/** * @file lldrawpoolavatar.cpp * @brief LLDrawPoolAvatar class implementation * * Copyright (c) 2002-2007, Linden Research, Inc. * * The source code in this file ("Source Code") is provided by Linden Lab * to you under the terms of the GNU General Public License, version 2.0 * ("GPL"), unless you have obtained a separate licensing agreement * ("Other License"), formally executed by you and Linden Lab. Terms of * the GPL can be found in doc/GPL-license.txt in this distribution, or * online at http://secondlife.com/developers/opensource/gplv2 * * There are special exceptions to the terms and conditions of the GPL as * it is applied to this Source Code. View the full text of the exception * in the file doc/FLOSS-exception.txt in this software distribution, or * online at http://secondlife.com/developers/opensource/flossexception * * By copying, modifying or distributing this software, you acknowledge * that you have read and understood your obligations described above, * and agree to abide by those obligations. * * ALL LINDEN LAB SOURCE CODE IS PROVIDED "AS IS." LINDEN LAB MAKES NO * WARRANTIES, EXPRESS, IMPLIED OR OTHERWISE, REGARDING ITS ACCURACY, * COMPLETENESS OR PERFORMANCE. */ #include "llviewerprecompiledheaders.h" #include "lldrawpoolavatar.h" #include "llvoavatar.h" #include "m3math.h" #include "llagparray.h" #include "llagent.h" #include "lldrawable.h" #include "llface.h" #include "llsky.h" #include "llviewercamera.h" #include "llviewerregion.h" #include "noise.h" #include "pipeline.h" extern F32 gFrameDTClamped; extern BOOL gUseGLPick; F32 CLOTHING_GRAVITY_EFFECT = 0.7f; F32 CLOTHING_ACCEL_FORCE_FACTOR = 0.2f; const S32 NUM_TEST_AVATARS = 30; const S32 MIN_PIXEL_AREA_2_PASS_SKINNING = 500000000; // Format for gAGPVertices // vertex format for bumpmapping: // vertices 12 // pad 4 // normals 12 // pad 4 // texcoords0 8 // texcoords1 8 // total 48 // // for no bumpmapping // vertices 12 // texcoords 8 // normals 12 // total 32 // S32 AVATAR_OFFSET_POS = 0; S32 AVATAR_OFFSET_NORMAL = 16; S32 AVATAR_OFFSET_TEX0 = 32; S32 AVATAR_OFFSET_TEX1 = 40; S32 AVATAR_VERTEX_BYTES = 48; BOOL gAvatarEmbossBumpMap = FALSE; LLDrawPoolAvatar::LLDrawPoolAvatar() : LLDrawPool(POOL_AVATAR, DATA_SIMPLE_IL_MASK, DATA_VERTEX_WEIGHTS_MASK | DATA_CLOTHING_WEIGHTS_MASK ) { mCleanupUnused = FALSE; // Overide the data layout mDataMaskIL = 0; mStride = 0; for (S32 i = 0; i < DATA_MAX_TYPES; i++) { mDataOffsets[i] = 0; } // Note: padding is to speed up SSE code mDataMaskIL |= DATA_VERTICES_MASK; mDataOffsets[DATA_VERTICES] = mStride; mStride += sDataSizes[DATA_VERTICES]; mStride += 4; mDataMaskIL |= DATA_NORMALS_MASK; mDataOffsets[DATA_NORMALS] = mStride; mStride += sDataSizes[DATA_NORMALS]; mStride += 4; // Note: binormals are stripped off in software blending mDataMaskIL |= DATA_BINORMALS_MASK; mDataOffsets[DATA_BINORMALS] = mStride; mStride += sDataSizes[DATA_BINORMALS]; mStride += 4; // To keep the structure 16-byte aligned (for SSE happiness) mDataMaskIL |= DATA_TEX_COORDS0_MASK; mDataOffsets[DATA_TEX_COORDS0] = mStride; mStride += sDataSizes[DATA_TEX_COORDS0]; mDataMaskIL |= DATA_TEX_COORDS1_MASK; mDataOffsets[DATA_TEX_COORDS1] = mStride; mStride += sDataSizes[DATA_TEX_COORDS1]; //LLDebugVarMessageBox::show("acceleration", &CLOTHING_ACCEL_FORCE_FACTOR, 10.f, 0.1f); //LLDebugVarMessageBox::show("gravity", &CLOTHING_GRAVITY_EFFECT, 10.f, 0.1f); } //----------------------------------------------------------------------------- // instancePool() //----------------------------------------------------------------------------- LLDrawPool *LLDrawPoolAvatar::instancePool() { return new LLDrawPoolAvatar(); } S32 LLDrawPoolAvatar::rebuild() { mRebuildTime++; if (mRebuildTime > mRebuildFreq) { flushAGP(); mRebuildTime = 0; } return 0; } BOOL gRenderAvatar = TRUE; void LLDrawPoolAvatar::prerender() { mVertexShaderLevel = gPipeline.getVertexShaderLevel(LLPipeline::SHADER_AVATAR); } //----------------------------------------------------------------------------- // render() //----------------------------------------------------------------------------- void LLDrawPoolAvatar::render(S32 pass) { LLFastTimer t(LLFastTimer::FTM_RENDER_CHARACTERS); renderAvatars(NULL); // render all avatars } void LLDrawPoolAvatar::renderAvatars(LLVOAvatar* single_avatar, BOOL no_shaders) { if (no_shaders) { mVertexShaderLevel = 0; } if (!gRenderAvatar) { return; } if (mDrawFace.empty() && !single_avatar) { return; } LLVOAvatar *avatarp; if (single_avatar) { avatarp = single_avatar; } else { const LLFace *facep = mDrawFace[0]; if (!facep->getDrawable()) { return; } avatarp = (LLVOAvatar *)(facep->getDrawable()->getVObj()); } if (avatarp->isDead() || avatarp->mDrawable.isNull()) { return; } LLOverrideFaceColor color(this, 1.0f, 1.0f, 1.0f, 1.0f); if( !single_avatar || (avatarp == single_avatar) ) { if (LLVOAvatar::sShowCollisionVolumes) { LLGLSNoTexture no_texture; avatarp->renderCollisionVolumes(); } LLGLEnable normalize(GL_NORMALIZE); if (avatarp->mIsSelf && LLAgent::sDebugDisplayTarget) { LLGLSNoTexture gls_no_texture; LLVector3 pos = avatarp->getPositionAgent(); color.setColor(1.0f, 0.0f, 0.0f, 0.8f); glBegin(GL_LINES); { glVertex3fv((pos - LLVector3(0.2f, 0.f, 0.f)).mV); glVertex3fv((pos + LLVector3(0.2f, 0.f, 0.f)).mV); glVertex3fv((pos - LLVector3(0.f, 0.2f, 0.f)).mV); glVertex3fv((pos + LLVector3(0.f, 0.2f, 0.f)).mV); glVertex3fv((pos - LLVector3(0.f, 0.f, 0.2f)).mV); glVertex3fv((pos + LLVector3(0.f, 0.f, 0.2f)).mV); }glEnd(); pos = avatarp->mDrawable->getPositionAgent(); color.setColor(1.0f, 0.0f, 0.0f, 0.8f); glBegin(GL_LINES); { glVertex3fv((pos - LLVector3(0.2f, 0.f, 0.f)).mV); glVertex3fv((pos + LLVector3(0.2f, 0.f, 0.f)).mV); glVertex3fv((pos - LLVector3(0.f, 0.2f, 0.f)).mV); glVertex3fv((pos + LLVector3(0.f, 0.2f, 0.f)).mV); glVertex3fv((pos - LLVector3(0.f, 0.f, 0.2f)).mV); glVertex3fv((pos + LLVector3(0.f, 0.f, 0.2f)).mV); }glEnd(); pos = avatarp->mRoot.getWorldPosition(); color.setColor(1.0f, 1.0f, 1.0f, 0.8f); glBegin(GL_LINES); { glVertex3fv((pos - LLVector3(0.2f, 0.f, 0.f)).mV); glVertex3fv((pos + LLVector3(0.2f, 0.f, 0.f)).mV); glVertex3fv((pos - LLVector3(0.f, 0.2f, 0.f)).mV); glVertex3fv((pos + LLVector3(0.f, 0.2f, 0.f)).mV); glVertex3fv((pos - LLVector3(0.f, 0.f, 0.2f)).mV); glVertex3fv((pos + LLVector3(0.f, 0.f, 0.2f)).mV); }glEnd(); pos = avatarp->mPelvisp->getWorldPosition(); color.setColor(0.0f, 0.0f, 1.0f, 0.8f); glBegin(GL_LINES); { glVertex3fv((pos - LLVector3(0.2f, 0.f, 0.f)).mV); glVertex3fv((pos + LLVector3(0.2f, 0.f, 0.f)).mV); glVertex3fv((pos - LLVector3(0.f, 0.2f, 0.f)).mV); glVertex3fv((pos + LLVector3(0.f, 0.2f, 0.f)).mV); glVertex3fv((pos - LLVector3(0.f, 0.f, 0.2f)).mV); glVertex3fv((pos + LLVector3(0.f, 0.f, 0.2f)).mV); }glEnd(); color.setColor(1.0f, 1.0f, 1.0f, 1.0f); } glEnableClientState(GL_VERTEX_ARRAY); glEnableClientState(GL_NORMAL_ARRAY); glEnableClientState(GL_TEXTURE_COORD_ARRAY); LLGLSLShader* vertex_program = &gPipeline.mAvatarProgram; if (mVertexShaderLevel > 0) { gPipeline.mAvatarMatrixParam = vertex_program->mUniform[LLPipeline::GLSL_AVATAR_MATRIX]; } //-------------------------------------------------------------------------------- // this is where we first hit the software blending path // if enabled, we need to set up the proper buffers and avoid setting other state //-------------------------------------------------------------------------------- if (!(mVertexShaderLevel > 0)) { // performance could be increased by better utilizing the buffers, for example, only using 1k buffers for lo-res // avatars. But the only problem with using fewer buffers is that we're more likely to wait for a fence to complete // vertex format: // vertices 12 // texcoords 8 // normals 12 // binormals 12 // padding 4 // total 48 // Rotate to the next buffer, round-robin. gPipeline.bufferRotate(); // Wait until the hardware is done reading the last set of vertices from the buffer before writing the next set. gPipeline.bufferWaitFence(); // Need to do this because we may be rendering without AGP even in AGP mode U8* buffer_offset_start = gPipeline.bufferGetScratchMemory(); glVertexPointer( 3, GL_FLOAT, AVATAR_VERTEX_BYTES, buffer_offset_start + AVATAR_OFFSET_POS); glTexCoordPointer(2, GL_FLOAT, AVATAR_VERTEX_BYTES, buffer_offset_start + AVATAR_OFFSET_TEX0); glNormalPointer( GL_FLOAT, AVATAR_VERTEX_BYTES, buffer_offset_start + AVATAR_OFFSET_NORMAL); } if ((mVertexShaderLevel > 0)) // for hardware blending { bindGLVertexPointer(); bindGLNormalPointer(); bindGLTexCoordPointer(0); } if ((mVertexShaderLevel > 0)) { //eyeballs render with the specular shader gPipeline.mAvatarEyeballProgram.bind(); gPipeline.mMaterialIndex = gPipeline.mAvatarEyeballProgram.mAttribute[LLPipeline::GLSL_MATERIAL_COLOR]; gPipeline.mSpecularIndex = gPipeline.mAvatarEyeballProgram.mAttribute[LLPipeline::GLSL_SPECULAR_COLOR]; S32 index = gPipeline.mAvatarEyeballProgram.enableTexture(LLPipeline::GLSL_SCATTER_MAP); gSky.mVOSkyp->getScatterMap()->bind(index); glActiveTextureARB(GL_TEXTURE0_ARB); } if (avatarp->mSpecialRenderMode == 0) // normal { gPipeline.enableLightsAvatar(avatarp->mDrawable->getSunShadowFactor()); } else if (avatarp->mSpecialRenderMode == 1) // anim preview { gPipeline.enableLightsAvatarEdit(LLColor4(0.7f, 0.6f, 0.3f, 1.f)); } else // 2=image preview, 3=morph view { gPipeline.enableLightsAvatarEdit(LLColor4(.5f, .5f, .5f, 1.f)); } // render rigid meshes (eyeballs) first mIndicesDrawn += avatarp->renderRigid(); if ((mVertexShaderLevel > 0)) { gPipeline.mAvatarEyeballProgram.disableTexture(LLPipeline::GLSL_SCATTER_MAP); glActiveTextureARB(GL_TEXTURE0_ARB); } if (!gRenderForSelect && avatarp->mIsSelf && LLVOAvatar::sAvatarLoadTest) { LLVector3 orig_pos_root = avatarp->mRoot.getPosition(); LLVector3 next_pos_root = orig_pos_root; for (S32 i = 0; i < NUM_TEST_AVATARS; i++) { next_pos_root.mV[VX] += 1.f; if (i % 5 == 0) { next_pos_root.mV[VY] += 1.f; next_pos_root.mV[VX] = orig_pos_root.mV[VX]; } avatarp->mRoot.setPosition(next_pos_root); // avatar load test avatarp->mRoot.updateWorldMatrixChildren(); // avatar load test mIndicesDrawn += avatarp->renderRigid(); } avatarp->mRoot.setPosition(orig_pos_root); // avatar load test avatarp->mRoot.updateWorldMatrixChildren(); // avatar load test } if ((mVertexShaderLevel > 0)) // for hardware blending { glClientActiveTextureARB(GL_TEXTURE1_ARB); if ((mVertexShaderLevel >= SHADER_LEVEL_BUMP)) { bindGLTexCoordPointer(1); bindGLBinormalPointer(vertex_program->mAttribute[LLPipeline::GLSL_BINORMAL]); gPipeline.mMaterialIndex = vertex_program->mAttribute[LLPipeline::GLSL_MATERIAL_COLOR]; gPipeline.mSpecularIndex = vertex_program->mAttribute[LLPipeline::GLSL_SPECULAR_COLOR]; } glClientActiveTextureARB(GL_TEXTURE0_ARB); bindGLTexCoordPointer(0); vertex_program->bind(); bindGLVertexWeightPointer(vertex_program->mAttribute[LLPipeline::GLSL_AVATAR_WEIGHT]); if ((mVertexShaderLevel >= SHADER_LEVEL_CLOTH)) { bindGLVertexClothingWeightPointer(vertex_program->mAttribute[LLPipeline::GLSL_AVATAR_CLOTHING]); enable_cloth_weights(vertex_program->mAttribute[LLPipeline::GLSL_AVATAR_CLOTHING]); } enable_vertex_weighting(vertex_program->mAttribute[LLPipeline::GLSL_AVATAR_WEIGHT]); if ((mVertexShaderLevel >= SHADER_LEVEL_BUMP)) { enable_binormals(vertex_program->mAttribute[LLPipeline::GLSL_BINORMAL]); } vertex_program->enableTexture(LLPipeline::GLSL_BUMP_MAP); S32 index = vertex_program->enableTexture(LLPipeline::GLSL_SCATTER_MAP); gSky.mVOSkyp->getScatterMap()->bind(index); glActiveTextureARB(GL_TEXTURE0_ARB); } if ((mVertexShaderLevel >= SHADER_LEVEL_CLOTH)) { LLMatrix4 rot_mat; gCamera->getMatrixToLocal(rot_mat); LLMatrix4 cfr(OGL_TO_CFR_ROTATION); rot_mat *= cfr; LLVector4 wind; wind.setVec(avatarp->mWindVec); wind.mV[VW] = 0; wind = wind * rot_mat; wind.mV[VW] = avatarp->mWindVec.mV[VW]; vertex_program->vertexAttrib4fv(LLPipeline::GLSL_AVATAR_WIND, wind.mV); F32 phase = -1.f * (avatarp->mRipplePhase); F32 freq = 7.f + (noise1(avatarp->mRipplePhase) * 2.f); LLVector4 sin_params(freq, freq, freq, phase); vertex_program->vertexAttrib4fv(LLPipeline::GLSL_AVATAR_SINWAVE, sin_params.mV); LLVector4 gravity(0.f, 0.f, -CLOTHING_GRAVITY_EFFECT, 0.f); gravity = gravity * rot_mat; vertex_program->vertexAttrib4fv(LLPipeline::GLSL_AVATAR_GRAVITY, gravity.mV); } mIndicesDrawn += avatarp->renderSkinned(AVATAR_RENDER_PASS_SINGLE); if (!gRenderForSelect && avatarp->mIsSelf && LLVOAvatar::sAvatarLoadTest) { LLVector3 orig_pos_root = avatarp->mRoot.getPosition(); LLVector3 next_pos_root = orig_pos_root; for (S32 i = 0; i < NUM_TEST_AVATARS; i++) { next_pos_root.mV[VX] += 1.f; if (i % 5 == 0) { next_pos_root.mV[VY] += 1.f; next_pos_root.mV[VX] = orig_pos_root.mV[VX]; } avatarp->mRoot.setPosition(next_pos_root); // avatar load test avatarp->mRoot.updateWorldMatrixChildren(); // avatar load test mIndicesDrawn += avatarp->renderSkinned(AVATAR_RENDER_PASS_SINGLE); } avatarp->mRoot.setPosition(orig_pos_root); // avatar load test avatarp->mRoot.updateWorldMatrixChildren(); // avatar load test } // if we're in software-blending, remember to set the fence _after_ we draw so we wait till this rendering is done if (!(mVertexShaderLevel > 0)) { // want for the previously bound fence to finish gPipeline.bufferSendFence(); } else { vertex_program->disableTexture(LLPipeline::GLSL_BUMP_MAP); vertex_program->disableTexture(LLPipeline::GLSL_SCATTER_MAP); glActiveTextureARB(GL_TEXTURE0_ARB); glClientActiveTextureARB(GL_TEXTURE0_ARB); disable_vertex_weighting(vertex_program->mAttribute[LLPipeline::GLSL_AVATAR_WEIGHT]); if ((mVertexShaderLevel >= SHADER_LEVEL_BUMP)) { disable_binormals(vertex_program->mAttribute[LLPipeline::GLSL_BINORMAL]); } if ((mVertexShaderLevel >= SHADER_LEVEL_CLOTH)) { disable_cloth_weights(vertex_program->mAttribute[LLPipeline::GLSL_AVATAR_CLOTHING]); } vertex_program->unbind(); } } } //----------------------------------------------------------------------------- // renderForSelect() //----------------------------------------------------------------------------- void LLDrawPoolAvatar::renderForSelect() { if (gUseGLPick) { return; } //gGLSObjectSelectDepthAlpha.set(); if (!gRenderAvatar) { return; } if (mDrawFace.empty() || !mMemory.count()) { return; } const LLFace *facep = mDrawFace[0]; if (!facep->getDrawable()) { return; } LLVOAvatar *avatarp = (LLVOAvatar *)(facep->getDrawable()->getVObj()); if (avatarp->isDead() || avatarp->mIsDummy || avatarp->mDrawable.isNull()) { return; } glEnableClientState(GL_VERTEX_ARRAY); glEnableClientState(GL_NORMAL_ARRAY); glEnableClientState(GL_TEXTURE_COORD_ARRAY); LLGLSLShader* vertex_program = &gPipeline.mAvatarPickProgram; if (mVertexShaderLevel > 0) { gPipeline.mAvatarMatrixParam = vertex_program->mUniform[LLPipeline::GLSL_AVATAR_MATRIX]; } glAlphaFunc(GL_GEQUAL, 0.2f); glBlendFunc(GL_ONE, GL_ZERO); //-------------------------------------------------------------------------------- // this is where we first hit the software blending path // if enabled, we need to set up the proper buffers and avoid setting other state //-------------------------------------------------------------------------------- if (!(mVertexShaderLevel > 0) || gUseGLPick) { // Rotate to the next buffer, round-robin. gPipeline.bufferRotate(); // Wait until the hardware is done reading the last set of vertices from the buffer before writing the next set. gPipeline.bufferWaitFence(); // Need to do this because we may be rendering without AGP even in AGP mode U8* buffer_offset_start = gPipeline.bufferGetScratchMemory(); glVertexPointer( 3, GL_FLOAT, AVATAR_VERTEX_BYTES, buffer_offset_start + AVATAR_OFFSET_POS); glTexCoordPointer(2, GL_FLOAT, AVATAR_VERTEX_BYTES, buffer_offset_start + AVATAR_OFFSET_TEX0); glNormalPointer( GL_FLOAT, AVATAR_VERTEX_BYTES, buffer_offset_start + AVATAR_OFFSET_NORMAL); } S32 name = avatarp->mDrawable->getVObj()->mGLName; LLColor4U color((U8)(name >> 16), (U8)(name >> 8), (U8)name); glColor4ubv(color.mV); if ((mVertexShaderLevel > 0) && !gUseGLPick) // for hardware blending { bindGLVertexPointer(); bindGLNormalPointer(); bindGLTexCoordPointer(0); } // render rigid meshes (eyeballs) first mIndicesDrawn += avatarp->renderRigid(); if ((mVertexShaderLevel > 0) && !gUseGLPick) // for hardware blending { glClientActiveTextureARB(GL_TEXTURE0_ARB); bindGLTexCoordPointer(0); vertex_program->bind(); bindGLVertexWeightPointer(vertex_program->mAttribute[LLPipeline::GLSL_AVATAR_WEIGHT]); /*if ((mVertexShaderLevel >= SHADER_LEVEL_CLOTH)) { bindGLVertexClothingWeightPointer(); enable_cloth_weights(); }*/ enable_vertex_weighting(vertex_program->mAttribute[LLPipeline::GLSL_AVATAR_WEIGHT]); } mIndicesDrawn += avatarp->renderSkinned(AVATAR_RENDER_PASS_SINGLE); // if we're in software-blending, remember to set the fence _after_ we draw so we wait till this rendering is done if (!(mVertexShaderLevel > 0) || gUseGLPick) { // want for the previously bound fence to finish gPipeline.bufferSendFence(); } else { vertex_program->unbind(); disable_vertex_weighting(vertex_program->mAttribute[LLPipeline::GLSL_AVATAR_WEIGHT]); /*if ((mVertexShaderLevel >= SHADER_LEVEL_CLOTH)) { disable_cloth_weights(); }*/ } glAlphaFunc(GL_GREATER, 0.01f); glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); // restore texture mode glTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_MODULATE); glDisableClientState(GL_NORMAL_ARRAY); glDisableClientState(GL_TEXTURE_COORD_ARRAY); } //----------------------------------------------------------------------------- // getDebugTexture() //----------------------------------------------------------------------------- LLViewerImage *LLDrawPoolAvatar::getDebugTexture() { if (mReferences.empty()) { return NULL; } LLFace *face = mReferences[0]; if (!face->getDrawable()) { return NULL; } const LLViewerObject *objectp = face->getDrawable()->getVObj(); // Avatar should always have at least 1 (maybe 3?) TE's. return objectp->getTEImage(0); } LLColor3 LLDrawPoolAvatar::getDebugColor() const { return LLColor3(0.f, 1.f, 0.f); }