/** * @file llrand.cpp * @brief Global random generator. * * Copyright (c) 2000-2007, Linden Research, Inc. * * The source code in this file ("Source Code") is provided by Linden Lab * to you under the terms of the GNU General Public License, version 2.0 * ("GPL"), unless you have obtained a separate licensing agreement * ("Other License"), formally executed by you and Linden Lab. Terms of * the GPL can be found in doc/GPL-license.txt in this distribution, or * online at http://secondlife.com/developers/opensource/gplv2 * * There are special exceptions to the terms and conditions of the GPL as * it is applied to this Source Code. View the full text of the exception * in the file doc/FLOSS-exception.txt in this software distribution, or * online at http://secondlife.com/developers/opensource/flossexception * * By copying, modifying or distributing this software, you acknowledge * that you have read and understood your obligations described above, * and agree to abide by those obligations. * * ALL LINDEN LAB SOURCE CODE IS PROVIDED "AS IS." LINDEN LAB MAKES NO * WARRANTIES, EXPRESS, IMPLIED OR OTHERWISE, REGARDING ITS ACCURACY, * COMPLETENESS OR PERFORMANCE. */ #include "linden_common.h" #include "llrand.h" #include "lluuid.h" /** * Through analysis, we have decided that we want to take values which * are close enough to 1.0 to map back to 0.0. We came to this * conclusion from noting that: * * [0.0, 1.0) * * when scaled to the integer set: * * [0, 4) * * there is some value close enough to 1.0 that when multiplying by 4, * gets truncated to 4. Therefore: * * [0,1-eps] => 0 * [1,2-eps] => 1 * [2,3-eps] => 2 * [3,4-eps] => 3 * * So 0 gets uneven distribution if we simply clamp. The actual * clamp utilized in this file is to map values out of range back * to 0 to restore uniform distribution. * * Also, for clamping floats when asking for a distribution from * [0.0,g) we have determined that for values of g < 0.5, then * rand*g=g, which is not the desired result. As above, we clamp to 0 * to restore uniform distribution. */ // *NOTE: The system rand implementation is probably not correct. #define LL_USE_SYSTEM_RAND 0 #if LL_USE_SYSTEM_RAND #include #endif #if LL_USE_SYSTEM_RAND class LLSeedRand { public: LLSeedRand() { #if LL_WINDOWS srand(LLUUID::getRandomSeed()); #else srand48(LLUUID::getRandomSeed()); #endif } }; static LLSeedRand sRandomSeeder; inline F64 ll_internal_random_double() { #if LL_WINDOWS return (F64)rand() / (F64)RAND_MAX; #else return drand48(); #endif } inline F32 ll_internal_random_float() { #if LL_WINDOWS return (F32)rand() / (F32)RAND_MAX; #else return (F32)drand48(); #endif } #else static LLRandLagFib2281 gRandomGenerator(LLUUID::getRandomSeed()); inline F64 ll_internal_random_double() { // *HACK: Through experimentation, we have found that dual core // CPUs (or at least multi-threaded processes) seem to // occasionally give an obviously incorrect random number -- like // 5^15 or something. Sooooo, clamp it as described above. F64 rv = gRandomGenerator(); if(!((rv >= 0.0) && (rv < 1.0))) return 0.0; return rv; } inline F32 ll_internal_random_float() { // The clamping rules are described above. F32 rv = (F32)gRandomGenerator(); if(!((rv >= 0.0f) && (rv < 1.0f))) return 0.0f; return rv; } #endif S32 ll_rand() { return ll_rand(RAND_MAX); } S32 ll_rand(S32 val) { // The clamping rules are described above. S32 rv = (S32)(ll_internal_random_double() * val); if(rv == val) return 0; return rv; } F32 ll_frand() { return ll_internal_random_float(); } F32 ll_frand(F32 val) { // The clamping rules are described above. F32 rv = ll_internal_random_float() * val; if(val > 0) { if(rv >= val) return 0.0f; } else { if(rv <= val) return 0.0f; } return rv; } F64 ll_drand() { return ll_internal_random_double(); } F64 ll_drand(F64 val) { // The clamping rules are described above. F64 rv = ll_internal_random_double() * val; if(val > 0) { if(rv >= val) return 0.0; } else { if(rv <= val) return 0.0; } return rv; }