/** * @file llsky.cpp * @brief IndraWorld sky class * * Copyright (c) 2000-2007, Linden Research, Inc. * * The source code in this file ("Source Code") is provided by Linden Lab * to you under the terms of the GNU General Public License, version 2.0 * ("GPL"), unless you have obtained a separate licensing agreement * ("Other License"), formally executed by you and Linden Lab. Terms of * the GPL can be found in doc/GPL-license.txt in this distribution, or * online at http://secondlife.com/developers/opensource/gplv2 * * There are special exceptions to the terms and conditions of the GPL as * it is applied to this Source Code. View the full text of the exception * in the file doc/FLOSS-exception.txt in this software distribution, or * online at http://secondlife.com/developers/opensource/flossexception * * By copying, modifying or distributing this software, you acknowledge * that you have read and understood your obligations described above, * and agree to abide by those obligations. * * ALL LINDEN LAB SOURCE CODE IS PROVIDED "AS IS." LINDEN LAB MAKES NO * WARRANTIES, EXPRESS, IMPLIED OR OTHERWISE, REGARDING ITS ACCURACY, * COMPLETENESS OR PERFORMANCE. */ // Ideas: // -haze should be controlled by global query from sims // -need secondary optical effects on sun (flare) // -stars should be brought down from sims // -star intensity should be driven by global ambient level from sims, // so that eclipses, etc can be easily done. // #include "llviewerprecompiledheaders.h" #include "llsky.h" // linden library includes #include "llerror.h" #include "llmath.h" #include "math.h" #include "v4color.h" #include "llviewerobjectlist.h" #include "llviewerobject.h" #include "llviewercamera.h" #include "pipeline.h" #include "llagent.h" #include "lldrawpool.h" #include "llvosky.h" #include "llvostars.h" #include "llcubemap.h" #include "llviewercontrol.h" extern LLPipeline gPipeline; F32 azimuth_from_vector(const LLVector3 &v); F32 elevation_from_vector(const LLVector3 &v); // ---------------- LLSky ---------------- ////////////////////////////////////////////////////////////////////// // Construction/Destruction ////////////////////////////////////////////////////////////////////// LLSky::LLSky() { // Set initial clear color to black // Set fog color mFogColor.mV[VRED] = mFogColor.mV[VGREEN] = mFogColor.mV[VBLUE] = 0.5f; mFogColor.mV[VALPHA] = 0.0f; mLightingGeneration = 0; mUpdatedThisFrame = TRUE; mOverrideSimSunPosition = FALSE; mSunPhase = 0.f; } LLSky::~LLSky() { } void LLSky::cleanup() { mVOSkyp = NULL; mVOStarsp = NULL; mVOGroundp = NULL; } void LLSky::destroyGL() { if (!mVOSkyp.isNull() && mVOSkyp->getCubeMap()) { mVOSkyp->cleanupGL(); } } void LLSky::restoreGL() { if (mVOSkyp) { mVOSkyp->restoreGL(); } } void LLSky::setOverrideSun(BOOL override) { if (!mOverrideSimSunPosition && override) { mLastSunDirection = getSunDirection(); } else if (mOverrideSimSunPosition && !override) { setSunDirection(mLastSunDirection, LLVector3::zero); } mOverrideSimSunPosition = override; } void LLSky::setSunDirection(const LLVector3 &sun_direction, const LLVector3 &sun_ang_velocity) { mVOSkyp->setSunDirection(sun_direction, sun_ang_velocity); } void LLSky::setSunTargetDirection(const LLVector3 &sun_direction, const LLVector3 &sun_ang_velocity) { mSunTargDir = sun_direction; } LLVector3 LLSky::getSunDirection() const { if (mVOSkyp) { return mVOSkyp->getToSun(); } else { return LLVector3::z_axis; } } LLVector3 LLSky::getMoonDirection() const { if (mVOSkyp) { return mVOSkyp->getToMoon(); } else { return LLVector3::z_axis; } } LLColor4 LLSky::getSunDiffuseColor() const { if (mVOSkyp) { return LLColor4(mVOSkyp->getSunDiffuseColor()); } else { return LLColor4(1.f, 1.f, 1.f, 1.f); } } LLColor4 LLSky::getMoonDiffuseColor() const { if (mVOSkyp) { return LLColor4(mVOSkyp->getMoonDiffuseColor()); } else { return LLColor4(1.f, 1.f, 1.f, 1.f); } } LLColor4 LLSky::getTotalAmbientColor() const { if (mVOSkyp) { return mVOSkyp->getTotalAmbientColor(); } else { return LLColor4(1.f, 1.f, 1.f, 1.f); } } BOOL LLSky::sunUp() const { if (mVOSkyp) { return mVOSkyp->isSunUp(); } else { return TRUE; } } LLColor4 LLSky::calcInScatter(LLColor4& transp, const LLVector3 &point, F32 exag) const { if (mVOSkyp) { return mVOSkyp->calcInScatter(transp, point, exag); } else { return LLColor4(1.f, 1.f, 1.f, 1.f); } } LLColor4U LLSky::getFadeColor() const { if (mVOSkyp) { return mVOSkyp->getFadeColor(); } else { return LLColor4(1.f, 1.f, 1.f, 1.f); } } ////////////////////////////////////////////////////////////////////// // Public Methods ////////////////////////////////////////////////////////////////////// void LLSky::init(const LLVector3 &sun_direction) { mVOSkyp = (LLVOSky *)gObjectList.createObjectViewer(LLViewerObject::LL_VO_SKY, gAgent.getRegion()); mVOSkyp->initSunDirection(sun_direction, LLVector3()); gPipeline.addObject((LLViewerObject *)mVOSkyp); mVOStarsp = (LLVOStars *)gObjectList.createObjectViewer(LLViewerObject::LL_VO_STARS, gAgent.getRegion()); gPipeline.addObject((LLViewerObject *)mVOStarsp); mVOGroundp = (LLVOGround*)gObjectList.createObjectViewer(LLViewerObject::LL_VO_GROUND, gAgent.getRegion()); LLVOGround *groundp = mVOGroundp; gPipeline.addObject((LLViewerObject *)groundp); gSky.setFogRatio(gSavedSettings.getF32("RenderFogRatio")); //////////////////////////// // // Legacy code, ignore // // // Get the parameters. mSunDefaultPosition = gSavedSettings.getVector3("SkySunDefaultPosition"); if (gSavedSettings.getBOOL("SkyOverrideSimSunPosition") || mOverrideSimSunPosition) { setSunDirection(mSunDefaultPosition, LLVector3(0.f, 0.f, 0.f)); } else { setSunDirection(sun_direction, LLVector3(0.f, 0.f, 0.f)); } mUpdatedThisFrame = TRUE; } void LLSky::setCloudDensityAtAgent(F32 cloud_density) { if (mVOSkyp) { mVOSkyp->setCloudDensity(cloud_density); } } void LLSky::setWind(const LLVector3& average_wind) { if (mVOSkyp) { mVOSkyp->setWind(average_wind); } } void LLSky::propagateHeavenlyBodies(F32 dt) { if (!mOverrideSimSunPosition) { LLVector3 curr_dir = getSunDirection(); LLVector3 diff = mSunTargDir - curr_dir; const F32 dist = diff.normVec(); if (dist > 0) { const F32 step = llmin (dist, 0.00005f); //const F32 step = min (dist, 0.0001); diff *= step; curr_dir += diff; curr_dir.normVec(); if (mVOSkyp) { mVOSkyp->setSunDirection(curr_dir, LLVector3()); } } } } F32 LLSky::getSunPhase() const { return mSunPhase; } void LLSky::setSunPhase(const F32 phase) { mSunPhase = phase; } ////////////////////////////////////////////////////////////////////// // Private Methods ////////////////////////////////////////////////////////////////////// LLColor4 LLSky::getFogColor() const { if (mVOSkyp) { return mVOSkyp->getFogColor(); } return LLColor4(1.f, 1.f, 1.f, 1.f); } void LLSky::updateFog(const F32 distance) { if (mVOSkyp) { mVOSkyp->updateFog(distance); } } void LLSky::updateCull() { /*if (mVOSkyp.notNull() && mVOSkyp->mDrawable.notNull()) { gPipeline.markVisible(mVOSkyp->mDrawable); } else { llinfos << "No sky drawable!" << llendl; }*/ if (mVOStarsp.notNull() && mVOStarsp->mDrawable.notNull()) { gPipeline.markVisible(mVOStarsp->mDrawable, *gCamera); } else { llinfos << "No stars drawable!" << llendl; } /*if (mVOGroundp.notNull() && mVOGroundp->mDrawable.notNull()) { gPipeline.markVisible(mVOGroundp->mDrawable); }*/ } void LLSky::updateSky() { if (!gPipeline.hasRenderType(LLPipeline::RENDER_TYPE_SKY)) { return; } if (mVOSkyp) { mVOSkyp->updateSky(); } if (mVOStarsp) { //if (mVOStarsp->mDrawable) //{ // gPipeline.markRebuild(mVOStarsp->mDrawable, LLDrawable::REBUILD_VOLUME, TRUE); //} } } void LLSky::setFogRatio(const F32 fog_ratio) { if (mVOSkyp) { mVOSkyp->setFogRatio(fog_ratio); } } F32 LLSky::getFogRatio() const { if (mVOSkyp) { return mVOSkyp->getFogRatio(); } else { return 0.f; } } // Returns angle (DEGREES) between the horizontal plane and "v", // where the angle is negative when v.mV[VZ] < 0.0f F32 elevation_from_vector(const LLVector3 &v) { F32 elevation = 0.0f; F32 xy_component = (F32) sqrt(v.mV[VX] * v.mV[VX] + v.mV[VY] * v.mV[VY]); if (xy_component != 0.0f) { elevation = RAD_TO_DEG * (F32) atan(v.mV[VZ]/xy_component); } else { if (v.mV[VZ] > 0.f) { elevation = 90.f; } else { elevation = -90.f; } } return elevation; }