/** * @file v3dmath.h * @brief High precision 3 dimensional vector. * * $LicenseInfo:firstyear=2000&license=viewergpl$ * * Copyright (c) 2000-2008, Linden Research, Inc. * * Second Life Viewer Source Code * The source code in this file ("Source Code") is provided by Linden Lab * to you under the terms of the GNU General Public License, version 2.0 * ("GPL"), unless you have obtained a separate licensing agreement * ("Other License"), formally executed by you and Linden Lab. Terms of * the GPL can be found in doc/GPL-license.txt in this distribution, or * online at http://secondlifegrid.net/programs/open_source/licensing/gplv2 * * There are special exceptions to the terms and conditions of the GPL as * it is applied to this Source Code. View the full text of the exception * in the file doc/FLOSS-exception.txt in this software distribution, or * online at http://secondlifegrid.net/programs/open_source/licensing/flossexception * * By copying, modifying or distributing this software, you acknowledge * that you have read and understood your obligations described above, * and agree to abide by those obligations. * * ALL LINDEN LAB SOURCE CODE IS PROVIDED "AS IS." LINDEN LAB MAKES NO * WARRANTIES, EXPRESS, IMPLIED OR OTHERWISE, REGARDING ITS ACCURACY, * COMPLETENESS OR PERFORMANCE. * $/LicenseInfo$ */ #ifndef LL_V3DMATH_H #define LL_V3DMATH_H #include "llerror.h" #include "v3math.h" class LLVector3d { public: F64 mdV[3]; const static LLVector3d zero; const static LLVector3d x_axis; const static LLVector3d y_axis; const static LLVector3d z_axis; const static LLVector3d x_axis_neg; const static LLVector3d y_axis_neg; const static LLVector3d z_axis_neg; inline LLVector3d(); // Initializes LLVector3d to (0, 0, 0) inline LLVector3d(const F64 x, const F64 y, const F64 z); // Initializes LLVector3d to (x. y, z) inline explicit LLVector3d(const F64 *vec); // Initializes LLVector3d to (vec[0]. vec[1], vec[2]) inline explicit LLVector3d(const LLVector3 &vec); LLVector3d(const LLSD& sd) { setValue(sd); } void setValue(const LLSD& sd) { mdV[0] = sd[0].asReal(); mdV[1] = sd[1].asReal(); mdV[2] = sd[2].asReal(); } const LLVector3d& operator=(const LLSD& sd) { setValue(sd); return *this; } LLSD getValue() const { LLSD ret; ret[0] = mdV[0]; ret[1] = mdV[1]; ret[2] = mdV[2]; return ret; } inline BOOL isFinite() const; // checks to see if all values of LLVector3d are finite BOOL clamp(const F64 min, const F64 max); // Clamps all values to (min,max), returns TRUE if data changed BOOL abs(); // sets all values to absolute value of original value (first octant), returns TRUE if changed inline const LLVector3d& clearVec(); // Clears LLVector3d to (0, 0, 0, 1) inline const LLVector3d& setZero(); // Zero LLVector3d to (0, 0, 0, 0) inline const LLVector3d& zeroVec(); // deprecated inline const LLVector3d& setVec(const F64 x, const F64 y, const F64 z); // Sets LLVector3d to (x, y, z, 1) inline const LLVector3d& setVec(const LLVector3d &vec); // Sets LLVector3d to vec inline const LLVector3d& setVec(const F64 *vec); // Sets LLVector3d to vec inline const LLVector3d& setVec(const LLVector3 &vec); F64 magVec() const; // Returns magnitude of LLVector3d F64 magVecSquared() const; // Returns magnitude squared of LLVector3d inline F64 normVec(); // Normalizes and returns the magnitude of LLVector3d const LLVector3d& rotVec(const F64 angle, const LLVector3d &vec); // Rotates about vec by angle radians const LLVector3d& rotVec(const F64 angle, const F64 x, const F64 y, const F64 z); // Rotates about x,y,z by angle radians const LLVector3d& rotVec(const LLMatrix3 &mat); // Rotates by LLMatrix4 mat const LLVector3d& rotVec(const LLQuaternion &q); // Rotates by LLQuaternion q BOOL isNull() const; // Returns TRUE if vector has a _very_small_ length BOOL isExactlyZero() const { return !mdV[VX] && !mdV[VY] && !mdV[VZ]; } const LLVector3d& operator=(const LLVector4 &a); F64 operator[](int idx) const { return mdV[idx]; } F64 &operator[](int idx) { return mdV[idx]; } friend LLVector3d operator+(const LLVector3d &a, const LLVector3d &b); // Return vector a + b friend LLVector3d operator-(const LLVector3d &a, const LLVector3d &b); // Return vector a minus b friend F64 operator*(const LLVector3d &a, const LLVector3d &b); // Return a dot b friend LLVector3d operator%(const LLVector3d &a, const LLVector3d &b); // Return a cross b friend LLVector3d operator*(const LLVector3d &a, const F64 k); // Return a times scaler k friend LLVector3d operator/(const LLVector3d &a, const F64 k); // Return a divided by scaler k friend LLVector3d operator*(const F64 k, const LLVector3d &a); // Return a times scaler k friend bool operator==(const LLVector3d &a, const LLVector3d &b); // Return a == b friend bool operator!=(const LLVector3d &a, const LLVector3d &b); // Return a != b friend const LLVector3d& operator+=(LLVector3d &a, const LLVector3d &b); // Return vector a + b friend const LLVector3d& operator-=(LLVector3d &a, const LLVector3d &b); // Return vector a minus b friend const LLVector3d& operator%=(LLVector3d &a, const LLVector3d &b); // Return a cross b friend const LLVector3d& operator*=(LLVector3d &a, const F64 k); // Return a times scaler k friend const LLVector3d& operator/=(LLVector3d &a, const F64 k); // Return a divided by scaler k friend LLVector3d operator-(const LLVector3d &a); // Return vector -a friend std::ostream& operator<<(std::ostream& s, const LLVector3d &a); // Stream a static BOOL parseVector3d(const char* buf, LLVector3d* value); }; typedef LLVector3d LLGlobalVec; const LLVector3d &LLVector3d::setVec(const LLVector3 &vec) { mdV[0] = vec.mV[0]; mdV[1] = vec.mV[1]; mdV[2] = vec.mV[2]; return *this; } inline LLVector3d::LLVector3d(void) { mdV[0] = 0.f; mdV[1] = 0.f; mdV[2] = 0.f; } inline LLVector3d::LLVector3d(const F64 x, const F64 y, const F64 z) { mdV[VX] = x; mdV[VY] = y; mdV[VZ] = z; } inline LLVector3d::LLVector3d(const F64 *vec) { mdV[VX] = vec[VX]; mdV[VY] = vec[VY]; mdV[VZ] = vec[VZ]; } inline LLVector3d::LLVector3d(const LLVector3 &vec) { mdV[VX] = vec.mV[VX]; mdV[VY] = vec.mV[VY]; mdV[VZ] = vec.mV[VZ]; } /* inline LLVector3d::LLVector3d(const LLVector3d ©) { mdV[VX] = copy.mdV[VX]; mdV[VY] = copy.mdV[VY]; mdV[VZ] = copy.mdV[VZ]; } */ // Destructors // checker inline BOOL LLVector3d::isFinite() const { return (llfinite(mdV[VX]) && llfinite(mdV[VY]) && llfinite(mdV[VZ])); } // Clear and Assignment Functions inline const LLVector3d& LLVector3d::clearVec(void) { mdV[0] = 0.f; mdV[1] = 0.f; mdV[2]= 0.f; return (*this); } inline const LLVector3d& LLVector3d::setZero(void) { mdV[0] = 0.f; mdV[1] = 0.f; mdV[2] = 0.f; return (*this); } inline const LLVector3d& LLVector3d::zeroVec(void) { mdV[0] = 0.f; mdV[1] = 0.f; mdV[2] = 0.f; return (*this); } inline const LLVector3d& LLVector3d::setVec(const F64 x, const F64 y, const F64 z) { mdV[VX] = x; mdV[VY] = y; mdV[VZ] = z; return (*this); } inline const LLVector3d& LLVector3d::setVec(const LLVector3d &vec) { mdV[0] = vec.mdV[0]; mdV[1] = vec.mdV[1]; mdV[2] = vec.mdV[2]; return (*this); } inline const LLVector3d& LLVector3d::setVec(const F64 *vec) { mdV[0] = vec[0]; mdV[1] = vec[1]; mdV[2] = vec[2]; return (*this); } inline F64 LLVector3d::normVec(void) { F64 mag = fsqrtf(mdV[0]*mdV[0] + mdV[1]*mdV[1] + mdV[2]*mdV[2]); F64 oomag; if (mag > FP_MAG_THRESHOLD) { oomag = 1.f/mag; mdV[0] *= oomag; mdV[1] *= oomag; mdV[2] *= oomag; } else { mdV[0] = 0.f; mdV[1] = 0.f; mdV[2] = 0.f; mag = 0; } return (mag); } // LLVector3d Magnitude and Normalization Functions inline F64 LLVector3d::magVec(void) const { return fsqrtf(mdV[0]*mdV[0] + mdV[1]*mdV[1] + mdV[2]*mdV[2]); } inline F64 LLVector3d::magVecSquared(void) const { return mdV[0]*mdV[0] + mdV[1]*mdV[1] + mdV[2]*mdV[2]; } inline LLVector3d operator+(const LLVector3d &a, const LLVector3d &b) { LLVector3d c(a); return c += b; } inline LLVector3d operator-(const LLVector3d &a, const LLVector3d &b) { LLVector3d c(a); return c -= b; } inline F64 operator*(const LLVector3d &a, const LLVector3d &b) { return (a.mdV[0]*b.mdV[0] + a.mdV[1]*b.mdV[1] + a.mdV[2]*b.mdV[2]); } inline LLVector3d operator%(const LLVector3d &a, const LLVector3d &b) { return LLVector3d( a.mdV[1]*b.mdV[2] - b.mdV[1]*a.mdV[2], a.mdV[2]*b.mdV[0] - b.mdV[2]*a.mdV[0], a.mdV[0]*b.mdV[1] - b.mdV[0]*a.mdV[1] ); } inline LLVector3d operator/(const LLVector3d &a, const F64 k) { F64 t = 1.f / k; return LLVector3d( a.mdV[0] * t, a.mdV[1] * t, a.mdV[2] * t ); } inline LLVector3d operator*(const LLVector3d &a, const F64 k) { return LLVector3d( a.mdV[0] * k, a.mdV[1] * k, a.mdV[2] * k ); } inline LLVector3d operator*(F64 k, const LLVector3d &a) { return LLVector3d( a.mdV[0] * k, a.mdV[1] * k, a.mdV[2] * k ); } inline bool operator==(const LLVector3d &a, const LLVector3d &b) { return ( (a.mdV[0] == b.mdV[0]) &&(a.mdV[1] == b.mdV[1]) &&(a.mdV[2] == b.mdV[2])); } inline bool operator!=(const LLVector3d &a, const LLVector3d &b) { return ( (a.mdV[0] != b.mdV[0]) ||(a.mdV[1] != b.mdV[1]) ||(a.mdV[2] != b.mdV[2])); } inline const LLVector3d& operator+=(LLVector3d &a, const LLVector3d &b) { a.mdV[0] += b.mdV[0]; a.mdV[1] += b.mdV[1]; a.mdV[2] += b.mdV[2]; return a; } inline const LLVector3d& operator-=(LLVector3d &a, const LLVector3d &b) { a.mdV[0] -= b.mdV[0]; a.mdV[1] -= b.mdV[1]; a.mdV[2] -= b.mdV[2]; return a; } inline const LLVector3d& operator%=(LLVector3d &a, const LLVector3d &b) { LLVector3d ret( a.mdV[1]*b.mdV[2] - b.mdV[1]*a.mdV[2], a.mdV[2]*b.mdV[0] - b.mdV[2]*a.mdV[0], a.mdV[0]*b.mdV[1] - b.mdV[0]*a.mdV[1]); a = ret; return a; } inline const LLVector3d& operator*=(LLVector3d &a, const F64 k) { a.mdV[0] *= k; a.mdV[1] *= k; a.mdV[2] *= k; return a; } inline const LLVector3d& operator/=(LLVector3d &a, const F64 k) { F64 t = 1.f / k; a.mdV[0] *= t; a.mdV[1] *= t; a.mdV[2] *= t; return a; } inline LLVector3d operator-(const LLVector3d &a) { return LLVector3d( -a.mdV[0], -a.mdV[1], -a.mdV[2] ); } inline F64 dist_vec(const LLVector3d &a, const LLVector3d &b) { F64 x = a.mdV[0] - b.mdV[0]; F64 y = a.mdV[1] - b.mdV[1]; F64 z = a.mdV[2] - b.mdV[2]; return fsqrtf( x*x + y*y + z*z ); } inline F64 dist_vec_squared(const LLVector3d &a, const LLVector3d &b) { F64 x = a.mdV[0] - b.mdV[0]; F64 y = a.mdV[1] - b.mdV[1]; F64 z = a.mdV[2] - b.mdV[2]; return x*x + y*y + z*z; } inline F64 dist_vec_squared2D(const LLVector3d &a, const LLVector3d &b) { F64 x = a.mdV[0] - b.mdV[0]; F64 y = a.mdV[1] - b.mdV[1]; return x*x + y*y; } inline LLVector3d lerp(const LLVector3d &a, const LLVector3d &b, const F64 u) { return LLVector3d( a.mdV[VX] + (b.mdV[VX] - a.mdV[VX]) * u, a.mdV[VY] + (b.mdV[VY] - a.mdV[VY]) * u, a.mdV[VZ] + (b.mdV[VZ] - a.mdV[VZ]) * u); } inline BOOL LLVector3d::isNull() const { if ( F_APPROXIMATELY_ZERO > mdV[VX]*mdV[VX] + mdV[VY]*mdV[VY] + mdV[VZ]*mdV[VZ] ) { return TRUE; } return FALSE; } inline F64 angle_between(const LLVector3d& a, const LLVector3d& b) { LLVector3d an = a; LLVector3d bn = b; an.normVec(); bn.normVec(); F64 cosine = an * bn; F64 angle = (cosine >= 1.0f) ? 0.0f : (cosine <= -1.0f) ? F_PI : acos(cosine); return angle; } inline BOOL are_parallel(const LLVector3d &a, const LLVector3d &b, const F64 epsilon) { LLVector3d an = a; LLVector3d bn = b; an.normVec(); bn.normVec(); F64 dot = an * bn; if ( (1.0f - fabs(dot)) < epsilon) { return TRUE; } return FALSE; } inline LLVector3d projected_vec(const LLVector3d &a, const LLVector3d &b) { LLVector3d project_axis = b; project_axis.normVec(); return project_axis * (a * project_axis); } #endif // LL_V3DMATH_H