/** * @file v4math.h * @brief LLVector4 class header file. * * $LicenseInfo:firstyear=2000&license=viewergpl$ * * Copyright (c) 2000-2007, Linden Research, Inc. * * Second Life Viewer Source Code * The source code in this file ("Source Code") is provided by Linden Lab * to you under the terms of the GNU General Public License, version 2.0 * ("GPL"), unless you have obtained a separate licensing agreement * ("Other License"), formally executed by you and Linden Lab. Terms of * the GPL can be found in doc/GPL-license.txt in this distribution, or * online at http://secondlife.com/developers/opensource/gplv2 * * There are special exceptions to the terms and conditions of the GPL as * it is applied to this Source Code. View the full text of the exception * in the file doc/FLOSS-exception.txt in this software distribution, or * online at http://secondlife.com/developers/opensource/flossexception * * By copying, modifying or distributing this software, you acknowledge * that you have read and understood your obligations described above, * and agree to abide by those obligations. * * ALL LINDEN LAB SOURCE CODE IS PROVIDED "AS IS." LINDEN LAB MAKES NO * WARRANTIES, EXPRESS, IMPLIED OR OTHERWISE, REGARDING ITS ACCURACY, * COMPLETENESS OR PERFORMANCE. * $/LicenseInfo$ */ #ifndef LL_V4MATH_H #define LL_V4MATH_H #include "llerror.h" #include "llmath.h" #include "v3math.h" class LLMatrix3; class LLMatrix4; class LLQuaternion; // LLVector4 = |x y z w| static const U32 LENGTHOFVECTOR4 = 4; class LLVector4 { public: F32 mV[LENGTHOFVECTOR4]; LLVector4(); // Initializes LLVector4 to (0, 0, 0, 1) explicit LLVector4(const F32 *vec); // Initializes LLVector4 to (vec[0]. vec[1], vec[2], vec[3]) explicit LLVector4(const F64 *vec); // Initialized LLVector4 to ((F32) vec[0], (F32) vec[1], (F32) vec[3], (F32) vec[4]); explicit LLVector4(const LLVector3 &vec); // Initializes LLVector4 to (vec, 1) explicit LLVector4(const LLVector3 &vec, F32 w); // Initializes LLVector4 to (vec, w) LLVector4(F32 x, F32 y, F32 z); // Initializes LLVector4 to (x. y, z, 1) LLVector4(F32 x, F32 y, F32 z, F32 w); LLSD getValue() const { LLSD ret; ret[0] = mV[0]; ret[1] = mV[1]; ret[2] = mV[2]; ret[3] = mV[3]; return ret; } inline BOOL isFinite() const; // checks to see if all values of LLVector3 are finite inline void clearVec(); // Clears LLVector4 to (0, 0, 0, 1) inline void zeroVec(); // zero LLVector4 to (0, 0, 0, 0) inline void setVec(F32 x, F32 y, F32 z); // Sets LLVector4 to (x, y, z, 1) inline void setVec(F32 x, F32 y, F32 z, F32 w); // Sets LLVector4 to (x, y, z, w) inline void setVec(const LLVector4 &vec); // Sets LLVector4 to vec inline void setVec(const LLVector3 &vec, F32 w = 1.f); // Sets LLVector4 to LLVector3 vec inline void setVec(const F32 *vec); // Sets LLVector4 to vec F32 magVec() const; // Returns magnitude of LLVector4 F32 magVecSquared() const; // Returns magnitude squared of LLVector4 F32 normVec(); // Normalizes and returns the magnitude of LLVector4 // Sets all values to absolute value of their original values // Returns TRUE if data changed BOOL abs(); BOOL isExactlyClear() const { return (mV[VW] == 1.0f) && !mV[VX] && !mV[VY] && !mV[VZ]; } BOOL isExactlyZero() const { return !mV[VW] && !mV[VX] && !mV[VY] && !mV[VZ]; } const LLVector4& rotVec(F32 angle, const LLVector4 &vec); // Rotates about vec by angle radians const LLVector4& rotVec(F32 angle, F32 x, F32 y, F32 z); // Rotates about x,y,z by angle radians const LLVector4& rotVec(const LLMatrix4 &mat); // Rotates by MAT4 mat const LLVector4& rotVec(const LLQuaternion &q); // Rotates by QUAT q const LLVector4& scaleVec(const LLVector4& vec); // Scales component-wise by vec F32 operator[](int idx) const { return mV[idx]; } F32 &operator[](int idx) { return mV[idx]; } friend std::ostream& operator<<(std::ostream& s, const LLVector4 &a); // Print a friend LLVector4 operator+(const LLVector4 &a, const LLVector4 &b); // Return vector a + b friend LLVector4 operator-(const LLVector4 &a, const LLVector4 &b); // Return vector a minus b friend F32 operator*(const LLVector4 &a, const LLVector4 &b); // Return a dot b friend LLVector4 operator%(const LLVector4 &a, const LLVector4 &b); // Return a cross b friend LLVector4 operator/(const LLVector4 &a, F32 k); // Return a divided by scaler k friend LLVector4 operator*(const LLVector4 &a, F32 k); // Return a times scaler k friend LLVector4 operator*(F32 k, const LLVector4 &a); // Return a times scaler k friend bool operator==(const LLVector4 &a, const LLVector4 &b); // Return a == b friend bool operator!=(const LLVector4 &a, const LLVector4 &b); // Return a != b friend const LLVector4& operator+=(LLVector4 &a, const LLVector4 &b); // Return vector a + b friend const LLVector4& operator-=(LLVector4 &a, const LLVector4 &b); // Return vector a minus b friend const LLVector4& operator%=(LLVector4 &a, const LLVector4 &b); // Return a cross b friend const LLVector4& operator*=(LLVector4 &a, F32 k); // Return a times scaler k friend const LLVector4& operator/=(LLVector4 &a, F32 k); // Return a divided by scaler k friend LLVector4 operator-(const LLVector4 &a); // Return vector -a }; // Non-member functions F32 angle_between(const LLVector4 &a, const LLVector4 &b); // Returns angle (radians) between a and b BOOL are_parallel(const LLVector4 &a, const LLVector4 &b, F32 epsilon=F_APPROXIMATELY_ZERO); // Returns TRUE if a and b are very close to parallel F32 dist_vec(const LLVector4 &a, const LLVector4 &b); // Returns distance between a and b F32 dist_vec_squared(const LLVector4 &a, const LLVector4 &b); // Returns distance squared between a and b LLVector3 vec4to3(const LLVector4 &vec); LLVector4 vec3to4(const LLVector3 &vec); LLVector4 lerp(const LLVector4 &a, const LLVector4 &b, F32 u); // Returns a vector that is a linear interpolation between a and b // Constructors inline LLVector4::LLVector4(void) { mV[VX] = 0.f; mV[VY] = 0.f; mV[VZ] = 0.f; mV[VW] = 1.f; } inline LLVector4::LLVector4(F32 x, F32 y, F32 z) { mV[VX] = x; mV[VY] = y; mV[VZ] = z; mV[VW] = 1.f; } inline LLVector4::LLVector4(F32 x, F32 y, F32 z, F32 w) { mV[VX] = x; mV[VY] = y; mV[VZ] = z; mV[VW] = w; } inline LLVector4::LLVector4(const F32 *vec) { mV[VX] = vec[VX]; mV[VY] = vec[VY]; mV[VZ] = vec[VZ]; mV[VW] = vec[VW]; } inline LLVector4::LLVector4(const F64 *vec) { mV[VX] = (F32) vec[VX]; mV[VY] = (F32) vec[VY]; mV[VZ] = (F32) vec[VZ]; mV[VW] = (F32) vec[VW]; } inline LLVector4::LLVector4(const LLVector3 &vec) { mV[VX] = vec.mV[VX]; mV[VY] = vec.mV[VY]; mV[VZ] = vec.mV[VZ]; mV[VW] = 1.f; } inline LLVector4::LLVector4(const LLVector3 &vec, F32 w) { mV[VX] = vec.mV[VX]; mV[VY] = vec.mV[VY]; mV[VZ] = vec.mV[VZ]; mV[VW] = w; } inline BOOL LLVector4::isFinite() const { return (llfinite(mV[VX]) && llfinite(mV[VY]) && llfinite(mV[VZ]) && llfinite(mV[VW])); } // Clear and Assignment Functions inline void LLVector4::clearVec(void) { mV[VX] = 0.f; mV[VY] = 0.f; mV[VZ] = 0.f; mV[VW] = 1.f; } inline void LLVector4::zeroVec(void) { mV[VX] = 0.f; mV[VY] = 0.f; mV[VZ] = 0.f; mV[VW] = 0.f; } inline void LLVector4::setVec(F32 x, F32 y, F32 z) { mV[VX] = x; mV[VY] = y; mV[VZ] = z; mV[VW] = 1.f; } inline void LLVector4::setVec(F32 x, F32 y, F32 z, F32 w) { mV[VX] = x; mV[VY] = y; mV[VZ] = z; mV[VW] = w; } inline void LLVector4::setVec(const LLVector4 &vec) { mV[VX] = vec.mV[VX]; mV[VY] = vec.mV[VY]; mV[VZ] = vec.mV[VZ]; mV[VW] = vec.mV[VW]; } inline void LLVector4::setVec(const LLVector3 &vec, F32 w) { mV[VX] = vec.mV[VX]; mV[VY] = vec.mV[VY]; mV[VZ] = vec.mV[VZ]; mV[VW] = w; } inline void LLVector4::setVec(const F32 *vec) { mV[VX] = vec[VX]; mV[VY] = vec[VY]; mV[VZ] = vec[VZ]; mV[VW] = vec[VW]; } // LLVector4 Magnitude and Normalization Functions inline F32 LLVector4::magVec(void) const { return fsqrtf(mV[VX]*mV[VX] + mV[VY]*mV[VY] + mV[VZ]*mV[VZ]); } inline F32 LLVector4::magVecSquared(void) const { return mV[VX]*mV[VX] + mV[VY]*mV[VY] + mV[VZ]*mV[VZ]; } // LLVector4 Operators inline LLVector4 operator+(const LLVector4 &a, const LLVector4 &b) { LLVector4 c(a); return c += b; } inline LLVector4 operator-(const LLVector4 &a, const LLVector4 &b) { LLVector4 c(a); return c -= b; } inline F32 operator*(const LLVector4 &a, const LLVector4 &b) { return (a.mV[VX]*b.mV[VX] + a.mV[VY]*b.mV[VY] + a.mV[VZ]*b.mV[VZ]); } inline LLVector4 operator%(const LLVector4 &a, const LLVector4 &b) { return LLVector4(a.mV[VY]*b.mV[VZ] - b.mV[VY]*a.mV[VZ], a.mV[VZ]*b.mV[VX] - b.mV[VZ]*a.mV[VX], a.mV[VX]*b.mV[VY] - b.mV[VX]*a.mV[VY]); } inline LLVector4 operator/(const LLVector4 &a, F32 k) { F32 t = 1.f / k; return LLVector4( a.mV[VX] * t, a.mV[VY] * t, a.mV[VZ] * t ); } inline LLVector4 operator*(const LLVector4 &a, F32 k) { return LLVector4( a.mV[VX] * k, a.mV[VY] * k, a.mV[VZ] * k ); } inline LLVector4 operator*(F32 k, const LLVector4 &a) { return LLVector4( a.mV[VX] * k, a.mV[VY] * k, a.mV[VZ] * k ); } inline bool operator==(const LLVector4 &a, const LLVector4 &b) { return ( (a.mV[VX] == b.mV[VX]) &&(a.mV[VY] == b.mV[VY]) &&(a.mV[VZ] == b.mV[VZ])); } inline bool operator!=(const LLVector4 &a, const LLVector4 &b) { return ( (a.mV[VX] != b.mV[VX]) ||(a.mV[VY] != b.mV[VY]) ||(a.mV[VZ] != b.mV[VZ])); } inline const LLVector4& operator+=(LLVector4 &a, const LLVector4 &b) { a.mV[VX] += b.mV[VX]; a.mV[VY] += b.mV[VY]; a.mV[VZ] += b.mV[VZ]; return a; } inline const LLVector4& operator-=(LLVector4 &a, const LLVector4 &b) { a.mV[VX] -= b.mV[VX]; a.mV[VY] -= b.mV[VY]; a.mV[VZ] -= b.mV[VZ]; return a; } inline const LLVector4& operator%=(LLVector4 &a, const LLVector4 &b) { LLVector4 ret(a.mV[VY]*b.mV[VZ] - b.mV[VY]*a.mV[VZ], a.mV[VZ]*b.mV[VX] - b.mV[VZ]*a.mV[VX], a.mV[VX]*b.mV[VY] - b.mV[VX]*a.mV[VY]); a = ret; return a; } inline const LLVector4& operator*=(LLVector4 &a, F32 k) { a.mV[VX] *= k; a.mV[VY] *= k; a.mV[VZ] *= k; return a; } inline const LLVector4& operator/=(LLVector4 &a, F32 k) { F32 t = 1.f / k; a.mV[VX] *= t; a.mV[VY] *= t; a.mV[VZ] *= t; return a; } inline LLVector4 operator-(const LLVector4 &a) { return LLVector4( -a.mV[VX], -a.mV[VY], -a.mV[VZ] ); } inline F32 dist_vec(const LLVector4 &a, const LLVector4 &b) { LLVector4 vec = a - b; return (vec.magVec()); } inline F32 dist_vec_squared(const LLVector4 &a, const LLVector4 &b) { LLVector4 vec = a - b; return (vec.magVecSquared()); } inline LLVector4 lerp(const LLVector4 &a, const LLVector4 &b, F32 u) { return LLVector4( a.mV[VX] + (b.mV[VX] - a.mV[VX]) * u, a.mV[VY] + (b.mV[VY] - a.mV[VY]) * u, a.mV[VZ] + (b.mV[VZ] - a.mV[VZ]) * u, a.mV[VW] + (b.mV[VW] - a.mV[VW]) * u); } inline F32 LLVector4::normVec(void) { F32 mag = fsqrtf(mV[VX]*mV[VX] + mV[VY]*mV[VY] + mV[VZ]*mV[VZ]); F32 oomag; if (mag > FP_MAG_THRESHOLD) { oomag = 1.f/mag; mV[VX] *= oomag; mV[VY] *= oomag; mV[VZ] *= oomag; } else { mV[0] = 0.f; mV[1] = 0.f; mV[2] = 0.f; mag = 0; } return (mag); } #endif