/** * @file llquaternion.h * @brief LLQuaternion class header file. * * Copyright (c) 2000-2007, Linden Research, Inc. * * The source code in this file ("Source Code") is provided by Linden Lab * to you under the terms of the GNU General Public License, version 2.0 * ("GPL"), unless you have obtained a separate licensing agreement * ("Other License"), formally executed by you and Linden Lab. Terms of * the GPL can be found in doc/GPL-license.txt in this distribution, or * online at http://secondlife.com/developers/opensource/gplv2 * * There are special exceptions to the terms and conditions of the GPL as * it is applied to this Source Code. View the full text of the exception * in the file doc/FLOSS-exception.txt in this software distribution, or * online at http://secondlife.com/developers/opensource/flossexception * * By copying, modifying or distributing this software, you acknowledge * that you have read and understood your obligations described above, * and agree to abide by those obligations. * * ALL LINDEN LAB SOURCE CODE IS PROVIDED "AS IS." LINDEN LAB MAKES NO * WARRANTIES, EXPRESS, IMPLIED OR OTHERWISE, REGARDING ITS ACCURACY, * COMPLETENESS OR PERFORMANCE. */ #ifndef LLQUATERNION_H #define LLQUATERNION_H #include "llmath.h" class LLVector4; class LLVector3; class LLVector3d; class LLMatrix4; class LLMatrix3; // NOTA BENE: Quaternion code is written assuming Unit Quaternions!!!! // Moreover, it is written assuming that all vectors and matricies // passed as arguments are normalized and unitary respectively. // VERY VERY VERY VERY BAD THINGS will happen if these assumptions fail. static const U32 LENGTHOFQUAT = 4; class LLQuaternion { public: F32 mQ[LENGTHOFQUAT]; static const LLQuaternion DEFAULT; LLQuaternion(); // Initializes Quaternion to (0,0,0,1) explicit LLQuaternion(const LLMatrix4 &mat); // Initializes Quaternion from Matrix4 explicit LLQuaternion(const LLMatrix3 &mat); // Initializes Quaternion from Matrix3 LLQuaternion(F32 x, F32 y, F32 z, F32 w); // Initializes Quaternion to normQuat(x, y, z, w) LLQuaternion(F32 angle, const LLVector4 &vec); // Initializes Quaternion to axis_angle2quat(angle, vec) LLQuaternion(F32 angle, const LLVector3 &vec); // Initializes Quaternion to axis_angle2quat(angle, vec) LLQuaternion(const F32 *q); // Initializes Quaternion to normQuat(x, y, z, w) LLQuaternion(const LLVector3 &x_axis, const LLVector3 &y_axis, const LLVector3 &z_axis); // Initializes Quaternion from Matrix3 = [x_axis ; y_axis ; z_axis] BOOL isIdentity() const; BOOL isNotIdentity() const; BOOL isFinite() const; // checks to see if all values of LLQuaternion are finite void quantize16(F32 lower, F32 upper); // changes the vector to reflect quatization void quantize8(F32 lower, F32 upper); // changes the vector to reflect quatization void loadIdentity(); // Loads the quaternion that represents the identity rotation const LLQuaternion& setQuatInit(F32 x, F32 y, F32 z, F32 w); // Sets Quaternion to normQuat(x, y, z, w) const LLQuaternion& setQuat(const LLQuaternion &quat); // Copies Quaternion const LLQuaternion& setQuat(const F32 *q); // Sets Quaternion to normQuat(quat[VX], quat[VY], quat[VZ], quat[VW]) const LLQuaternion& setQuat(const LLMatrix3 &mat); // Sets Quaternion to mat2quat(mat) const LLQuaternion& setQuat(const LLMatrix4 &mat); // Sets Quaternion to mat2quat(mat) const LLQuaternion& setQuat(F32 angle, F32 x, F32 y, F32 z); // Sets Quaternion to axis_angle2quat(angle, x, y, z) const LLQuaternion& setQuat(F32 angle, const LLVector3 &vec); // Sets Quaternion to axis_angle2quat(angle, vec) const LLQuaternion& setQuat(F32 angle, const LLVector4 &vec); // Sets Quaternion to axis_angle2quat(angle, vec) const LLQuaternion& setQuat(F32 roll, F32 pitch, F32 yaw); // Sets Quaternion to euler2quat(pitch, yaw, roll) LLMatrix4 getMatrix4(void) const; // Returns the Matrix4 equivalent of Quaternion LLMatrix3 getMatrix3(void) const; // Returns the Matrix3 equivalent of Quaternion void getAngleAxis(F32* angle, F32* x, F32* y, F32* z) const; // returns rotation in radians about axis x,y,z void getAngleAxis(F32* angle, LLVector3 &vec) const; void getEulerAngles(F32 *roll, F32* pitch, F32 *yaw) const; F32 normQuat(); // Normalizes Quaternion and returns magnitude const LLQuaternion& conjQuat(void); // Conjugates Quaternion and returns result // Other useful methods const LLQuaternion& transQuat(); // Transpose void shortestArc(const LLVector3 &a, const LLVector3 &b); // shortest rotation from a to b const LLQuaternion& constrain(F32 radians); // constrains rotation to a cone angle specified in radians // Standard operators friend std::ostream& operator<<(std::ostream &s, const LLQuaternion &a); // Prints a friend LLQuaternion operator+(const LLQuaternion &a, const LLQuaternion &b); // Addition friend LLQuaternion operator-(const LLQuaternion &a, const LLQuaternion &b); // Subtraction friend LLQuaternion operator-(const LLQuaternion &a); // Negation friend LLQuaternion operator*(F32 a, const LLQuaternion &q); // Scale friend LLQuaternion operator*(const LLQuaternion &q, F32 b); // Scale friend LLQuaternion operator*(const LLQuaternion &a, const LLQuaternion &b); // Returns a * b friend LLQuaternion operator~(const LLQuaternion &a); // Returns a* (Conjugate of a) bool operator==(const LLQuaternion &b) const; // Returns a == b bool operator!=(const LLQuaternion &b) const; // Returns a != b friend const LLQuaternion& operator*=(LLQuaternion &a, const LLQuaternion &b); // Returns a * b friend LLVector4 operator*(const LLVector4 &a, const LLQuaternion &rot); // Rotates a by rot friend LLVector3 operator*(const LLVector3 &a, const LLQuaternion &rot); // Rotates a by rot friend LLVector3d operator*(const LLVector3d &a, const LLQuaternion &rot); // Rotates a by rot // Non-standard operators friend F32 dot(const LLQuaternion &a, const LLQuaternion &b); friend LLQuaternion lerp(F32 t, const LLQuaternion &p, const LLQuaternion &q); // linear interpolation (t = 0 to 1) from p to q friend LLQuaternion lerp(F32 t, const LLQuaternion &q); // linear interpolation (t = 0 to 1) from identity to q friend LLQuaternion slerp(F32 t, const LLQuaternion &p, const LLQuaternion &q); // spherical linear interpolation from p to q friend LLQuaternion slerp(F32 t, const LLQuaternion &q); // spherical linear interpolation from identity to q friend LLQuaternion nlerp(F32 t, const LLQuaternion &p, const LLQuaternion &q); // normalized linear interpolation from p to q friend LLQuaternion nlerp(F32 t, const LLQuaternion &q); // normalized linear interpolation from p to q LLVector3 packToVector3() const; // Saves space by using the fact that our quaternions are normalized void unpackFromVector3(const LLVector3& vec); // Saves space by using the fact that our quaternions are normalized enum Order { XYZ = 0, YZX = 1, ZXY = 2, XZY = 3, YXZ = 4, ZYX = 5 }; // Creates a quaternions from maya's rotation representation, // which is 3 rotations (in DEGREES) in the specified order friend LLQuaternion mayaQ(F32 x, F32 y, F32 z, Order order); // Conversions between Order and strings like "xyz" or "ZYX" friend const char *OrderToString( const Order order ); friend Order StringToOrder( const char *str ); static BOOL parseQuat(const char* buf, LLQuaternion* value); // For debugging, only //static U32 mMultCount; }; // checker inline BOOL LLQuaternion::isFinite() const { return (llfinite(mQ[VX]) && llfinite(mQ[VY]) && llfinite(mQ[VZ]) && llfinite(mQ[VS])); } inline BOOL LLQuaternion::isIdentity() const { return ( mQ[VX] == 0.f ) && ( mQ[VY] == 0.f ) && ( mQ[VZ] == 0.f ) && ( mQ[VS] == 1.f ); } inline BOOL LLQuaternion::isNotIdentity() const { return ( mQ[VX] != 0.f ) || ( mQ[VY] != 0.f ) || ( mQ[VZ] != 0.f ) || ( mQ[VS] != 1.f ); } inline LLQuaternion::LLQuaternion(void) { mQ[VX] = 0.f; mQ[VY] = 0.f; mQ[VZ] = 0.f; mQ[VS] = 1.f; } inline LLQuaternion::LLQuaternion(F32 x, F32 y, F32 z, F32 w) { mQ[VX] = x; mQ[VY] = y; mQ[VZ] = z; mQ[VS] = w; //RN: don't normalize this case as its used mainly for temporaries during calculations //normQuat(); /* F32 mag = sqrtf(mQ[VX]*mQ[VX] + mQ[VY]*mQ[VY] + mQ[VZ]*mQ[VZ] + mQ[VS]*mQ[VS]); mag -= 1.f; mag = fabs(mag); llassert(mag < 10.f*FP_MAG_THRESHOLD); */ } inline LLQuaternion::LLQuaternion(const F32 *q) { mQ[VX] = q[VX]; mQ[VY] = q[VY]; mQ[VZ] = q[VZ]; mQ[VS] = q[VW]; normQuat(); /* F32 mag = sqrtf(mQ[VX]*mQ[VX] + mQ[VY]*mQ[VY] + mQ[VZ]*mQ[VZ] + mQ[VS]*mQ[VS]); mag -= 1.f; mag = fabs(mag); llassert(mag < FP_MAG_THRESHOLD); */ } inline void LLQuaternion::loadIdentity() { mQ[VX] = 0.0f; mQ[VY] = 0.0f; mQ[VZ] = 0.0f; mQ[VW] = 1.0f; } inline const LLQuaternion& LLQuaternion::setQuatInit(F32 x, F32 y, F32 z, F32 w) { mQ[VX] = x; mQ[VY] = y; mQ[VZ] = z; mQ[VS] = w; normQuat(); return (*this); } inline const LLQuaternion& LLQuaternion::setQuat(const LLQuaternion &quat) { mQ[VX] = quat.mQ[VX]; mQ[VY] = quat.mQ[VY]; mQ[VZ] = quat.mQ[VZ]; mQ[VW] = quat.mQ[VW]; normQuat(); return (*this); } inline const LLQuaternion& LLQuaternion::setQuat(const F32 *q) { mQ[VX] = q[VX]; mQ[VY] = q[VY]; mQ[VZ] = q[VZ]; mQ[VS] = q[VW]; normQuat(); return (*this); } // There may be a cheaper way that avoids the sqrt. // Does sin_a = VX*VX + VY*VY + VZ*VZ? // Copied from Matrix and Quaternion FAQ 1.12 inline void LLQuaternion::getAngleAxis(F32* angle, F32* x, F32* y, F32* z) const { F32 cos_a = mQ[VW]; if (cos_a > 1.0f) cos_a = 1.0f; if (cos_a < -1.0f) cos_a = -1.0f; F32 sin_a = (F32) sqrt( 1.0f - cos_a * cos_a ); if ( fabs( sin_a ) < 0.0005f ) sin_a = 1.0f; else sin_a = 1.f/sin_a; *angle = 2.0f * (F32) acos( cos_a ); *x = mQ[VX] * sin_a; *y = mQ[VY] * sin_a; *z = mQ[VZ] * sin_a; } inline const LLQuaternion& LLQuaternion::conjQuat() { mQ[VX] *= -1.f; mQ[VY] *= -1.f; mQ[VZ] *= -1.f; return (*this); } // Transpose inline const LLQuaternion& LLQuaternion::transQuat() { mQ[VX] = -mQ[VX]; mQ[VY] = -mQ[VY]; mQ[VZ] = -mQ[VZ]; return *this; } inline LLQuaternion operator+(const LLQuaternion &a, const LLQuaternion &b) { return LLQuaternion( a.mQ[VX] + b.mQ[VX], a.mQ[VY] + b.mQ[VY], a.mQ[VZ] + b.mQ[VZ], a.mQ[VW] + b.mQ[VW] ); } inline LLQuaternion operator-(const LLQuaternion &a, const LLQuaternion &b) { return LLQuaternion( a.mQ[VX] - b.mQ[VX], a.mQ[VY] - b.mQ[VY], a.mQ[VZ] - b.mQ[VZ], a.mQ[VW] - b.mQ[VW] ); } inline LLQuaternion operator-(const LLQuaternion &a) { return LLQuaternion( -a.mQ[VX], -a.mQ[VY], -a.mQ[VZ], -a.mQ[VW] ); } inline LLQuaternion operator*(F32 a, const LLQuaternion &q) { return LLQuaternion( a * q.mQ[VX], a * q.mQ[VY], a * q.mQ[VZ], a * q.mQ[VW] ); } inline LLQuaternion operator*(const LLQuaternion &q, F32 a) { return LLQuaternion( a * q.mQ[VX], a * q.mQ[VY], a * q.mQ[VZ], a * q.mQ[VW] ); } inline LLQuaternion operator~(const LLQuaternion &a) { LLQuaternion q(a); q.conjQuat(); return q; } inline bool LLQuaternion::operator==(const LLQuaternion &b) const { return ( (mQ[VX] == b.mQ[VX]) &&(mQ[VY] == b.mQ[VY]) &&(mQ[VZ] == b.mQ[VZ]) &&(mQ[VS] == b.mQ[VS])); } inline bool LLQuaternion::operator!=(const LLQuaternion &b) const { return ( (mQ[VX] != b.mQ[VX]) ||(mQ[VY] != b.mQ[VY]) ||(mQ[VZ] != b.mQ[VZ]) ||(mQ[VS] != b.mQ[VS])); } inline const LLQuaternion& operator*=(LLQuaternion &a, const LLQuaternion &b) { #if 1 LLQuaternion q( b.mQ[3] * a.mQ[0] + b.mQ[0] * a.mQ[3] + b.mQ[1] * a.mQ[2] - b.mQ[2] * a.mQ[1], b.mQ[3] * a.mQ[1] + b.mQ[1] * a.mQ[3] + b.mQ[2] * a.mQ[0] - b.mQ[0] * a.mQ[2], b.mQ[3] * a.mQ[2] + b.mQ[2] * a.mQ[3] + b.mQ[0] * a.mQ[1] - b.mQ[1] * a.mQ[0], b.mQ[3] * a.mQ[3] - b.mQ[0] * a.mQ[0] - b.mQ[1] * a.mQ[1] - b.mQ[2] * a.mQ[2] ); a = q; #else a = a * b; #endif return a; } inline F32 LLQuaternion::normQuat() { F32 mag = sqrtf(mQ[VX]*mQ[VX] + mQ[VY]*mQ[VY] + mQ[VZ]*mQ[VZ] + mQ[VS]*mQ[VS]); if (mag > FP_MAG_THRESHOLD) { F32 oomag = 1.f/mag; mQ[VX] *= oomag; mQ[VY] *= oomag; mQ[VZ] *= oomag; mQ[VS] *= oomag; } else { mQ[VX] = 0.f; mQ[VY] = 0.f; mQ[VZ] = 0.f; mQ[VS] = 1.f; } return mag; } LLQuaternion::Order StringToOrder( const char *str ); // Some notes about Quaternions // What is a Quaternion? // --------------------- // A quaternion is a point in 4-dimensional complex space. // Q = { Qx, Qy, Qz, Qw } // // // Why Quaternions? // ---------------- // The set of quaternions that make up the the 4-D unit sphere // can be mapped to the set of all rotations in 3-D space. Sometimes // it is easier to describe/manipulate rotations in quaternion space // than rotation-matrix space. // // // How Quaternions? // ---------------- // In order to take advantage of quaternions we need to know how to // go from rotation-matricies to quaternions and back. We also have // to agree what variety of rotations we're generating. // // Consider the equation... v' = v * R // // There are two ways to think about rotations of vectors. // 1) v' is the same vector in a different reference frame // 2) v' is a new vector in the same reference frame // // bookmark -- which way are we using? // // // Quaternion from Angle-Axis: // --------------------------- // Suppose we wanted to represent a rotation of some angle (theta) // about some axis ({Ax, Ay, Az})... // // axis of rotation = {Ax, Ay, Az} // angle_of_rotation = theta // // s = sin(0.5 * theta) // c = cos(0.5 * theta) // Q = { s * Ax, s * Ay, s * Az, c } // // // 3x3 Matrix from Quaternion // -------------------------- // // | | // | 1 - 2 * (y^2 + z^2) 2 * (x * y + z * w) 2 * (y * w - x * z) | // | | // M = | 2 * (x * y - z * w) 1 - 2 * (x^2 + z^2) 2 * (y * z + x * w) | // | | // | 2 * (x * z + y * w) 2 * (y * z - x * w) 1 - 2 * (x^2 + y^2) | // | | #endif