/** * @file m4math.h * @brief LLMatrix4 class header file. * * $LicenseInfo:firstyear=2000&license=viewergpl$ * * Copyright (c) 2000-2009, Linden Research, Inc. * * Second Life Viewer Source Code * The source code in this file ("Source Code") is provided by Linden Lab * to you under the terms of the GNU General Public License, version 2.0 * ("GPL"), unless you have obtained a separate licensing agreement * ("Other License"), formally executed by you and Linden Lab. Terms of * the GPL can be found in doc/GPL-license.txt in this distribution, or * online at http://secondlifegrid.net/programs/open_source/licensing/gplv2 * * There are special exceptions to the terms and conditions of the GPL as * it is applied to this Source Code. View the full text of the exception * in the file doc/FLOSS-exception.txt in this software distribution, or * online at http://secondlifegrid.net/programs/open_source/licensing/flossexception * * By copying, modifying or distributing this software, you acknowledge * that you have read and understood your obligations described above, * and agree to abide by those obligations. * * ALL LINDEN LAB SOURCE CODE IS PROVIDED "AS IS." LINDEN LAB MAKES NO * WARRANTIES, EXPRESS, IMPLIED OR OTHERWISE, REGARDING ITS ACCURACY, * COMPLETENESS OR PERFORMANCE. * $/LicenseInfo$ */ #ifndef LL_M4MATH_H #define LL_M4MATH_H #include "v3math.h" class LLVector4; class LLMatrix3; class LLQuaternion; // NOTA BENE: Currently assuming a right-handed, x-forward, y-left, z-up universe // Us versus OpenGL: // Even though OpenGL uses column vectors and we use row vectors, we can plug our matrices // directly into OpenGL. This is because OpenGL numbers its matrices going columnwise: // // OpenGL indexing: Our indexing: // 0 4 8 12 [0][0] [0][1] [0][2] [0][3] // 1 5 9 13 [1][0] [1][1] [1][2] [1][3] // 2 6 10 14 [2][0] [2][1] [2][2] [2][3] // 3 7 11 15 [3][0] [3][1] [3][2] [3][3] // // So when you're looking at OpenGL related matrices online, our matrices will be // "transposed". But our matrices can be plugged directly into OpenGL and work fine! // // We're using row vectors - [vx, vy, vz, vw] // // There are several different ways of thinking of matrices, if you mix them up, you'll get very confused. // // One way to think about it is a matrix that takes the origin frame A // and rotates it into B': i.e. A*M = B // // Vectors: // f - forward axis of B expressed in A // l - left axis of B expressed in A // u - up axis of B expressed in A // // | 0: fx 1: fy 2: fz 3:0 | // M = | 4: lx 5: ly 6: lz 7:0 | // | 8: ux 9: uy 10: uz 11:0 | // | 12: 0 13: 0 14: 0 15:1 | // // // // // Another way to think of matrices is matrix that takes a point p in frame A, and puts it into frame B: // This is used most commonly for the modelview matrix. // // so p*M = p' // // Vectors: // f - forward of frame B in frame A // l - left of frame B in frame A // u - up of frame B in frame A // o - origin of frame frame B in frame A // // | 0: fx 1: lx 2: ux 3:0 | // M = | 4: fy 5: ly 6: uy 7:0 | // | 8: fz 9: lz 10: uz 11:0 | // | 12:-of 13:-ol 14:-ou 15:1 | // // of, ol, and ou mean the component of the "global" origin o in the f axis, l axis, and u axis. // static const U32 NUM_VALUES_IN_MAT4 = 4; class LLMatrix4 { public: F32 mMatrix[NUM_VALUES_IN_MAT4][NUM_VALUES_IN_MAT4]; // Initializes Matrix to identity matrix LLMatrix4() { setIdentity(); } explicit LLMatrix4(const F32 *mat); // Initializes Matrix to values in mat explicit LLMatrix4(const LLMatrix3 &mat); // Initializes Matrix to values in mat and sets position to (0,0,0) explicit LLMatrix4(const LLQuaternion &q); // Initializes Matrix with rotation q and sets position to (0,0,0) LLMatrix4(const LLMatrix3 &mat, const LLVector4 &pos); // Initializes Matrix to values in mat and pos // These are really, really, inefficient as implemented! - djs LLMatrix4(const LLQuaternion &q, const LLVector4 &pos); // Initializes Matrix with rotation q and position pos LLMatrix4(F32 angle, const LLVector4 &vec, const LLVector4 &pos); // Initializes Matrix with axis-angle and position LLMatrix4(F32 angle, const LLVector4 &vec); // Initializes Matrix with axis-angle and sets position to (0,0,0) LLMatrix4(const F32 roll, const F32 pitch, const F32 yaw, const LLVector4 &pos); // Initializes Matrix with Euler angles LLMatrix4(const F32 roll, const F32 pitch, const F32 yaw); // Initializes Matrix with Euler angles ~LLMatrix4(void); // Destructor ////////////////////////////// // // Matrix initializers - these replace any existing values in the matrix // void initRows(const LLVector4 &row0, const LLVector4 &row1, const LLVector4 &row2, const LLVector4 &row3); // various useful matrix functions const LLMatrix4& setIdentity(); // Load identity matrix const LLMatrix4& setZero(); // Clears matrix to all zeros. const LLMatrix4& initRotation(const F32 angle, const F32 x, const F32 y, const F32 z); // Calculate rotation matrix by rotating angle radians about (x, y, z) const LLMatrix4& initRotation(const F32 angle, const LLVector4 &axis); // Calculate rotation matrix for rotating angle radians about vec const LLMatrix4& initRotation(const F32 roll, const F32 pitch, const F32 yaw); // Calculate rotation matrix from Euler angles const LLMatrix4& initRotation(const LLQuaternion &q); // Set with Quaternion and position // Position Only const LLMatrix4& initMatrix(const LLMatrix3 &mat); // const LLMatrix4& initMatrix(const LLMatrix3 &mat, const LLVector4 &translation); // These operation create a matrix that will rotate and translate by the // specified amounts. const LLMatrix4& initRotTrans(const F32 angle, const F32 rx, const F32 ry, const F32 rz, const F32 px, const F32 py, const F32 pz); const LLMatrix4& initRotTrans(const F32 angle, const LLVector3 &axis, const LLVector3 &translation); // Rotation from axis angle + translation const LLMatrix4& initRotTrans(const F32 roll, const F32 pitch, const F32 yaw, const LLVector4 &pos); // Rotation from Euler + translation const LLMatrix4& initRotTrans(const LLQuaternion &q, const LLVector4 &pos); // Set with Quaternion and position // Set all const LLMatrix4& initAll(const LLVector3 &scale, const LLQuaternion &q, const LLVector3 &pos); /////////////////////////// // // Matrix setters - set some properties without modifying others // const LLMatrix4& setTranslation(const F32 x, const F32 y, const F32 z); // Sets matrix to translate by (x,y,z) void setFwdRow(const LLVector3 &row); void setLeftRow(const LLVector3 &row); void setUpRow(const LLVector3 &row); void setFwdCol(const LLVector3 &col); void setLeftCol(const LLVector3 &col); void setUpCol(const LLVector3 &col); const LLMatrix4& setTranslation(const LLVector4 &translation); const LLMatrix4& setTranslation(const LLVector3 &translation); /////////////////////////// // // Get properties of a matrix // F32 determinant(void) const; // Return determinant LLQuaternion quaternion(void) const; // Returns quaternion LLVector4 getFwdRow4() const; LLVector4 getLeftRow4() const; LLVector4 getUpRow4() const; LLMatrix3 getMat3() const; const LLVector3& getTranslation() const { return *(LLVector3*)&mMatrix[3][0]; } /////////////////////////// // // Operations on an existing matrix // const LLMatrix4& transpose(); // Transpose LLMatrix4 const LLMatrix4& invert(); // Invert LLMatrix4 // Rotate existing matrix // These are really, really, inefficient as implemented! - djs const LLMatrix4& rotate(const F32 angle, const F32 x, const F32 y, const F32 z); // Rotate matrix by rotating angle radians about (x, y, z) const LLMatrix4& rotate(const F32 angle, const LLVector4 &vec); // Rotate matrix by rotating angle radians about vec const LLMatrix4& rotate(const F32 roll, const F32 pitch, const F32 yaw); // Rotate matrix by Euler angles const LLMatrix4& rotate(const LLQuaternion &q); // Rotate matrix by Quaternion // Translate existing matrix const LLMatrix4& translate(const LLVector3 &vec); // Translate matrix by (vec[VX], vec[VY], vec[VZ]) /////////////////////// // // Operators // // Not implemented to enforce code that agrees with symbolic syntax // friend LLVector4 operator*(const LLMatrix4 &a, const LLVector4 &b); // Apply rotation a to vector b // friend inline LLMatrix4 operator*(const LLMatrix4 &a, const LLMatrix4 &b); // Return a * b friend LLVector4 operator*(const LLVector4 &a, const LLMatrix4 &b); // Return transform of vector a by matrix b friend LLVector3 operator*(const LLVector3 &a, const LLMatrix4 &b); // Return full transform of a by matrix b friend LLVector4 rotate_vector(const LLVector4 &a, const LLMatrix4 &b); // Rotates a but does not translate friend LLVector3 rotate_vector(const LLVector3 &a, const LLMatrix4 &b); // Rotates a but does not translate friend bool operator==(const LLMatrix4 &a, const LLMatrix4 &b); // Return a == b friend bool operator!=(const LLMatrix4 &a, const LLMatrix4 &b); // Return a != b friend const LLMatrix4& operator+=(LLMatrix4 &a, const LLMatrix4 &b); // Return a + b friend const LLMatrix4& operator-=(LLMatrix4 &a, const LLMatrix4 &b); // Return a - b friend const LLMatrix4& operator*=(LLMatrix4 &a, const LLMatrix4 &b); // Return a * b friend const LLMatrix4& operator*=(LLMatrix4 &a, const F32 &b); // Return a * b friend std::ostream& operator<<(std::ostream& s, const LLMatrix4 &a); // Stream a }; inline const LLMatrix4& LLMatrix4::setIdentity() { mMatrix[0][0] = 1.f; mMatrix[0][1] = 0.f; mMatrix[0][2] = 0.f; mMatrix[0][3] = 0.f; mMatrix[1][0] = 0.f; mMatrix[1][1] = 1.f; mMatrix[1][2] = 0.f; mMatrix[1][3] = 0.f; mMatrix[2][0] = 0.f; mMatrix[2][1] = 0.f; mMatrix[2][2] = 1.f; mMatrix[2][3] = 0.f; mMatrix[3][0] = 0.f; mMatrix[3][1] = 0.f; mMatrix[3][2] = 0.f; mMatrix[3][3] = 1.f; return (*this); } /* inline LLMatrix4 operator*(const LLMatrix4 &a, const LLMatrix4 &b) { U32 i, j; LLMatrix4 mat; for (i = 0; i < NUM_VALUES_IN_MAT4; i++) { for (j = 0; j < NUM_VALUES_IN_MAT4; j++) { mat.mMatrix[j][i] = a.mMatrix[j][0] * b.mMatrix[0][i] + a.mMatrix[j][1] * b.mMatrix[1][i] + a.mMatrix[j][2] * b.mMatrix[2][i] + a.mMatrix[j][3] * b.mMatrix[3][i]; } } return mat; } */ inline const LLMatrix4& operator*=(LLMatrix4 &a, const LLMatrix4 &b) { U32 i, j; LLMatrix4 mat; for (i = 0; i < NUM_VALUES_IN_MAT4; i++) { for (j = 0; j < NUM_VALUES_IN_MAT4; j++) { mat.mMatrix[j][i] = a.mMatrix[j][0] * b.mMatrix[0][i] + a.mMatrix[j][1] * b.mMatrix[1][i] + a.mMatrix[j][2] * b.mMatrix[2][i] + a.mMatrix[j][3] * b.mMatrix[3][i]; } } a = mat; return a; } inline const LLMatrix4& operator*=(LLMatrix4 &a, const F32 &b) { U32 i, j; LLMatrix4 mat; for (i = 0; i < NUM_VALUES_IN_MAT4; i++) { for (j = 0; j < NUM_VALUES_IN_MAT4; j++) { mat.mMatrix[j][i] = a.mMatrix[j][i] * b; } } a = mat; return a; } inline const LLMatrix4& operator+=(LLMatrix4 &a, const LLMatrix4 &b) { LLMatrix4 mat; U32 i, j; for (i = 0; i < NUM_VALUES_IN_MAT4; i++) { for (j = 0; j < NUM_VALUES_IN_MAT4; j++) { mat.mMatrix[j][i] = a.mMatrix[j][i] + b.mMatrix[j][i]; } } a = mat; return a; } inline const LLMatrix4& operator-=(LLMatrix4 &a, const LLMatrix4 &b) { LLMatrix4 mat; U32 i, j; for (i = 0; i < NUM_VALUES_IN_MAT4; i++) { for (j = 0; j < NUM_VALUES_IN_MAT4; j++) { mat.mMatrix[j][i] = a.mMatrix[j][i] - b.mMatrix[j][i]; } } a = mat; return a; } #endif