/** * @file v3math.h * @brief LLVector3 class header file. * * Copyright (c) 2000-2007, Linden Research, Inc. * * Second Life Viewer Source Code * The source code in this file ("Source Code") is provided by Linden Lab * to you under the terms of the GNU General Public License, version 2.0 * ("GPL"), unless you have obtained a separate licensing agreement * ("Other License"), formally executed by you and Linden Lab. Terms of * the GPL can be found in doc/GPL-license.txt in this distribution, or * online at http://secondlife.com/developers/opensource/gplv2 * * There are special exceptions to the terms and conditions of the GPL as * it is applied to this Source Code. View the full text of the exception * in the file doc/FLOSS-exception.txt in this software distribution, or * online at http://secondlife.com/developers/opensource/flossexception * * By copying, modifying or distributing this software, you acknowledge * that you have read and understood your obligations described above, * and agree to abide by those obligations. * * ALL LINDEN LAB SOURCE CODE IS PROVIDED "AS IS." LINDEN LAB MAKES NO * WARRANTIES, EXPRESS, IMPLIED OR OTHERWISE, REGARDING ITS ACCURACY, * COMPLETENESS OR PERFORMANCE. */ #ifndef LL_V3MATH_H #define LL_V3MATH_H #include "llerror.h" #include "llmath.h" #include "llsd.h" class LLVector4; class LLMatrix3; class LLVector3d; class LLQuaternion; // LLvector3 = |x y z w| static const U32 LENGTHOFVECTOR3 = 3; class LLVector3 { public: F32 mV[LENGTHOFVECTOR3]; static const LLVector3 zero; static const LLVector3 x_axis; static const LLVector3 y_axis; static const LLVector3 z_axis; static const LLVector3 x_axis_neg; static const LLVector3 y_axis_neg; static const LLVector3 z_axis_neg; static const LLVector3 all_one; inline LLVector3(); // Initializes LLVector3 to (0, 0, 0) inline LLVector3(const F32 x, const F32 y, const F32 z); // Initializes LLVector3 to (x. y, z) inline explicit LLVector3(const F32 *vec); // Initializes LLVector3 to (vec[0]. vec[1], vec[2]) explicit LLVector3(const LLVector3d &vec); // Initializes LLVector3 to (vec[0]. vec[1], vec[2]) explicit LLVector3(const LLVector4 &vec); // Initializes LLVector4 to (vec[0]. vec[1], vec[2]) LLVector3(const LLSD& sd); LLSD getValue() const; void setValue(const LLSD& sd); const LLVector3& operator=(const LLSD& sd); inline BOOL isFinite() const; // checks to see if all values of LLVector3 are finite BOOL clamp(F32 min, F32 max); // Clamps all values to (min,max), returns TRUE if data changed void quantize16(F32 lowerxy, F32 upperxy, F32 lowerz, F32 upperz); // changes the vector to reflect quatization void quantize8(F32 lowerxy, F32 upperxy, F32 lowerz, F32 upperz); // changes the vector to reflect quatization void snap(S32 sig_digits); // snaps x,y,z to sig_digits decimal places BOOL abs(); // sets all values to absolute value of original value (first octant), returns TRUE if changed inline void clearVec(); // Clears LLVector3 to (0, 0, 0, 1) inline void zeroVec(); // Zero LLVector3 to (0, 0, 0, 0) inline void setVec(F32 x, F32 y, F32 z); // Sets LLVector3 to (x, y, z, 1) inline void setVec(const LLVector3 &vec); // Sets LLVector3 to vec inline void setVec(const F32 *vec); // Sets LLVector3 to vec const LLVector3& setVec(const LLVector4 &vec); const LLVector3& setVec(const LLVector3d &vec); // Sets LLVector3 to vec F32 magVec() const; // Returns magnitude of LLVector3 F32 magVecSquared() const; // Returns magnitude squared of LLVector3 inline F32 normVec(); // Normalizes and returns the magnitude of LLVector3 const LLVector3& rotVec(F32 angle, const LLVector3 &vec); // Rotates about vec by angle radians const LLVector3& rotVec(F32 angle, F32 x, F32 y, F32 z); // Rotates about x,y,z by angle radians const LLVector3& rotVec(const LLMatrix3 &mat); // Rotates by LLMatrix4 mat const LLVector3& rotVec(const LLQuaternion &q); // Rotates by LLQuaternion q const LLVector3& scaleVec(const LLVector3& vec); // scales per component by vec LLVector3 scaledVec(const LLVector3& vec) const; // get a copy of this vector scaled by vec BOOL isNull() const; // Returns TRUE if vector has a _very_small_ length BOOL isExactlyZero() const { return !mV[VX] && !mV[VY] && !mV[VZ]; } F32 operator[](int idx) const { return mV[idx]; } F32 &operator[](int idx) { return mV[idx]; } friend LLVector3 operator+(const LLVector3 &a, const LLVector3 &b); // Return vector a + b friend LLVector3 operator-(const LLVector3 &a, const LLVector3 &b); // Return vector a minus b friend F32 operator*(const LLVector3 &a, const LLVector3 &b); // Return a dot b friend LLVector3 operator%(const LLVector3 &a, const LLVector3 &b); // Return a cross b friend LLVector3 operator*(const LLVector3 &a, F32 k); // Return a times scaler k friend LLVector3 operator/(const LLVector3 &a, F32 k); // Return a divided by scaler k friend LLVector3 operator*(F32 k, const LLVector3 &a); // Return a times scaler k friend bool operator==(const LLVector3 &a, const LLVector3 &b); // Return a == b friend bool operator!=(const LLVector3 &a, const LLVector3 &b); // Return a != b // less than operator useful for using vectors as std::map keys friend bool operator<(const LLVector3 &a, const LLVector3 &b); // Return a < b friend const LLVector3& operator+=(LLVector3 &a, const LLVector3 &b); // Return vector a + b friend const LLVector3& operator-=(LLVector3 &a, const LLVector3 &b); // Return vector a minus b friend const LLVector3& operator%=(LLVector3 &a, const LLVector3 &b); // Return a cross b friend const LLVector3& operator*=(LLVector3 &a, const LLVector3 &b); // Returns a * b; friend const LLVector3& operator*=(LLVector3 &a, F32 k); // Return a times scaler k friend const LLVector3& operator/=(LLVector3 &a, F32 k); // Return a divided by scaler k friend const LLVector3& operator*=(LLVector3 &a, const LLQuaternion &b); // Returns a * b; friend LLVector3 operator-(const LLVector3 &a); // Return vector -a friend std::ostream& operator<<(std::ostream& s, const LLVector3 &a); // Stream a static BOOL parseVector3(const char* buf, LLVector3* value); }; typedef LLVector3 LLSimLocalVec; // Non-member functions F32 angle_between(const LLVector3 &a, const LLVector3 &b); // Returns angle (radians) between a and b BOOL are_parallel(const LLVector3 &a, const LLVector3 &b, F32 epsilon=F_APPROXIMATELY_ZERO); // Returns TRUE if a and b are very close to parallel F32 dist_vec(const LLVector3 &a, const LLVector3 &b); // Returns distance between a and b F32 dist_vec_squared(const LLVector3 &a, const LLVector3 &b);// Returns distance sqaured between a and b F32 dist_vec_squared2D(const LLVector3 &a, const LLVector3 &b);// Returns distance sqaured between a and b ignoring Z component LLVector3 projected_vec(const LLVector3 &a, const LLVector3 &b); // Returns vector a projected on vector b LLVector3 lerp(const LLVector3 &a, const LLVector3 &b, F32 u); // Returns a vector that is a linear interpolation between a and b inline LLVector3::LLVector3(void) { mV[0] = 0.f; mV[1] = 0.f; mV[2] = 0.f; } inline LLVector3::LLVector3(const F32 x, const F32 y, const F32 z) { mV[VX] = x; mV[VY] = y; mV[VZ] = z; } inline LLVector3::LLVector3(const F32 *vec) { mV[VX] = vec[VX]; mV[VY] = vec[VY]; mV[VZ] = vec[VZ]; } /* inline LLVector3::LLVector3(const LLVector3 ©) { mV[VX] = copy.mV[VX]; mV[VY] = copy.mV[VY]; mV[VZ] = copy.mV[VZ]; } */ // Destructors // checker inline BOOL LLVector3::isFinite() const { return (llfinite(mV[VX]) && llfinite(mV[VY]) && llfinite(mV[VZ])); } // Clear and Assignment Functions inline void LLVector3::clearVec(void) { mV[0] = 0.f; mV[1] = 0.f; mV[2] = 0.f; } inline void LLVector3::zeroVec(void) { mV[0] = 0.f; mV[1] = 0.f; mV[2] = 0.f; } inline void LLVector3::setVec(F32 x, F32 y, F32 z) { mV[VX] = x; mV[VY] = y; mV[VZ] = z; } inline void LLVector3::setVec(const LLVector3 &vec) { mV[0] = vec.mV[0]; mV[1] = vec.mV[1]; mV[2] = vec.mV[2]; } inline void LLVector3::setVec(const F32 *vec) { mV[0] = vec[0]; mV[1] = vec[1]; mV[2] = vec[2]; } inline F32 LLVector3::normVec(void) { F32 mag = fsqrtf(mV[0]*mV[0] + mV[1]*mV[1] + mV[2]*mV[2]); F32 oomag; if (mag > FP_MAG_THRESHOLD) { oomag = 1.f/mag; mV[0] *= oomag; mV[1] *= oomag; mV[2] *= oomag; } else { mV[0] = 0.f; mV[1] = 0.f; mV[2] = 0.f; mag = 0; } return (mag); } // LLVector3 Magnitude and Normalization Functions inline F32 LLVector3::magVec(void) const { return fsqrtf(mV[0]*mV[0] + mV[1]*mV[1] + mV[2]*mV[2]); } inline F32 LLVector3::magVecSquared(void) const { return mV[0]*mV[0] + mV[1]*mV[1] + mV[2]*mV[2]; } inline LLVector3 operator+(const LLVector3 &a, const LLVector3 &b) { LLVector3 c(a); return c += b; } inline LLVector3 operator-(const LLVector3 &a, const LLVector3 &b) { LLVector3 c(a); return c -= b; } inline F32 operator*(const LLVector3 &a, const LLVector3 &b) { return (a.mV[0]*b.mV[0] + a.mV[1]*b.mV[1] + a.mV[2]*b.mV[2]); } inline LLVector3 operator%(const LLVector3 &a, const LLVector3 &b) { return LLVector3( a.mV[1]*b.mV[2] - b.mV[1]*a.mV[2], a.mV[2]*b.mV[0] - b.mV[2]*a.mV[0], a.mV[0]*b.mV[1] - b.mV[0]*a.mV[1] ); } inline LLVector3 operator/(const LLVector3 &a, F32 k) { F32 t = 1.f / k; return LLVector3( a.mV[0] * t, a.mV[1] * t, a.mV[2] * t ); } inline LLVector3 operator*(const LLVector3 &a, F32 k) { return LLVector3( a.mV[0] * k, a.mV[1] * k, a.mV[2] * k ); } inline LLVector3 operator*(F32 k, const LLVector3 &a) { return LLVector3( a.mV[0] * k, a.mV[1] * k, a.mV[2] * k ); } inline bool operator==(const LLVector3 &a, const LLVector3 &b) { return ( (a.mV[0] == b.mV[0]) &&(a.mV[1] == b.mV[1]) &&(a.mV[2] == b.mV[2])); } inline bool operator!=(const LLVector3 &a, const LLVector3 &b) { return ( (a.mV[0] != b.mV[0]) ||(a.mV[1] != b.mV[1]) ||(a.mV[2] != b.mV[2])); } inline bool operator<(const LLVector3 &a, const LLVector3 &b) { return (a.mV[0] < b.mV[0] || (a.mV[0] == b.mV[0] && (a.mV[1] < b.mV[1] || (a.mV[1] == b.mV[1]) && a.mV[2] < b.mV[2]))); } inline const LLVector3& operator+=(LLVector3 &a, const LLVector3 &b) { a.mV[0] += b.mV[0]; a.mV[1] += b.mV[1]; a.mV[2] += b.mV[2]; return a; } inline const LLVector3& operator-=(LLVector3 &a, const LLVector3 &b) { a.mV[0] -= b.mV[0]; a.mV[1] -= b.mV[1]; a.mV[2] -= b.mV[2]; return a; } inline const LLVector3& operator%=(LLVector3 &a, const LLVector3 &b) { LLVector3 ret( a.mV[1]*b.mV[2] - b.mV[1]*a.mV[2], a.mV[2]*b.mV[0] - b.mV[2]*a.mV[0], a.mV[0]*b.mV[1] - b.mV[0]*a.mV[1]); a = ret; return a; } inline const LLVector3& operator*=(LLVector3 &a, F32 k) { a.mV[0] *= k; a.mV[1] *= k; a.mV[2] *= k; return a; } inline const LLVector3& operator*=(LLVector3 &a, const LLVector3 &b) { a.mV[0] *= b.mV[0]; a.mV[1] *= b.mV[1]; a.mV[2] *= b.mV[2]; return a; } inline const LLVector3& operator/=(LLVector3 &a, F32 k) { F32 t = 1.f / k; a.mV[0] *= t; a.mV[1] *= t; a.mV[2] *= t; return a; } inline LLVector3 operator-(const LLVector3 &a) { return LLVector3( -a.mV[0], -a.mV[1], -a.mV[2] ); } inline F32 dist_vec(const LLVector3 &a, const LLVector3 &b) { F32 x = a.mV[0] - b.mV[0]; F32 y = a.mV[1] - b.mV[1]; F32 z = a.mV[2] - b.mV[2]; return fsqrtf( x*x + y*y + z*z ); } inline F32 dist_vec_squared(const LLVector3 &a, const LLVector3 &b) { F32 x = a.mV[0] - b.mV[0]; F32 y = a.mV[1] - b.mV[1]; F32 z = a.mV[2] - b.mV[2]; return x*x + y*y + z*z; } inline F32 dist_vec_squared2D(const LLVector3 &a, const LLVector3 &b) { F32 x = a.mV[0] - b.mV[0]; F32 y = a.mV[1] - b.mV[1]; return x*x + y*y; } inline LLVector3 projected_vec(const LLVector3 &a, const LLVector3 &b) { LLVector3 project_axis = b; project_axis.normVec(); return project_axis * (a * project_axis); } inline LLVector3 lerp(const LLVector3 &a, const LLVector3 &b, F32 u) { return LLVector3( a.mV[VX] + (b.mV[VX] - a.mV[VX]) * u, a.mV[VY] + (b.mV[VY] - a.mV[VY]) * u, a.mV[VZ] + (b.mV[VZ] - a.mV[VZ]) * u); } inline BOOL LLVector3::isNull() const { if ( F_APPROXIMATELY_ZERO > mV[VX]*mV[VX] + mV[VY]*mV[VY] + mV[VZ]*mV[VZ] ) { return TRUE; } return FALSE; } inline void update_min_max(LLVector3& min, LLVector3& max, const LLVector3& pos) { for (U32 i = 0; i < 3; i++) { if (min.mV[i] > pos.mV[i]) { min.mV[i] = pos.mV[i]; } if (max.mV[i] < pos.mV[i]) { max.mV[i] = pos.mV[i]; } } } inline F32 angle_between(const LLVector3& a, const LLVector3& b) { LLVector3 an = a; LLVector3 bn = b; an.normVec(); bn.normVec(); F32 cosine = an * bn; F32 angle = (cosine >= 1.0f) ? 0.0f : (cosine <= -1.0f) ? F_PI : (F32)acos(cosine); return angle; } inline BOOL are_parallel(const LLVector3 &a, const LLVector3 &b, F32 epsilon) { LLVector3 an = a; LLVector3 bn = b; an.normVec(); bn.normVec(); F32 dot = an * bn; if ( (1.0f - fabs(dot)) < epsilon) { return TRUE; } return FALSE; } #endif