/* glh - is a platform-indepenedent C++ OpenGL helper library Copyright (c) 2000 Cass Everitt Copyright (c) 2000 NVIDIA Corporation All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * The names of contributors to this software may not be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. Cass Everitt - cass@r3.nu */ /* glh_linear.h */ // Author: Cass W. Everitt #ifndef GLH_LINEAR_H #define GLH_LINEAR_H #include #include #include // only supports float for now... #define GLH_REAL_IS_FLOAT #ifdef GLH_REAL_IS_FLOAT # define GLH_REAL float # define GLH_REAL_NAMESPACE ns_float #endif #define GLH_QUATERNION_NORMALIZATION_THRESHOLD 64 #define GLH_RAD_TO_DEG GLH_REAL(57.2957795130823208767981548141052) #define GLH_DEG_TO_RAD GLH_REAL(0.0174532925199432957692369076848861) #define GLH_ZERO GLH_REAL(0.0) #define GLH_ONE GLH_REAL(1.0) #define GLH_TWO GLH_REAL(2.0) #define GLH_EPSILON GLH_REAL(10e-6) #define GLH_PI GLH_REAL(3.1415926535897932384626433832795) #define equivalent(a,b) (((a < b + GLH_EPSILON) && (a > b - GLH_EPSILON)) ? true : false) namespace glh { inline GLH_REAL to_degrees(GLH_REAL radians) { return radians*GLH_RAD_TO_DEG; } inline GLH_REAL to_radians(GLH_REAL degrees) { return degrees*GLH_DEG_TO_RAD; } // forward declarations for friend template functions. template class vec; // forward declarations for friend template functions. template bool operator == ( const vec & v1, const vec & v2 ); // forward declarations for friend template functions. template bool operator != ( const vec & v1, const vec & v2 ); template class vec { public: int size() const { return N; } vec(const T & t = T()) { for(int i = 0; i < N; i++) v[i] = t; } vec(const T * tp) { for(int i = 0; i < N; i++) v[i] = tp[i]; } const T * get_value() const { return v; } T dot( const vec & rhs ) const { T r = 0; for(int i = 0; i < N; i++) r += v[i]*rhs.v[i]; return r; } T length() const { T r = 0; for(int i = 0; i < N; i++) r += v[i]*v[i]; return T(sqrt(r)); } T square_norm() const { T r = 0; for(int i = 0; i < N; i++) r += v[i]*v[i]; return r; } void negate() { for(int i = 0; i < N; i++) v[i] = -v[i]; } T normalize() { T sum(0); for(int i = 0; i < N; i++) sum += v[i]*v[i]; sum = T(sqrt(sum)); if (sum > GLH_EPSILON) for(int i = 0; i < N; i++) v[i] /= sum; return sum; } vec & set_value( const T * rhs ) { for(int i = 0; i < N; i++) v[i] = rhs[i]; return *this; } T & operator [] ( int i ) { return v[i]; } const T & operator [] ( int i ) const { return v[i]; } vec & operator *= ( T d ) { for(int i = 0; i < N; i++) v[i] *= d; return *this;} vec & operator *= ( const vec & u ) { for(int i = 0; i < N; i++) v[i] *= u[i]; return *this;} vec & operator /= ( T d ) { if(d == 0) return *this; for(int i = 0; i < N; i++) v[i] /= d; return *this;} vec & operator += ( const vec & u ) { for(int i = 0; i < N; i++) v[i] += u.v[i]; return *this;} vec & operator -= ( const vec & u ) { for(int i = 0; i < N; i++) v[i] -= u.v[i]; return *this;} vec operator - () const { vec rv = v; rv.negate(); return rv; } vec operator + ( const vec &v) const { vec rt(*this); return rt += v; } vec operator - ( const vec &v) const { vec rt(*this); return rt -= v; } vec operator * ( T d) const { vec rt(*this); return rt *= d; } friend bool operator == <> ( const vec &v1, const vec &v2 ); friend bool operator != <> ( const vec &v1, const vec &v2 ); //protected: T v[N]; }; // vector friend operators template inline vec operator * ( const vec & b, T d ) { vec rt(b); return rt *= d; } template inline vec operator * ( T d, const vec & b ) { return b*d; } template inline vec operator * ( const vec & b, const vec & d ) { vec rt(b); return rt *= d; } template inline vec operator / ( const vec & b, T d ) { vec rt(b); return rt /= d; } template inline vec operator + ( const vec & v1, const vec & v2 ) { vec rt(v1); return rt += v2; } template inline vec operator - ( const vec & v1, const vec & v2 ) { vec rt(v1); return rt -= v2; } template inline bool operator == ( const vec & v1, const vec & v2 ) { for(int i = 0; i < N; i++) if(v1.v[i] != v2.v[i]) return false; return true; } template inline bool operator != ( const vec & v1, const vec & v2 ) { return !(v1 == v2); } typedef vec<3,unsigned char> vec3ub; typedef vec<4,unsigned char> vec4ub; namespace GLH_REAL_NAMESPACE { typedef GLH_REAL real; class line; class plane; class matrix4; class quaternion; typedef quaternion rotation; class vec2 : public vec<2,real> { public: vec2(const real & t = real()) : vec<2,real>(t) {} vec2(const vec<2,real> & t) : vec<2,real>(t) {} vec2(const real * tp) : vec<2,real>(tp) {} vec2(real x, real y ) { v[0] = x; v[1] = y; } void get_value(real & x, real & y) const { x = v[0]; y = v[1]; } vec2 & set_value( const real & x, const real & y) { v[0] = x; v[1] = y; return *this; } }; class vec3 : public vec<3,real> { public: vec3(const real & t = real()) : vec<3,real>(t) {} vec3(const vec<3,real> & t) : vec<3,real>(t) {} vec3(const real * tp) : vec<3,real>(tp) {} vec3(real x, real y, real z) { v[0] = x; v[1] = y; v[2] = z; } void get_value(real & x, real & y, real & z) const { x = v[0]; y = v[1]; z = v[2]; } vec3 cross( const vec3 &rhs ) const { vec3 rt; rt.v[0] = v[1]*rhs.v[2]-v[2]*rhs.v[1]; rt.v[1] = v[2]*rhs.v[0]-v[0]*rhs.v[2]; rt.v[2] = v[0]*rhs.v[1]-v[1]*rhs.v[0]; return rt; } vec3 & set_value( const real & x, const real & y, const real & z) { v[0] = x; v[1] = y; v[2] = z; return *this; } }; class vec4 : public vec<4,real> { public: vec4(const real & t = real()) : vec<4,real>(t) {} vec4(const vec<4,real> & t) : vec<4,real>(t) {} vec4(const vec<3,real> & t, real fourth) { v[0] = t.v[0]; v[1] = t.v[1]; v[2] = t.v[2]; v[3] = fourth; } vec4(const real * tp) : vec<4,real>(tp) {} vec4(real x, real y, real z, real w) { v[0] = x; v[1] = y; v[2] = z; v[3] = w; } void get_value(real & x, real & y, real & z, real & w) const { x = v[0]; y = v[1]; z = v[2]; w = v[3]; } vec4 & set_value( const real & x, const real & y, const real & z, const real & w) { v[0] = x; v[1] = y; v[2] = z; v[3] = w; return *this; } }; inline vec3 homogenize(const vec4 & v) { vec3 rt; assert(v.v[3] != GLH_ZERO); rt.v[0] = v.v[0]/v.v[3]; rt.v[1] = v.v[1]/v.v[3]; rt.v[2] = v.v[2]/v.v[3]; return rt; } class line { public: line() { set_value(vec3(0,0,0),vec3(0,0,1)); } line( const vec3 & p0, const vec3 &p1) { set_value(p0,p1); } void set_value( const vec3 &p0, const vec3 &p1) { position = p0; direction = p1-p0; direction.normalize(); } bool get_closest_points(const line &line2, vec3 &pointOnThis, vec3 &pointOnThat) { // quick check to see if parallel -- if so, quit. if(fabs(direction.dot(line2.direction)) == 1.0) return 0; line l2 = line2; // Algorithm: Brian Jean // register real u; register real v; vec3 Vr = direction; vec3 Vs = l2.direction; register real Vr_Dot_Vs = Vr.dot(Vs); register real detA = real(1.0 - (Vr_Dot_Vs * Vr_Dot_Vs)); vec3 C = l2.position - position; register real C_Dot_Vr = C.dot(Vr); register real C_Dot_Vs = C.dot(Vs); u = (C_Dot_Vr - Vr_Dot_Vs * C_Dot_Vs)/detA; v = (C_Dot_Vr * Vr_Dot_Vs - C_Dot_Vs)/detA; pointOnThis = position; pointOnThis += direction * u; pointOnThat = l2.position; pointOnThat += l2.direction * v; return 1; } vec3 get_closest_point(const vec3 &point) { vec3 np = point - position; vec3 rp = direction*direction.dot(np)+position; return rp; } const vec3 & get_position() const {return position;} const vec3 & get_direction() const {return direction;} //protected: vec3 position; vec3 direction; }; // matrix class matrix4 { public: matrix4() { make_identity(); } matrix4( real r ) { set_value(r); } matrix4( real * m ) { set_value(m); } matrix4( real a00, real a01, real a02, real a03, real a10, real a11, real a12, real a13, real a20, real a21, real a22, real a23, real a30, real a31, real a32, real a33 ) { element(0,0) = a00; element(0,1) = a01; element(0,2) = a02; element(0,3) = a03; element(1,0) = a10; element(1,1) = a11; element(1,2) = a12; element(1,3) = a13; element(2,0) = a20; element(2,1) = a21; element(2,2) = a22; element(2,3) = a23; element(3,0) = a30; element(3,1) = a31; element(3,2) = a32; element(3,3) = a33; } void get_value( real * mp ) const { int c = 0; for(int j=0; j < 4; j++) for(int i=0; i < 4; i++) mp[c++] = element(i,j); } const real * get_value() const { return m; } void set_value( real * mp) { int c = 0; for(int j=0; j < 4; j++) for(int i=0; i < 4; i++) element(i,j) = mp[c++]; } void set_value( real r ) { for(int i=0; i < 4; i++) for(int j=0; j < 4; j++) element(i,j) = r; } void make_identity() { element(0,0) = 1.0; element(0,1) = 0.0; element(0,2) = 0.0; element(0,3) = 0.0; element(1,0) = 0.0; element(1,1) = 1.0; element(1,2) = 0.0; element(1,3) = 0.0; element(2,0) = 0.0; element(2,1) = 0.0; element(2,2) = 1.0; element(2,3) = 0.0; element(3,0) = 0.0; element(3,1) = 0.0; element(3,2) = 0.0; element(3,3) = 1.0; } static matrix4 identity() { static matrix4 mident ( 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0 ); return mident; } void set_scale( real s ) { element(0,0) = s; element(1,1) = s; element(2,2) = s; } void set_scale( const vec3 & s ) { element(0,0) = s.v[0]; element(1,1) = s.v[1]; element(2,2) = s.v[2]; } void set_translate( const vec3 & t ) { element(0,3) = t.v[0]; element(1,3) = t.v[1]; element(2,3) = t.v[2]; } void set_row(int r, const vec4 & t) { element(r,0) = t.v[0]; element(r,1) = t.v[1]; element(r,2) = t.v[2]; element(r,3) = t.v[3]; } void set_column(int c, const vec4 & t) { element(0,c) = t.v[0]; element(1,c) = t.v[1]; element(2,c) = t.v[2]; element(3,c) = t.v[3]; } void get_row(int r, vec4 & t) const { t.v[0] = element(r,0); t.v[1] = element(r,1); t.v[2] = element(r,2); t.v[3] = element(r,3); } vec4 get_row(int r) const { vec4 v; get_row(r, v); return v; } void get_column(int c, vec4 & t) const { t.v[0] = element(0,c); t.v[1] = element(1,c); t.v[2] = element(2,c); t.v[3] = element(3,c); } vec4 get_column(int c) const { vec4 v; get_column(c, v); return v; } matrix4 inverse() const { matrix4 minv; real r1[8], r2[8], r3[8], r4[8]; real *s[4], *tmprow; s[0] = &r1[0]; s[1] = &r2[0]; s[2] = &r3[0]; s[3] = &r4[0]; register int i,j,p,jj; for(i=0;i<4;i++) { for(j=0;j<4;j++) { s[i][j] = element(i,j); if(i==j) s[i][j+4] = 1.0; else s[i][j+4] = 0.0; } } real scp[4]; for(i=0;i<4;i++) { scp[i] = real(fabs(s[i][0])); for(j=1;j<4;j++) if(real(fabs(s[i][j])) > scp[i]) scp[i] = real(fabs(s[i][j])); if(scp[i] == 0.0) return minv; // singular matrix! } int pivot_to; real scp_max; for(i=0;i<4;i++) { // select pivot row pivot_to = i; scp_max = real(fabs(s[i][i]/scp[i])); // find out which row should be on top for(p=i+1;p<4;p++) if(real(fabs(s[p][i]/scp[p])) > scp_max) { scp_max = real(fabs(s[p][i]/scp[p])); pivot_to = p; } // Pivot if necessary if(pivot_to != i) { tmprow = s[i]; s[i] = s[pivot_to]; s[pivot_to] = tmprow; real tmpscp; tmpscp = scp[i]; scp[i] = scp[pivot_to]; scp[pivot_to] = tmpscp; } real mji; // perform gaussian elimination for(j=i+1;j<4;j++) { mji = s[j][i]/s[i][i]; s[j][i] = 0.0; for(jj=i+1;jj<8;jj++) s[j][jj] -= mji*s[i][jj]; } } if(s[3][3] == 0.0) return minv; // singular matrix! // // Now we have an upper triangular matrix. // // x x x x | y y y y // 0 x x x | y y y y // 0 0 x x | y y y y // 0 0 0 x | y y y y // // we'll back substitute to get the inverse // // 1 0 0 0 | z z z z // 0 1 0 0 | z z z z // 0 0 1 0 | z z z z // 0 0 0 1 | z z z z // real mij; for(i=3;i>0;i--) { for(j=i-1;j > -1; j--) { mij = s[j][i]/s[i][i]; for(jj=j+1;jj<8;jj++) s[j][jj] -= mij*s[i][jj]; } } for(i=0;i<4;i++) for(j=0;j<4;j++) minv(i,j) = s[i][j+4] / s[i][i]; return minv; } matrix4 transpose() const { matrix4 mtrans; for(int i=0;i<4;i++) for(int j=0;j<4;j++) mtrans(i,j) = element(j,i); return mtrans; } matrix4 & mult_right( const matrix4 & b ) { matrix4 mt(*this); set_value(real(0)); for(int i=0; i < 4; i++) for(int j=0; j < 4; j++) for(int c=0; c < 4; c++) element(i,j) += mt(i,c) * b(c,j); return *this; } matrix4 & mult_left( const matrix4 & b ) { matrix4 mt(*this); set_value(real(0)); for(int i=0; i < 4; i++) for(int j=0; j < 4; j++) for(int c=0; c < 4; c++) element(i,j) += b(i,c) * mt(c,j); return *this; } // dst = M * src void mult_matrix_vec( const vec3 &src, vec3 &dst ) const { real w = ( src.v[0] * element(3,0) + src.v[1] * element(3,1) + src.v[2] * element(3,2) + element(3,3) ); assert(w != GLH_ZERO); dst.v[0] = ( src.v[0] * element(0,0) + src.v[1] * element(0,1) + src.v[2] * element(0,2) + element(0,3) ) / w; dst.v[1] = ( src.v[0] * element(1,0) + src.v[1] * element(1,1) + src.v[2] * element(1,2) + element(1,3) ) / w; dst.v[2] = ( src.v[0] * element(2,0) + src.v[1] * element(2,1) + src.v[2] * element(2,2) + element(2,3) ) / w; } void mult_matrix_vec( vec3 & src_and_dst) const { mult_matrix_vec(vec3(src_and_dst), src_and_dst); } // dst = src * M void mult_vec_matrix( const vec3 &src, vec3 &dst ) const { real w = ( src.v[0] * element(0,3) + src.v[1] * element(1,3) + src.v[2] * element(2,3) + element(3,3) ); assert(w != GLH_ZERO); dst.v[0] = ( src.v[0] * element(0,0) + src.v[1] * element(1,0) + src.v[2] * element(2,0) + element(3,0) ) / w; dst.v[1] = ( src.v[0] * element(0,1) + src.v[1] * element(1,1) + src.v[2] * element(2,1) + element(3,1) ) / w; dst.v[2] = ( src.v[0] * element(0,2) + src.v[1] * element(1,2) + src.v[2] * element(2,2) + element(3,2) ) / w; } void mult_vec_matrix( vec3 & src_and_dst) const { mult_vec_matrix(vec3(src_and_dst), src_and_dst); } // dst = M * src void mult_matrix_vec( const vec4 &src, vec4 &dst ) const { dst.v[0] = ( src.v[0] * element(0,0) + src.v[1] * element(0,1) + src.v[2] * element(0,2) + src.v[3] * element(0,3)); dst.v[1] = ( src.v[0] * element(1,0) + src.v[1] * element(1,1) + src.v[2] * element(1,2) + src.v[3] * element(1,3)); dst.v[2] = ( src.v[0] * element(2,0) + src.v[1] * element(2,1) + src.v[2] * element(2,2) + src.v[3] * element(2,3)); dst.v[3] = ( src.v[0] * element(3,0) + src.v[1] * element(3,1) + src.v[2] * element(3,2) + src.v[3] * element(3,3)); } void mult_matrix_vec( vec4 & src_and_dst) const { mult_matrix_vec(vec4(src_and_dst), src_and_dst); } // dst = src * M void mult_vec_matrix( const vec4 &src, vec4 &dst ) const { dst.v[0] = ( src.v[0] * element(0,0) + src.v[1] * element(1,0) + src.v[2] * element(2,0) + src.v[3] * element(3,0)); dst.v[1] = ( src.v[0] * element(0,1) + src.v[1] * element(1,1) + src.v[2] * element(2,1) + src.v[3] * element(3,1)); dst.v[2] = ( src.v[0] * element(0,2) + src.v[1] * element(1,2) + src.v[2] * element(2,2) + src.v[3] * element(3,2)); dst.v[3] = ( src.v[0] * element(0,3) + src.v[1] * element(1,3) + src.v[2] * element(2,3) + src.v[3] * element(3,3)); } void mult_vec_matrix( vec4 & src_and_dst) const { mult_vec_matrix(vec4(src_and_dst), src_and_dst); } // dst = M * src void mult_matrix_dir( const vec3 &src, vec3 &dst ) const { dst.v[0] = ( src.v[0] * element(0,0) + src.v[1] * element(0,1) + src.v[2] * element(0,2) ) ; dst.v[1] = ( src.v[0] * element(1,0) + src.v[1] * element(1,1) + src.v[2] * element(1,2) ) ; dst.v[2] = ( src.v[0] * element(2,0) + src.v[1] * element(2,1) + src.v[2] * element(2,2) ) ; } void mult_matrix_dir( vec3 & src_and_dst) const { mult_matrix_dir(vec3(src_and_dst), src_and_dst); } // dst = src * M void mult_dir_matrix( const vec3 &src, vec3 &dst ) const { dst.v[0] = ( src.v[0] * element(0,0) + src.v[1] * element(1,0) + src.v[2] * element(2,0) ) ; dst.v[1] = ( src.v[0] * element(0,1) + src.v[1] * element(1,1) + src.v[2] * element(2,1) ) ; dst.v[2] = ( src.v[0] * element(0,2) + src.v[1] * element(1,2) + src.v[2] * element(2,2) ) ; } void mult_dir_matrix( vec3 & src_and_dst) const { mult_dir_matrix(vec3(src_and_dst), src_and_dst); } real & operator () (int row, int col) { return element(row,col); } const real & operator () (int row, int col) const { return element(row,col); } real & element (int row, int col) { return m[row | (col<<2)]; } const real & element (int row, int col) const { return m[row | (col<<2)]; } matrix4 & operator *= ( const matrix4 & mat ) { mult_right( mat ); return *this; } matrix4 & operator *= ( const real & r ) { for (int i = 0; i < 4; ++i) { element(0,i) *= r; element(1,i) *= r; element(2,i) *= r; element(3,i) *= r; } return *this; } matrix4 & operator += ( const matrix4 & mat ) { for (int i = 0; i < 4; ++i) { element(0,i) += mat.element(0,i); element(1,i) += mat.element(1,i); element(2,i) += mat.element(2,i); element(3,i) += mat.element(3,i); } return *this; } friend matrix4 operator * ( const matrix4 & m1, const matrix4 & m2 ); friend bool operator == ( const matrix4 & m1, const matrix4 & m2 ); friend bool operator != ( const matrix4 & m1, const matrix4 & m2 ); //protected: real m[16]; }; inline matrix4 operator * ( const matrix4 & m1, const matrix4 & m2 ) { matrix4 product; product = m1; product.mult_right(m2); return product; } inline bool operator ==( const matrix4 &m1, const matrix4 &m2 ) { return ( m1(0,0) == m2(0,0) && m1(0,1) == m2(0,1) && m1(0,2) == m2(0,2) && m1(0,3) == m2(0,3) && m1(1,0) == m2(1,0) && m1(1,1) == m2(1,1) && m1(1,2) == m2(1,2) && m1(1,3) == m2(1,3) && m1(2,0) == m2(2,0) && m1(2,1) == m2(2,1) && m1(2,2) == m2(2,2) && m1(2,3) == m2(2,3) && m1(3,0) == m2(3,0) && m1(3,1) == m2(3,1) && m1(3,2) == m2(3,2) && m1(3,3) == m2(3,3) ); } inline bool operator != ( const matrix4 & m1, const matrix4 & m2 ) { return !( m1 == m2 ); } class quaternion { public: quaternion() { *this = identity(); } quaternion( const real v[4] ) { set_value( v ); } quaternion( real q0, real q1, real q2, real q3 ) { set_value( q0, q1, q2, q3 ); } quaternion( const matrix4 & m ) { set_value( m ); } quaternion( const vec3 &axis, real radians ) { set_value( axis, radians ); } quaternion( const vec3 &rotateFrom, const vec3 &rotateTo ) { set_value( rotateFrom, rotateTo ); } quaternion( const vec3 & from_look, const vec3 & from_up, const vec3 & to_look, const vec3& to_up) { set_value(from_look, from_up, to_look, to_up); } const real * get_value() const { return &q[0]; } void get_value( real &q0, real &q1, real &q2, real &q3 ) const { q0 = q[0]; q1 = q[1]; q2 = q[2]; q3 = q[3]; } quaternion & set_value( real q0, real q1, real q2, real q3 ) { q[0] = q0; q[1] = q1; q[2] = q2; q[3] = q3; counter = 0; return *this; } void get_value( vec3 &axis, real &radians ) const { radians = real(acos( q[3] ) * GLH_TWO); if ( radians == GLH_ZERO ) axis = vec3( 0.0, 0.0, 1.0 ); else { axis.v[0] = q[0]; axis.v[1] = q[1]; axis.v[2] = q[2]; axis.normalize(); } } void get_value( matrix4 & m ) const { real s, xs, ys, zs, wx, wy, wz, xx, xy, xz, yy, yz, zz; real norm = q[0] * q[0] + q[1] * q[1] + q[2] * q[2] + q[3] * q[3]; s = (equivalent(norm,GLH_ZERO)) ? GLH_ZERO : ( GLH_TWO / norm ); xs = q[0] * s; ys = q[1] * s; zs = q[2] * s; wx = q[3] * xs; wy = q[3] * ys; wz = q[3] * zs; xx = q[0] * xs; xy = q[0] * ys; xz = q[0] * zs; yy = q[1] * ys; yz = q[1] * zs; zz = q[2] * zs; m(0,0) = real( GLH_ONE - ( yy + zz )); m(1,0) = real ( xy + wz ); m(2,0) = real ( xz - wy ); m(0,1) = real ( xy - wz ); m(1,1) = real ( GLH_ONE - ( xx + zz )); m(2,1) = real ( yz + wx ); m(0,2) = real ( xz + wy ); m(1,2) = real ( yz - wx ); m(2,2) = real ( GLH_ONE - ( xx + yy )); m(3,0) = m(3,1) = m(3,2) = m(0,3) = m(1,3) = m(2,3) = GLH_ZERO; m(3,3) = GLH_ONE; } quaternion & set_value( const real * qp ) { memcpy(q,qp,sizeof(real) * 4); counter = 0; return *this; } quaternion & set_value( const matrix4 & m ) { real tr, s; int i, j, k; const int nxt[3] = { 1, 2, 0 }; tr = m(0,0) + m(1,1) + m(2,2); if ( tr > GLH_ZERO ) { s = real(sqrt( tr + m(3,3) )); q[3] = real ( s * 0.5 ); s = real(0.5) / s; q[0] = real ( ( m(1,2) - m(2,1) ) * s ); q[1] = real ( ( m(2,0) - m(0,2) ) * s ); q[2] = real ( ( m(0,1) - m(1,0) ) * s ); } else { i = 0; if ( m(1,1) > m(0,0) ) i = 1; if ( m(2,2) > m(i,i) ) i = 2; j = nxt[i]; k = nxt[j]; s = real(sqrt( ( m(i,j) - ( m(j,j) + m(k,k) )) + GLH_ONE )); q[i] = real ( s * 0.5 ); s = real(0.5 / s); q[3] = real ( ( m(j,k) - m(k,j) ) * s ); q[j] = real ( ( m(i,j) + m(j,i) ) * s ); q[k] = real ( ( m(i,k) + m(k,i) ) * s ); } counter = 0; return *this; } quaternion & set_value( const vec3 &axis, real theta ) { real sqnorm = axis.square_norm(); if (sqnorm <= GLH_EPSILON) { // axis too small. x = y = z = 0.0; w = 1.0; } else { theta *= real(0.5); real sin_theta = real(sin(theta)); if (!equivalent(sqnorm,GLH_ONE)) sin_theta /= real(sqrt(sqnorm)); x = sin_theta * axis.v[0]; y = sin_theta * axis.v[1]; z = sin_theta * axis.v[2]; w = real(cos(theta)); } return *this; } quaternion & set_value( const vec3 & rotateFrom, const vec3 & rotateTo ) { vec3 p1, p2; real alpha; p1 = rotateFrom; p1.normalize(); p2 = rotateTo; p2.normalize(); alpha = p1.dot(p2); if(equivalent(alpha,GLH_ONE)) { *this = identity(); return *this; } // ensures that the anti-parallel case leads to a positive dot if(equivalent(alpha,-GLH_ONE)) { vec3 v; if(p1.v[0] != p1.v[1] || p1.v[0] != p1.v[2]) v = vec3(p1.v[1], p1.v[2], p1.v[0]); else v = vec3(-p1.v[0], p1.v[1], p1.v[2]); v -= p1 * p1.dot(v); v.normalize(); set_value(v, GLH_PI); return *this; } p1 = p1.cross(p2); p1.normalize(); set_value(p1,real(acos(alpha))); counter = 0; return *this; } quaternion & set_value( const vec3 & from_look, const vec3 & from_up, const vec3 & to_look, const vec3 & to_up) { quaternion r_look = quaternion(from_look, to_look); vec3 rotated_from_up(from_up); r_look.mult_vec(rotated_from_up); quaternion r_twist = quaternion(rotated_from_up, to_up); *this = r_twist; *this *= r_look; return *this; } quaternion & operator *= ( const quaternion & qr ) { quaternion ql(*this); w = ql.w * qr.w - ql.x * qr.x - ql.y * qr.y - ql.z * qr.z; x = ql.w * qr.x + ql.x * qr.w + ql.y * qr.z - ql.z * qr.y; y = ql.w * qr.y + ql.y * qr.w + ql.z * qr.x - ql.x * qr.z; z = ql.w * qr.z + ql.z * qr.w + ql.x * qr.y - ql.y * qr.x; counter += qr.counter; counter++; counter_normalize(); return *this; } void normalize() { real rnorm = GLH_ONE / real(sqrt(w * w + x * x + y * y + z * z)); if (equivalent(rnorm, GLH_ZERO)) return; x *= rnorm; y *= rnorm; z *= rnorm; w *= rnorm; counter = 0; } friend bool operator == ( const quaternion & q1, const quaternion & q2 ); friend bool operator != ( const quaternion & q1, const quaternion & q2 ); friend quaternion operator * ( const quaternion & q1, const quaternion & q2 ); bool equals( const quaternion & r, real tolerance ) const { real t; t = ( (q[0]-r.q[0])*(q[0]-r.q[0]) + (q[1]-r.q[1])*(q[1]-r.q[1]) + (q[2]-r.q[2])*(q[2]-r.q[2]) + (q[3]-r.q[3])*(q[3]-r.q[3]) ); if(t > GLH_EPSILON) return false; return 1; } quaternion & conjugate() { q[0] *= -GLH_ONE; q[1] *= -GLH_ONE; q[2] *= -GLH_ONE; return *this; } quaternion & invert() { return conjugate(); } quaternion inverse() const { quaternion r = *this; return r.invert(); } // // Quaternion multiplication with cartesian vector // v' = q*v*q(star) // void mult_vec( const vec3 &src, vec3 &dst ) const { real v_coef = w * w - x * x - y * y - z * z; real u_coef = GLH_TWO * (src.v[0] * x + src.v[1] * y + src.v[2] * z); real c_coef = GLH_TWO * w; dst.v[0] = v_coef * src.v[0] + u_coef * x + c_coef * (y * src.v[2] - z * src.v[1]); dst.v[1] = v_coef * src.v[1] + u_coef * y + c_coef * (z * src.v[0] - x * src.v[2]); dst.v[2] = v_coef * src.v[2] + u_coef * z + c_coef * (x * src.v[1] - y * src.v[0]); } void mult_vec( vec3 & src_and_dst) const { mult_vec(vec3(src_and_dst), src_and_dst); } void scale_angle( real scaleFactor ) { vec3 axis; real radians; get_value(axis, radians); radians *= scaleFactor; set_value(axis, radians); } static quaternion slerp( const quaternion & p, const quaternion & q, real alpha ) { quaternion r; real cos_omega = p.x * q.x + p.y * q.y + p.z * q.z + p.w * q.w; // if B is on opposite hemisphere from A, use -B instead int bflip; if ( ( bflip = (cos_omega < GLH_ZERO)) ) cos_omega = -cos_omega; // complementary interpolation parameter real beta = GLH_ONE - alpha; if(cos_omega <= GLH_ONE - GLH_EPSILON) return p; real omega = real(acos(cos_omega)); real one_over_sin_omega = GLH_ONE / real(sin(omega)); beta = real(sin(omega*beta) * one_over_sin_omega); alpha = real(sin(omega*alpha) * one_over_sin_omega); if (bflip) alpha = -alpha; r.x = beta * p.q[0]+ alpha * q.q[0]; r.y = beta * p.q[1]+ alpha * q.q[1]; r.z = beta * p.q[2]+ alpha * q.q[2]; r.w = beta * p.q[3]+ alpha * q.q[3]; return r; } static quaternion identity() { static quaternion ident( vec3( 0.0, 0.0, 0.0 ), GLH_ONE ); return ident; } real & operator []( int i ) { assert(i < 4); return q[i]; } const real & operator []( int i ) const { assert(i < 4); return q[i]; } protected: void counter_normalize() { if (counter > GLH_QUATERNION_NORMALIZATION_THRESHOLD) normalize(); } union { struct { real q[4]; }; struct { real x; real y; real z; real w; }; }; // renormalization counter unsigned char counter; }; inline bool operator == ( const quaternion & q1, const quaternion & q2 ) { return (equivalent(q1.x, q2.x) && equivalent(q1.y, q2.y) && equivalent(q1.z, q2.z) && equivalent(q1.w, q2.w) ); } inline bool operator != ( const quaternion & q1, const quaternion & q2 ) { return ! ( q1 == q2 ); } inline quaternion operator * ( const quaternion & q1, const quaternion & q2 ) { quaternion r(q1); r *= q2; return r; } class plane { public: plane() { planedistance = 0.0; planenormal.set_value( 0.0, 0.0, 1.0 ); } plane( const vec3 &p0, const vec3 &p1, const vec3 &p2 ) { vec3 v0 = p1 - p0; vec3 v1 = p2 - p0; planenormal = v0.cross(v1); planenormal.normalize(); planedistance = p0.dot(planenormal); } plane( const vec3 &normal, real distance ) { planedistance = distance; planenormal = normal; planenormal.normalize(); } plane( const vec3 &normal, const vec3 &point ) { planenormal = normal; planenormal.normalize(); planedistance = point.dot(planenormal); } void offset( real d ) { planedistance += d; } bool intersect( const line &l, vec3 &intersection ) const { vec3 pos, dir; vec3 pn = planenormal; real pd = planedistance; pos = l.get_position(); dir = l.get_direction(); if(dir.dot(pn) == 0.0) return 0; pos -= pn*pd; // now we're talking about a plane passing through the origin if(pos.dot(pn) < 0.0) pn.negate(); if(dir.dot(pn) > 0.0) dir.negate(); vec3 ppos = pn * pos.dot(pn); pos = (ppos.length()/dir.dot(-pn))*dir; intersection = l.get_position(); intersection += pos; return 1; } void transform( const matrix4 &matrix ) { matrix4 invtr = matrix.inverse(); invtr = invtr.transpose(); vec3 pntOnplane = planenormal * planedistance; vec3 newPntOnplane; vec3 newnormal; invtr.mult_dir_matrix(planenormal, newnormal); matrix.mult_vec_matrix(pntOnplane, newPntOnplane); newnormal.normalize(); planenormal = newnormal; planedistance = newPntOnplane.dot(planenormal); } bool is_in_half_space( const vec3 &point ) const { if(( point.dot(planenormal) - planedistance) < 0.0) return 0; return 1; } real distance( const vec3 & point ) const { return planenormal.dot(point - planenormal*planedistance); } const vec3 &get_normal() const { return planenormal; } real get_distance_from_origin() const { return planedistance; } friend bool operator == ( const plane & p1, const plane & p2 ); friend bool operator != ( const plane & p1, const plane & p2 ); //protected: vec3 planenormal; real planedistance; }; inline bool operator == (const plane & p1, const plane & p2 ) { return ( p1.planedistance == p2.planedistance && p1.planenormal == p2.planenormal); } inline bool operator != ( const plane & p1, const plane & p2 ) { return ! (p1 == p2); } } // "ns_##GLH_REAL" // make common typedefs... #ifdef GLH_REAL_IS_FLOAT typedef GLH_REAL_NAMESPACE::vec2 vec2f; typedef GLH_REAL_NAMESPACE::vec3 vec3f; typedef GLH_REAL_NAMESPACE::vec4 vec4f; typedef GLH_REAL_NAMESPACE::quaternion quaternionf; typedef GLH_REAL_NAMESPACE::quaternion rotationf; typedef GLH_REAL_NAMESPACE::line linef; typedef GLH_REAL_NAMESPACE::plane planef; typedef GLH_REAL_NAMESPACE::matrix4 matrix4f; #endif } // namespace glh #endif