid tree definition node " << tree_def->getName() << llendl; continue; } F32 F32_val; LLUUID id; S32 S32_val; BOOL success = TRUE; S32 species; static LLStdStringHandle species_id_string = LLXmlTree::addAttributeString("species_id"); if (!tree_def->getFastAttributeS32(species_id_string, species)) { llwarns << "No species id defined" << llendl; continue; } if (species < 0) { llwarns << "Invalid species id " << species << llendl; continue; } if (sSpeciesTable.count(species)) { llwarns << "Tree species " << species << " already defined! Duplicate discarded." << llendl; continue; } TreeSpeciesData* newTree = new TreeSpeciesData(); static LLStdStringHandle texture_id_string = LLXmlTree::addAttributeString("texture_id"); success &= tree_def->getFastAttributeUUID(texture_id_string, id); newTree->mTextureID = id; std::string texname; static LLStdStringHandle texture_name = LLXmlTree::addAttributeString("texture_name"); success &= tree_def->getFastAttributeString(texture_name, texname); newTree->mTextureName = texname; static LLStdStringHandle droop_string = LLXmlTree::addAttributeString("droop"); success &= tree_def->getFastAttributeF32(droop_string, F32_val); newTree->mDroop = F32_val; static LLStdStringHandle twist_string = LLXmlTree::addAttributeString("twist"); success &= tree_def->getFastAttributeF32(twist_string, F32_val); newTree->mTwist = F32_val; static LLStdStringHandle branches_string = LLXmlTree::addAttributeString("branches"); success &= tree_def->getFastAttributeF32(branches_string, F32_val); newTree->mBranches = F32_val; static LLStdStringHandle depth_string = LLXmlTree::addAttributeString("depth"); success &= tree_def->getFastAttributeS32(depth_string, S32_val); newTree->mDepth = S32_val; static LLStdStringHandle scale_step_string = LLXmlTree::addAttributeString("scale_step"); success &= tree_def->getFastAttributeF32(scale_step_string, F32_val); newTree->mScaleStep = F32_val; static LLStdStringHandle trunk_depth_string = LLXmlTree::addAttributeString("trunk_depth"); success &= tree_def->getFastAttributeS32(trunk_depth_string, S32_val); newTree->mTrunkDepth = S32_val; static LLStdStringHandle branch_length_string = LLXmlTree::addAttributeString("branch_length"); success &= tree_def->getFastAttributeF32(branch_length_string, F32_val); newTree->mBranchLength = F32_val; static LLStdStringHandle trunk_length_string = LLXmlTree::addAttributeString("trunk_length"); success &= tree_def->getFastAttributeF32(trunk_length_string, F32_val); newTree->mTrunkLength = F32_val; static LLStdStringHandle leaf_scale_string = LLXmlTree::addAttributeString("leaf_scale"); success &= tree_def->getFastAttributeF32(leaf_scale_string, F32_val); newTree->mLeafScale = F32_val; static LLStdStringHandle billboard_scale_string = LLXmlTree::addAttributeString("billboard_scale"); success &= tree_def->getFastAttributeF32(billboard_scale_string, F32_val); newTree->mBillboardScale = F32_val; static LLStdStringHandle billboard_ratio_string = LLXmlTree::addAttributeString("billboard_ratio"); success &= tree_def->getFastAttributeF32(billboard_ratio_string, F32_val); newTree->mBillboardRatio = F32_val; static LLStdStringHandle trunk_aspect_string = LLXmlTree::addAttributeString("trunk_aspect"); success &= tree_def->getFastAttributeF32(trunk_aspect_string, F32_val); newTree->mTrunkAspect = F32_val; static LLStdStringHandle branch_aspect_string = LLXmlTree::addAttributeString("branch_aspect"); success &= tree_def->getFastAttributeF32(branch_aspect_string, F32_val); newTree->mBranchAspect = F32_val; static LLStdStringHandle leaf_rotate_string = LLXmlTree::addAttributeString("leaf_rotate"); success &= tree_def->getFastAttributeF32(leaf_rotate_string, F32_val); newTree->mRandomLeafRotate = F32_val; static LLStdStringHandle noise_mag_string = LLXmlTree::addAttributeString("noise_mag"); success &= tree_def->getFastAttributeF32(noise_mag_string, F32_val); newTree->mNoiseMag = F32_val; static LLStdStringHandle noise_scale_string = LLXmlTree::addAttributeString("noise_scale"); success &= tree_def->getFastAttributeF32(noise_scale_string, F32_val); newTree->mNoiseScale = F32_val; static LLStdStringHandle taper_string = LLXmlTree::addAttributeString("taper"); success &= tree_def->getFastAttributeF32(taper_string, F32_val); newTree->mTaper = F32_val; static LLStdStringHandle repeat_z_string = LLXmlTree::addAttributeString("repeat_z"); success &= tree_def->getFastAttributeF32(repeat_z_string, F32_val); newTree->mRepeatTrunkZ = F32_val; sSpeciesTable[species] = newTree; if (species >= sMaxTreeSpecies) sMaxTreeSpecies = species + 1; std::string name; static LLStdStringHandle name_string = LLXmlTree::addAttributeString("name"); success &= tree_def->getFastAttributeString(name_string, name); sSpeciesNames[name] = species; if (!success) { //std::string name; //static LLStdStringHandle name_string = LLXmlTree::addAttributeString("name"); //tree_def->getFastAttributeString(name_string, name); llwarns << "Incomplete definition of tree " << name << llendl; } } BOOL have_all_trees = TRUE; std::string err; for (S32 i=0;i 0.f) ||(getAcceleration().lengthSquared() > 0.f) ||(getAngularVelocity().lengthSquared() > 0.f)) { llinfos << "ACK! Moving tree!" << llendl; setVelocity(LLVector3::zero); setAcceleration(LLVector3::zero); setAngularVelocity(LLVector3::zero); } if (update_type == OUT_TERSE_IMPROVED) { // Nothing else needs to be done for the terse message. return retval; } // // Load Instance-Specific data // if (mData) { mSpecies = ((U8 *)mData)[0]; } if (!sSpeciesTable.count(mSpecies)) { if (sSpeciesTable.size()) { SpeciesMap::const_iterator it = sSpeciesTable.begin(); mSpecies = (*it).first; } } // // Load Species-Specific data // mTreeImagep = gImageList.getImageFromFile(sSpeciesTable[mSpecies]->mTextureName); if (mTreeImagep) { gGL.getTexUnit(0)->bind(mTreeImagep.get()); } mBranchLength = sSpeciesTable[mSpecies]->mBranchLength; mTrunkLength = sSpeciesTable[mSpecies]->mTrunkLength; mLeafScale = sSpeciesTable[mSpecies]->mLeafScale; mDroop = sSpeciesTable[mSpecies]->mDroop; mTwist = sSpeciesTable[mSpecies]->mTwist; mBranches = sSpeciesTable[mSpecies]->mBranches; mDepth = sSpeciesTable[mSpecies]->mDepth; mScaleStep = sSpeciesTable[mSpecies]->mScaleStep; mTrunkDepth = sSpeciesTable[mSpecies]->mTrunkDepth; mBillboardScale = sSpeciesTable[mSpecies]->mBillboardScale; mBillboardRatio = sSpeciesTable[mSpecies]->mBillboardRatio; mTrunkAspect = sSpeciesTable[mSpecies]->mTrunkAspect; mBranchAspect = sSpeciesTable[mSpecies]->mBranchAspect; // position change not caused by us, etc. make sure to rebuild. gPipeline.markRebuild(mDrawable, LLDrawable::REBUILD_ALL); return retval; } BOOL LLVOTree::idleUpdate(LLAgent &agent, LLWorld &world, const F64 &time) { const U16 FRAMES_PER_WIND_UPDATE = 20; // How many frames between wind update per tree const F32 TREE_WIND_SENSITIVITY = 0.005f; const F32 TREE_TRUNK_STIFFNESS = 0.1f; if (mDead || !(gPipeline.hasRenderType(LLPipeline::RENDER_TYPE_TREE))) { return TRUE; } if (gSavedSettings.getBOOL("RenderAnimateTrees")) { F32 mass_inv; // For all tree objects, update the trunk bending with the current wind // Walk sprite list in order away from viewer if (!(mFrameCount % FRAMES_PER_WIND_UPDATE)) { // If needed, Get latest wind for this tree mWind = mRegionp->mWind.getVelocity(getPositionRegion()); } mFrameCount++; mass_inv = 1.f/(5.f + mDepth*mBranches*0.2f); mTrunkVel += (mWind * mass_inv * TREE_WIND_SENSITIVITY); // Pull in direction of wind mTrunkVel -= (mTrunkBend * mass_inv * TREE_TRUNK_STIFFNESS); // Restoring force in direction of trunk mTrunkBend += mTrunkVel; mTrunkVel *= 0.99f; // Add damping if (mTrunkBend.length() > 1.f) { mTrunkBend.normalize(); } if (mTrunkVel.length() > 1.f) { mTrunkVel.normalize(); } } S32 trunk_LOD = 0; F32 app_angle = getAppAngle()*LLVOTree::sTreeFactor; for (S32 j = 0; j < 4; j++) { if (app_angle > LLVOTree::sLODAngles[j]) { trunk_LOD = j; break; } } if (!gSavedSettings.getBOOL("RenderAnimateTrees")) { if (mReferenceBuffer.isNull()) { gPipeline.markRebuild(mDrawable, LLDrawable::REBUILD_ALL, TRUE); } else if (trunk_LOD != mTrunkLOD) { gPipeline.markRebuild(mDrawable, LLDrawable::REBUILD_ALL, FALSE); } else { // we're not animating but we may *still* need to // regenerate the mesh if we moved, since position // and rotation are baked into the mesh. // *TODO: I don't know what's so special about trees // that they don't get REBUILD_POSITION automatically // at a higher level. const LLVector3 &this_position = getPositionAgent(); if (this_position != mLastPosition) { gPipeline.markRebuild(mDrawable, LLDrawable::REBUILD_POSITION); mLastPosition = this_position; } else { const LLQuaternion &this_rotation = getRotation(); if (this_rotation != mLastRotation) { gPipeline.markRebuild(mDrawable, LLDrawable::REBUILD_POSITION); mLastRotation = this_rotation; } } } } mTrunkLOD = trunk_LOD; return TRUE; } const F32 TREE_BLEND_MIN = 1.f; const F32 TREE_BLEND_RANGE = 1.f; void LLVOTree::render(LLAgent &agent) { } void LLVOTree::setPixelAreaAndAngle(LLAgent &agent) { // First calculate values as for any other object (for mAppAngle) LLViewerObject::setPixelAreaAndAngle(agent); // Re-calculate mPixelArea accurately // This should be the camera's center, as soon as we move to all region-local. LLVector3 relative_position = getPositionAgent() - agent.getCameraPositionAgent(); F32 range = relative_position.length(); // ugh, square root F32 max_scale = mBillboardScale * getMaxScale(); F32 area = max_scale * (max_scale*mBillboardRatio); // Compute pixels per meter at the given range F32 pixels_per_meter = LLViewerCamera::getInstance()->getViewHeightInPixels() / (tan(LLViewerCamera::getInstance()->getView()) * range); mPixelArea = (pixels_per_meter) * (pixels_per_meter) * area; #if 0 // mAppAngle is a bit of voodoo; // use the one calculated LLViewerObject::setPixelAreaAndAngle above // to avoid LOD miscalculations mAppAngle = (F32) atan2( max_scale, range) * RAD_TO_DEG; #endif } void LLVOTree::updateTextures() { if (mTreeImagep) { if (gPipeline.hasRenderDebugMask(LLPipeline::RENDER_DEBUG_TEXTURE_AREA)) { setDebugText(llformat("%4.0f", fsqrtf(mPixelArea))); } mTreeImagep->addTextureStats(mPixelArea); } } LLDrawable* LLVOTree::createDrawable(LLPipeline *pipeline) { pipeline->allocDrawable(this); mDrawable->setLit(FALSE); mDrawable->setRenderType(LLPipeline::RENDER_TYPE_TREE); LLDrawPoolTree *poolp = (LLDrawPoolTree*) gPipeline.getPool(LLDrawPool::POOL_TREE, mTreeImagep); // Just a placeholder for an actual object... LLFace *facep = mDrawable->addFace(poolp, mTreeImagep); facep->setSize(1, 3); updateRadius(); return mDrawable; } // Yes, I know this is bad. I'll clean this up soon. - djs 04/02/02 const S32 LEAF_INDICES = 24; const S32 LEAF_VERTICES = 16; BOOL LLVOTree::updateGeometry(LLDrawable *drawable) { LLFastTimer ftm(LLFastTimer::FTM_UPDATE_TREE); if (mReferenceBuffer.isNull() || mDrawable->getFace(0)->mVertexBuffer.isNull()) { const F32 SRR3 = 0.577350269f; // sqrt(1/3) const F32 SRR2 = 0.707106781f; // sqrt(1/2) U32 i, j; U32 slices = MAX_SLICES; S32 max_indices = LEAF_INDICES; S32 max_vertices = LEAF_VERTICES; S32 lod; LLFace *face = drawable->getFace(0); face->mCenterAgent = getPositionAgent(); face->mCenterLocal = face->mCenterAgent; for (lod = 0; lod < 4; lod++) { slices = sLODSlices[lod]; sLODVertexOffset[lod] = max_vertices; sLODVertexCount[lod] = slices*slices; sLODIndexOffset[lod] = max_indices; sLODIndexCount[lod] = (slices-1)*(slices-1)*6; max_indices += sLODIndexCount[lod]; max_vertices += sLODVertexCount[lod]; } mReferenceBuffer = new LLVertexBuffer(LLDrawPoolTree::VERTEX_DATA_MASK, gSavedSettings.getBOOL("RenderAnimateTrees") ? GL_STATIC_DRAW_ARB : 0); mReferenceBuffer->allocateBuffer(max_vertices, max_indices, TRUE); LLStrider vertices; LLStrider normals; LLStrider tex_coords; LLStrider indicesp; mReferenceBuffer->getVertexStrider(vertices); mReferenceBuffer->getNormalStrider(normals); mReferenceBuffer->getTexCoord0Strider(tex_coords); mReferenceBuffer->getIndexStrider(indicesp); S32 vertex_count = 0; S32 index_count = 0; // First leaf *(normals++) = LLVector3(-SRR2, -SRR2, 0.f); *(tex_coords++) = LLVector2(LEAF_LEFT, LEAF_BOTTOM); *(vertices++) = LLVector3(-0.5f*LEAF_WIDTH, 0.f, 0.f); vertex_count++; *(normals++) = LLVector3(SRR3, -SRR3, SRR3); *(tex_coords++) = LLVector2(LEAF_RIGHT, LEAF_TOP); *(vertices++) = LLVector3(0.5f*LEAF_WIDTH, 0.f, 1.f); vertex_count++; *(normals++) = LLVector3(-SRR3, -SRR3, SRR3); *(tex_coords++) = LLVector2(LEAF_LEFT, LEAF_TOP); *(vertices++) = LLVector3(-0.5f*LEAF_WIDTH, 0.f, 1.f); vertex_count++; *(normals++) = LLVector3(SRR2, -SRR2, 0.f); *(tex_coords++) = LLVector2(LEAF_RIGHT, LEAF_BOTTOM); *(vertices++) = LLVector3(0.5f*LEAF_WIDTH, 0.f, 0.f); vertex_count++; *(indicesp++) = 0; index_count++; *(indicesp++) = 1; index_count++; *(indicesp++) = 2; index_count++; *(indicesp++) = 0; index_count++; *(indicesp++) = 3; index_count++; *(indicesp++) = 1; index_count++; // Same leaf, inverse winding/normals *(normals++) = LLVector3(-SRR2, SRR2, 0.f); *(tex_coords++) = LLVector2(LEAF_LEFT, LEAF_BOTTOM); *(vertices++) = LLVector3(-0.5f*LEAF_WIDTH, 0.f, 0.f); vertex_count++; *(normals++) = LLVector3(SRR3, SRR3, SRR3); *(tex_coords++) = LLVector2(LEAF_RIGHT, LEAF_TOP); *(vertices++) = LLVector3(0.5f*LEAF_WIDTH, 0.f, 1.f); vertex_count++; *(normals++) = LLVector3(-SRR3, SRR3, SRR3); *(tex_coords++) = LLVector2(LEAF_LEFT, LEAF_TOP); *(vertices++) = LLVector3(-0.5f*LEAF_WIDTH, 0.f, 1.f); vertex_count++; *(normals++) = LLVector3(SRR2, SRR2, 0.f); *(tex_coords++) = LLVector2(LEAF_RIGHT, LEAF_BOTTOM); *(vertices++) = LLVector3(0.5f*LEAF_WIDTH, 0.f, 0.f); vertex_count++; *(indicesp++) = 4; index_count++; *(indicesp++) = 6; index_count++; *(indicesp++) = 5; index_count++; *(indicesp++) = 4; index_count++; *(indicesp++) = 5; index_count++; *(indicesp++) = 7; index_count++; // next leaf *(normals++) = LLVector3(SRR2, -SRR2, 0.f); *(tex_coords++) = LLVector2(LEAF_LEFT, LEAF_BOTTOM); *(vertices++) = LLVector3(0.f, -0.5f*LEAF_WIDTH, 0.f); vertex_count++; *(normals++) = LLVector3(SRR3, SRR3, SRR3); *(tex_coords++) = LLVector2(LEAF_RIGHT, LEAF_TOP); *(vertices++) = LLVector3(0.f, 0.5f*LEAF_WIDTH, 1.f); vertex_count++; *(normals++) = LLVector3(SRR3, -SRR3, SRR3); *(tex_coords++) = LLVector2(LEAF_LEFT, LEAF_TOP); *(vertices++) = LLVector3(0.f, -0.5f*LEAF_WIDTH, 1.f); vertex_count++; *(normals++) = LLVector3(SRR2, SRR2, 0.f); *(tex_coords++) = LLVector2(LEAF_RIGHT, LEAF_BOTTOM); *(vertices++) = LLVector3(0.f, 0.5f*LEAF_WIDTH, 0.f); vertex_count++; *(indicesp++) = 8; index_count++; *(indicesp++) = 9; index_count++; *(indicesp++) = 10; index_count++; *(indicesp++) = 8; index_count++; *(indicesp++) = 11; index_count++; *(indicesp++) = 9; index_count++; // other side of same leaf *(normals++) = LLVector3(-SRR2, -SRR2, 0.f); *(tex_coords++) = LLVector2(LEAF_LEFT, LEAF_BOTTOM); *(vertices++) = LLVector3(0.f, -0.5f*LEAF_WIDTH, 0.f); vertex_count++; *(normals++) = LLVector3(-SRR3, SRR3, SRR3); *(tex_coords++) = LLVector2(LEAF_RIGHT, LEAF_TOP); *(vertices++) = LLVector3(0.f, 0.5f*LEAF_WIDTH, 1.f); vertex_count++; *(normals++) = LLVector3(-SRR3, -SRR3, SRR3); *(tex_coords++) = LLVector2(LEAF_LEFT, LEAF_TOP); *(vertices++) = LLVector3(0.f, -0.5f*LEAF_WIDTH, 1.f); vertex_count++; *(normals++) = LLVector3(-SRR2, SRR2, 0.f); *(tex_coords++) = LLVector2(LEAF_RIGHT, LEAF_BOTTOM); *(vertices++) = LLVector3(0.f, 0.5f*LEAF_WIDTH, 0.f); vertex_count++; *(indicesp++) = 12; index_count++; *(indicesp++) = 14; index_count++; *(indicesp++) = 13; index_count++; *(indicesp++) = 12; index_count++; *(indicesp++) = 13; index_count++; *(indicesp++) = 15; index_count++; // Generate geometry for the cylinders // Different LOD's // Generate the vertices // Generate the indices for (lod = 0; lod < 4; lod++) { slices = sLODSlices[lod]; F32 base_radius = 0.65f; F32 top_radius = base_radius * sSpeciesTable[mSpecies]->mTaper; //llinfos << "Species " << ((U32) mSpecies) << ", taper = " << sSpeciesTable[mSpecies].mTaper << llendl; //llinfos << "Droop " << mDroop << ", branchlength: " << mBranchLength << llendl; F32 angle = 0; F32 angle_inc = 360.f/(slices-1); F32 z = 0.f; F32 z_inc = 1.f; if (slices > 3) { z_inc = 1.f/(slices - 3); } F32 radius = base_radius; F32 x1,y1; F32 noise_scale = sSpeciesTable[mSpecies]->mNoiseMag; LLVector3 nvec; const F32 cap_nudge = 0.1f; // Height to 'peak' the caps on top/bottom of branch const S32 fractal_depth = 5; F32 nvec_scale = 1.f * sSpeciesTable[mSpecies]->mNoiseScale; F32 nvec_scalez = 4.f * sSpeciesTable[mSpecies]->mNoiseScale; F32 tex_z_repeat = sSpeciesTable[mSpecies]->mRepeatTrunkZ; F32 start_radius; F32 nangle = 0; F32 height = 1.f; F32 r0; for (i = 0; i < slices; i++) { if (i == 0) { z = - cap_nudge; r0 = 0.0; } else if (i == (slices - 1)) { z = 1.f + cap_nudge;//((i - 2) * z_inc) + cap_nudge; r0 = 0.0; } else { z = (i - 1) * z_inc; r0 = base_radius + (top_radius - base_radius)*z; } for (j = 0; j < slices; j++) { if (slices - 1 == j) { angle = 0.f; } else { angle = j*angle_inc; } nangle = angle; x1 = cos(angle * DEG_TO_RAD); y1 = sin(angle * DEG_TO_RAD); LLVector2 tc; // This isn't totally accurate. Should compute based on slope as well. start_radius = r0 * (1.f + 1.2f*fabs(z - 0.66f*height)/height); nvec.set( cos(nangle * DEG_TO_RAD)*start_radius*nvec_scale, sin(nangle * DEG_TO_RAD)*start_radius*nvec_scale, z*nvec_scalez); // First and last slice at 0 radius (to bring in top/bottom of structure) radius = start_radius + turbulence3((F32*)&nvec.mV, (F32)fractal_depth)*noise_scale; if (slices - 1 == j) { // Not 0.5 for slight slop factor to avoid edges on leaves tc = LLVector2(0.490f, (1.f - z/2.f)*tex_z_repeat); } else { tc = LLVector2((angle/360.f)*0.5f, (1.f - z/2.f)*tex_z_repeat); } *(vertices++) = LLVector3(x1*radius, y1*radius, z); *(normals++) = LLVector3(x1, y1, 0.f); *(tex_coords++) = tc; vertex_count++; } } for (i = 0; i < (slices - 1); i++) { for (j = 0; j < (slices - 1); j++) { S32 x1_offset = j+1; if ((j+1) == slices) { x1_offset = 0; } // Generate the matching quads *(indicesp) = j + (i*slices) + sLODVertexOffset[lod]; llassert(*(indicesp) < (U32)max_vertices); indicesp++; index_count++; *(indicesp) = x1_offset + ((i+1)*slices) + sLODVertexOffset[lod]; llassert(*(indicesp) < (U32)max_vertices); indicesp++; index_count++; *(indicesp) = j + ((i+1)*slices) + sLODVertexOffset[lod]; llassert(*(indicesp) < (U32)max_vertices); indicesp++; index_count++; *(indicesp) = j + (i*slices) + sLODVertexOffset[lod]; llassert(*(indicesp) < (U32)max_vertices); indicesp++; index_count++; *(indicesp) = x1_offset + (i*slices) + sLODVertexOffset[lod]; llassert(*(indicesp) < (U32)max_vertices); indicesp++; index_count++; *(indicesp) = x1_offset + ((i+1)*slices) + sLODVertexOffset[lod]; llassert(*(indicesp) < (U32)max_vertices); indicesp++; index_count++; } } slices /= 2; } mReferenceBuffer->setBuffer(0); llassert(vertex_count == max_vertices); llassert(index_count == max_indices); } if (gSavedSettings.getBOOL("RenderAnimateTrees")) { mDrawable->getFace(0)->mVertexBuffer = mReferenceBuffer; } else { //generate tree mesh updateMesh(); } return TRUE; } void LLVOTree::updateMesh() { LLMatrix4 matrix; // Translate to tree base HACK - adjustment in Z plants tree underground const LLVector3 &pos_agent = getPositionAgent(); //glTranslatef(pos_agent.mV[VX], pos_agent.mV[VY], pos_agent.mV[VZ] - 0.1f); LLMatrix4 trans_mat; trans_mat.setTranslation(pos_agent.mV[VX], pos_agent.mV[VY], pos_agent.mV[VZ] - 0.1f); trans_mat *= matrix; // Rotate to tree position and bend for current trunk/wind // Note that trunk stiffness controls the amount of bend at the trunk as // opposed to the crown of the tree // const F32 TRUNK_STIFF = 22.f; LLQuaternion rot = LLQuaternion(mTrunkBend.magVec()*TRUNK_STIFF*DEG_TO_RAD, LLVector4(mTrunkBend.mV[VX], mTrunkBend.mV[VY], 0)) * LLQuaternion(90.f*DEG_TO_RAD, LLVector4(0,0,1)) * getRotation(); LLMatrix4 rot_mat(rot); rot_mat *= trans_mat; F32 radius = getScale().magVec()*0.05f; LLMatrix4 scale_mat; scale_mat.mMatrix[0][0] = scale_mat.mMatrix[1][1] = scale_mat.mMatrix[2][2] = radius; scale_mat *= rot_mat; // const F32 THRESH_ANGLE_FOR_BILLBOARD = 15.f; // const F32 BLEND_RANGE_FOR_BILLBOARD = 3.f; F32 droop = mDroop + 25.f*(1.f - mTrunkBend.magVec()); S32 stop_depth = 0; F32 alpha = 1.0; U32 vert_count = 0; U32 index_count = 0; calcNumVerts(vert_count, index_count, mTrunkLOD, stop_depth, mDepth, mTrunkDepth, mBranches); LLFace* facep = mDrawable->getFace(0); facep->mVertexBuffer = new LLVertexBuffer(LLDrawPoolTree::VERTEX_DATA_MASK, GL_STATIC_DRAW_ARB); facep->mVertexBuffer->allocateBuffer(vert_count, index_count, TRUE); LLStrider vertices; LLStrider normals; LLStrider tex_coords; LLStrider indices; U16 idx_offset = 0; facep->mVertexBuffer->getVertexStrider(vertices); facep->mVertexBuffer->getNormalStrider(normals); facep->mVertexBuffer->getTexCoord0Strider(tex_coords); facep->mVertexBuffer->getIndexStrider(indices); genBranchPipeline(vertices, normals, tex_coords, indices, idx_offset, scale_mat, mTrunkLOD, stop_depth, mDepth, mTrunkDepth, 1.0, mTwist, droop, mBranches, alpha); mReferenceBuffer->setBuffer(0); facep->mVertexBuffer->setBuffer(0); } void LLVOTree::appendMesh(LLStrider& vertices, LLStrider& normals, LLStrider& tex_coords, LLStrider& indices, U16& cur_idx, LLMatrix4& matrix, LLMatrix4& norm_mat, S32 vert_start, S32 vert_count, S32 index_count, S32 index_offset) { LLStrider v; LLStrider n; LLStrider t; LLStrider idx; mReferenceBuffer->getVertexStrider(v); mReferenceBuffer->getNormalStrider(n); mReferenceBuffer->getTexCoord0Strider(t); mReferenceBuffer->getIndexStrider(idx); //copy/transform vertices into mesh - check for (S32 i = 0; i < vert_count; i++) { U16 index = vert_start + i; *vertices++ = v[index] * matrix; LLVector3 norm = n[index] * norm_mat; norm.normalize(); *normals++ = norm; *tex_coords++ = t[index]; } //copy offset indices into mesh - check for (S32 i = 0; i < index_count; i++) { U16 index = index_offset + i; if (idx[index] >= vert_start + vert_count || idx[index] < vert_start) { llerrs << "WTF?" << llendl; } *indices++ = idx[index]-vert_start+cur_idx; } //increment index offset - check cur_idx += vert_count; } void LLVOTree::genBranchPipeline(LLStrider& vertices, LLStrider& normals, LLStrider& tex_coords, LLStrider& indices, U16& index_offset, LLMatrix4& matrix, S32 trunk_LOD, S32 stop_level, U16 depth, U16 trunk_depth, F32 scale, F32 twist, F32 droop, F32 branches, F32 alpha) { // // Generates a tree mesh by recursing, generating branches and then a 'leaf' texture. static F32 constant_twist; static F32 width = 0; F32 length = ((trunk_depth || (scale == 1.f))? mTrunkLength:mBranchLength); F32 aspect = ((trunk_depth || (scale == 1.f))? mTrunkAspect:mBranchAspect); constant_twist = 360.f/branches; if (stop_level >= 0) { if (depth > stop_level) { { llassert(sLODIndexCount[trunk_LOD] > 0); width = scale * length * aspect; LLMatrix4 scale_mat; scale_mat.mMatrix[0][0] = width; scale_mat.mMatrix[1][1] = width; scale_mat.mMatrix[2][2] = scale*length; scale_mat *= matrix; glh::matrix4f norm((F32*) scale_mat.mMatrix); LLMatrix4 norm_mat = LLMatrix4(norm.inverse().transpose().m); norm_mat.invert(); appendMesh(vertices, normals, tex_coords, indices, index_offset, scale_mat, norm_mat, sLODVertexOffset[trunk_LOD], sLODVertexCount[trunk_LOD], sLODIndexCount[trunk_LOD], sLODIndexOffset[trunk_LOD]); } // Recurse to create more branches for (S32 i=0; i < (S32)branches; i++) { LLMatrix4 trans_mat; trans_mat.setTranslation(0,0,scale*length); trans_mat *= matrix; LLQuaternion rot = LLQuaternion(20.f*DEG_TO_RAD, LLVector4(0.f, 0.f, 1.f)) * LLQuaternion(droop*DEG_TO_RAD, LLVector4(0.f, 1.f, 0.f)) * LLQuaternion(((constant_twist + ((i%2==0)?twist:-twist))*i)*DEG_TO_RAD, LLVector4(0.f, 0.f, 1.f)); LLMatrix4 rot_mat(rot); rot_mat *= trans_mat; genBranchPipeline(vertices, normals, tex_coords, indices, index_offset, rot_mat, trunk_LOD, stop_level, depth - 1, 0, scale*mScaleStep, twist, droop, branches, alpha); } // Recurse to continue trunk if (trunk_depth) { LLMatrix4 trans_mat; trans_mat.setTranslation(0,0,scale*length); trans_mat *= matrix; LLMatrix4 rot_mat(70.5f*DEG_TO_RAD, LLVector4(0,0,1)); rot_mat *= trans_mat; // rotate a bit around Z when ascending genBranchPipeline(vertices, normals, tex_coords, indices, index_offset, rot_mat, trunk_LOD, stop_level, depth, trunk_depth-1, scale*mScaleStep, twist, droop, branches, alpha); } } else { // // Append leaves as two 90 deg crossed quads with leaf textures // { LLMatrix4 scale_mat; scale_mat.mMatrix[0][0] = scale_mat.mMatrix[1][1] = scale_mat.mMatrix[2][2] = scale*mLeafScale; scale_mat *= matrix; glh::matrix4f norm((F32*) scale_mat.mMatrix); LLMatrix4 norm_mat = LLMatrix4(norm.inverse().transpose().m); appendMesh(vertices, normals, tex_coords, indices, index_offset, scale_mat, norm_mat, 0, LEAF_VERTICES, LEAF_INDICES, 0); } } } } void LLVOTree::calcNumVerts(U32& vert_count, U32& index_count, S32 trunk_LOD, S32 stop_level, U16 depth, U16 trunk_depth, F32 branches) { if (stop_level >= 0) { if (depth > stop_level) { index_count += sLODIndexCount[trunk_LOD]; vert_count += sLODVertexCount[trunk_LOD]; // Recurse to create more branches for (S32 i=0; i < (S32)branches; i++) { calcNumVerts(vert_count, index_count, trunk_LOD, stop_level, depth - 1, 0, branches); } // Recurse to continue trunk if (trunk_depth) { calcNumVerts(vert_count, index_count, trunk_LOD, stop_level, depth, trunk_depth-1, branches); } } else { index_count += LEAF_INDICES; vert_count += LEAF_VERTICES; } } else { index_count += LEAF_INDICES; vert_count += LEAF_VERTICES; } } U32 LLVOTree::drawBranchPipeline(LLMatrix4& matrix, U16* indicesp, S32 trunk_LOD, S32 stop_level, U16 depth, U16 trunk_depth, F32 scale, F32 twist, F32 droop, F32 branches, F32 alpha) { U32 ret = 0; // // Draws a tree by recursing, drawing branches and then a 'leaf' texture. // If stop_level = -1, simply draws the whole tree as a billboarded texture // static F32 constant_twist; static F32 width = 0; //F32 length = ((scale == 1.f)? mTrunkLength:mBranchLength); //F32 aspect = ((scale == 1.f)? mTrunkAspect:mBranchAspect); F32 length = ((trunk_depth || (scale == 1.f))? mTrunkLength:mBranchLength); F32 aspect = ((trunk_depth || (scale == 1.f))? mTrunkAspect:mBranchAspect); constant_twist = 360.f/branches; if (!LLPipeline::sReflectionRender && stop_level >= 0) { // // Draw the tree using recursion // if (depth > stop_level) { { llassert(sLODIndexCount[trunk_LOD] > 0); width = scale * length * aspect; LLMatrix4 scale_mat; scale_mat.mMatrix[0][0] = width; scale_mat.mMatrix[1][1] = width; scale_mat.mMatrix[2][2] = scale*length; scale_mat *= matrix; glLoadMatrixf((F32*) scale_mat.mMatrix); glDrawElements(GL_TRIANGLES, sLODIndexCount[trunk_LOD], GL_UNSIGNED_SHORT, indicesp + sLODIndexOffset[trunk_LOD]); gPipeline.addTrianglesDrawn(LEAF_INDICES/3); stop_glerror(); ret += sLODIndexCount[trunk_LOD]; } // Recurse to create more branches for (S32 i=0; i < (S32)branches; i++) { LLMatrix4 trans_mat; trans_mat.setTranslation(0,0,scale*length); trans_mat *= matrix; LLQuaternion rot = LLQuaternion(20.f*DEG_TO_RAD, LLVector4(0.f, 0.f, 1.f)) * LLQuaternion(droop*DEG_TO_RAD, LLVector4(0.f, 1.f, 0.f)) * LLQuaternion(((constant_twist + ((i%2==0)?twist:-twist))*i)*DEG_TO_RAD, LLVector4(0.f, 0.f, 1.f)); LLMatrix4 rot_mat(rot); rot_mat *= trans_mat; ret += drawBranchPipeline(rot_mat, indicesp, trunk_LOD, stop_level, depth - 1, 0, scale*mScaleStep, twist, droop, branches, alpha); } // Recurse to continue trunk if (trunk_depth) { LLMatrix4 trans_mat; trans_mat.setTranslation(0,0,scale*length); trans_mat *= matrix; LLMatrix4 rot_mat(70.5f*DEG_TO_RAD, LLVector4(0,0,1)); rot_mat *= trans_mat; // rotate a bit around Z when ascending ret += drawBranchPipeline(rot_mat, indicesp, trunk_LOD, stop_level, depth, trunk_depth-1, scale*mScaleStep, twist, droop, branches, alpha); } } else { // // Draw leaves as two 90 deg crossed quads with leaf textures // { LLMatrix4 scale_mat; scale_mat.mMatrix[0][0] = scale_mat.mMatrix[1][1] = scale_mat.mMatrix[2][2] = scale*mLeafScale; scale_mat *= matrix; glLoadMatrixf((F32*) scale_mat.mMatrix); glDrawElements(GL_TRIANGLES, LEAF_INDICES, GL_UNSIGNED_SHORT, indicesp); gPipeline.addTrianglesDrawn(LEAF_INDICES/3); stop_glerror(); ret += LEAF_INDICES; } } } else { // // Draw the tree as a single billboard texture // LLMatrix4 scale_mat; scale_mat.mMatrix[0][0] = scale_mat.mMatrix[1][1] = scale_mat.mMatrix[2][2] = mBillboardScale*mBillboardRatio; scale_mat *= matrix; glMatrixMode(GL_TEXTURE); glTranslatef(0.0, -0.5, 0.0); glMatrixMode(GL_MODELVIEW); glLoadMatrixf((F32*) scale_mat.mMatrix); glDrawElements(GL_TRIANGLES, LEAF_INDICES, GL_UNSIGNED_SHORT, indicesp); gPipeline.addTrianglesDrawn(LEAF_INDICES/3); stop_glerror(); ret += LEAF_INDICES; glMatrixMode(GL_TEXTURE); glLoadIdentity(); glMatrixMode(GL_MODELVIEW); } return ret; } void LLVOTree::updateRadius() { if (mDrawable.isNull()) { return; } mDrawable->setRadius(32.0f); } void LLVOTree::updateSpatialExtents(LLVector3& newMin, LLVector3& newMax) { F32 radius = getScale().length()*0.05f; LLVector3 center = getRenderPosition(); F32 sz = mBillboardScale*mBillboardRatio*radius*0.5f; LLVector3 size(sz,sz,sz); center += LLVector3(0, 0, size.mV[2]) * getRotation(); newMin.set(center-size); newMax.set(center+size); mDrawable->setPositionGroup(center); } BOOL LLVOTree::lineSegmentIntersect(const LLVector3& start, const LLVector3& end, S32 face, BOOL pick_transparent, S32 *face_hitp, LLVector3* intersection,LLVector2* tex_coord, LLVector3* normal, LLVector3* bi_normal) { if (!lineSegmentBoundingBox(start, end)) { return FALSE; } const LLVector3* ext = mDrawable->getSpatialExtents(); LLVector3 center = (ext[1]+ext[0])*0.5f; LLVector3 size = (ext[1]-ext[0]); LLQuaternion quat = getRotation(); center -= LLVector3(0,0,size.magVec() * 0.25f)*quat; size.scaleVec(LLVector3(0.25f, 0.25f, 1.f)); size.mV[0] = llmin(size.mV[0], 1.f); size.mV[1] = llmin(size.mV[1], 1.f); LLVector3 pos, norm; if (linesegment_tetrahedron(start, end, center, size, quat, pos, norm)) { if (intersection) { *intersection = pos; } if (normal) { *normal = norm; } return TRUE; } return FALSE; } U32 LLVOTree::getPartitionType() const { return LLViewerRegion::PARTITION_TREE; } LLTreePartition::LLTreePartition() : LLSpatialPartition(0) { mRenderByGroup = FALSE; mDrawableType = LLPipeline::RENDER_TYPE_TREE; mPartitionType = LLViewerRegion::PARTITION_TREE; mSlopRatio = 0.f; mLODPeriod = 1; }