/** * @file llperlin.cpp * * Copyright (c) 2001-2007, Linden Research, Inc. * * Second Life Viewer Source Code * The source code in this file ("Source Code") is provided by Linden Lab * to you under the terms of the GNU General Public License, version 2.0 * ("GPL"), unless you have obtained a separate licensing agreement * ("Other License"), formally executed by you and Linden Lab. Terms of * the GPL can be found in doc/GPL-license.txt in this distribution, or * online at http://secondlife.com/developers/opensource/gplv2 * * There are special exceptions to the terms and conditions of the GPL as * it is applied to this Source Code. View the full text of the exception * in the file doc/FLOSS-exception.txt in this software distribution, or * online at http://secondlife.com/developers/opensource/flossexception * * By copying, modifying or distributing this software, you acknowledge * that you have read and understood your obligations described above, * and agree to abide by those obligations. * * ALL LINDEN LAB SOURCE CODE IS PROVIDED "AS IS." LINDEN LAB MAKES NO * WARRANTIES, EXPRESS, IMPLIED OR OTHERWISE, REGARDING ITS ACCURACY, * COMPLETENESS OR PERFORMANCE. */ #include "linden_common.h" #include "llmath.h" #include "llperlin.h" #define B 0x100 #define BM 0xff #define N 0x1000 #define NF32 (4096.f) #define NP 12 /* 2^N */ #define NM 0xfff static S32 p[B + B + 2]; static F32 g3[B + B + 2][3]; static F32 g2[B + B + 2][2]; static F32 g1[B + B + 2]; bool LLPerlinNoise::sInitialized = 0; static void normalize2(F32 v[2]) { F32 s = 1.f/(F32)sqrt(v[0] * v[0] + v[1] * v[1]); v[0] = v[0] * s; v[1] = v[1] * s; } static void normalize3(F32 v[3]) { F32 s = 1.f/(F32)sqrt(v[0] * v[0] + v[1] * v[1] + v[2] * v[2]); v[0] = v[0] * s; v[1] = v[1] * s; v[2] = v[2] * s; } static void fast_setup(F32 vec, U8 &b0, U8 &b1, F32 &r0, F32 &r1) { S32 t_S32; r1 = vec + NF32; t_S32 = lltrunc(r1); b0 = (U8)t_S32; b1 = b0 + 1; r0 = r1 - t_S32; r1 = r0 - 1.f; } void LLPerlinNoise::init(void) { int i, j, k; for (i = 0 ; i < B ; i++) { p[i] = i; g1[i] = (F32)((rand() % (B + B)) - B) / B; for (j = 0 ; j < 2 ; j++) g2[i][j] = (F32)((rand() % (B + B)) - B) / B; normalize2(g2[i]); for (j = 0 ; j < 3 ; j++) g3[i][j] = (F32)((rand() % (B + B)) - B) / B; normalize3(g3[i]); } while (--i) { k = p[i]; p[i] = p[j = rand() % B]; p[j] = k; } for (i = 0 ; i < B + 2 ; i++) { p[B + i] = p[i]; g1[B + i] = g1[i]; for (j = 0 ; j < 2 ; j++) g2[B + i][j] = g2[i][j]; for (j = 0 ; j < 3 ; j++) g3[B + i][j] = g3[i][j]; } sInitialized = true; } //============================================================================ // Noise functions #define s_curve(t) ( t * t * (3.f - 2.f * t) ) #define lerp_m(t, a, b) ( a + t * (b - a) ) F32 LLPerlinNoise::noise1(F32 x) { int bx0, bx1; F32 rx0, rx1, sx, t, u, v; if (!sInitialized) init(); t = x + N; bx0 = (lltrunc(t)) & BM; bx1 = (bx0+1) & BM; rx0 = t - lltrunc(t); rx1 = rx0 - 1.f; sx = s_curve(rx0); u = rx0 * g1[ p[ bx0 ] ]; v = rx1 * g1[ p[ bx1 ] ]; return lerp_m(sx, u, v); } static F32 fast_at2(F32 rx, F32 ry, F32 *q) { return rx * q[0] + ry * q[1]; } F32 LLPerlinNoise::noise2(F32 x, F32 y) { U8 bx0, bx1, by0, by1; U32 b00, b10, b01, b11; F32 rx0, rx1, ry0, ry1, *q, sx, sy, a, b, u, v; S32 i, j; if (!sInitialized) init(); fast_setup(x, bx0, bx1, rx0, rx1); fast_setup(y, by0, by1, ry0, ry1); i = *(p + bx0); j = *(p + bx1); b00 = *(p + i + by0); b10 = *(p + j + by0); b01 = *(p + i + by1); b11 = *(p + j + by1); sx = s_curve(rx0); sy = s_curve(ry0); q = *(g2 + b00); u = fast_at2(rx0, ry0, q); q = *(g2 + b10); v = fast_at2(rx1, ry0, q); a = lerp_m(sx, u, v); q = *(g2 + b01); u = fast_at2(rx0,ry1,q); q = *(g2 + b11); v = fast_at2(rx1,ry1,q); b = lerp_m(sx, u, v); return lerp_m(sy, a, b); } static F32 fast_at3(F32 rx, F32 ry, F32 rz, F32 *q) { return rx * q[0] + ry * q[1] + rz * q[2]; } F32 LLPerlinNoise::noise3(F32 x, F32 y, F32 z) { U8 bx0, bx1, by0, by1, bz0, bz1; S32 b00, b10, b01, b11; F32 rx0, rx1, ry0, ry1, rz0, rz1, *q, sy, sz, a, b, c, d, t, u, v; S32 i, j; if (!sInitialized) init(); fast_setup(x, bx0,bx1, rx0,rx1); fast_setup(y, by0,by1, ry0,ry1); fast_setup(z, bz0,bz1, rz0,rz1); i = p[ bx0 ]; j = p[ bx1 ]; b00 = p[ i + by0 ]; b10 = p[ j + by0 ]; b01 = p[ i + by1 ]; b11 = p[ j + by1 ]; t = s_curve(rx0); sy = s_curve(ry0); sz = s_curve(rz0); q = g3[ b00 + bz0 ]; u = fast_at3(rx0,ry0,rz0,q); q = g3[ b10 + bz0 ]; v = fast_at3(rx1,ry0,rz0,q); a = lerp_m(t, u, v); q = g3[ b01 + bz0 ]; u = fast_at3(rx0,ry1,rz0,q); q = g3[ b11 + bz0 ]; v = fast_at3(rx1,ry1,rz0,q); b = lerp_m(t, u, v); c = lerp_m(sy, a, b); q = g3[ b00 + bz1 ]; u = fast_at3(rx0,ry0,rz1,q); q = g3[ b10 + bz1 ]; v = fast_at3(rx1,ry0,rz1,q); a = lerp_m(t, u, v); q = g3[ b01 + bz1 ]; u = fast_at3(rx0,ry1,rz1,q); q = g3[ b11 + bz1 ]; v = fast_at3(rx1,ry1,rz1,q); b = lerp_m(t, u, v); d = lerp_m(sy, a, b); return lerp_m(sz, c, d); } F32 LLPerlinNoise::turbulence2(F32 x, F32 y, F32 freq) { F32 t, lx, ly; for (t = 0.f ; freq >= 1.f ; freq *= 0.5f) { lx = freq * x; ly = freq * y; t += noise2(lx, ly)/freq; } return t; } F32 LLPerlinNoise::turbulence3(F32 x, F32 y, F32 z, F32 freq) { F32 t, lx, ly, lz; for (t = 0.f ; freq >= 1.f ; freq *= 0.5f) { lx = freq * x; ly = freq * y; lz = freq * z; t += noise3(lx,ly,lz)/freq; // t += fabs(noise3(lx,ly,lz)) / freq; // Like snow - bubbly at low frequencies // t += sqrt(fabs(noise3(lx,ly,lz))) / freq; // Better at low freq // t += (noise3(lx,ly,lz)*noise3(lx,ly,lz)) / freq; } return t; } F32 LLPerlinNoise::clouds3(F32 x, F32 y, F32 z, F32 freq) { F32 t, lx, ly, lz; for (t = 0.f ; freq >= 1.f ; freq *= 0.5f) { lx = freq * x; ly = freq * y; lz = freq * z; // t += noise3(lx,ly,lz)/freq; // t += fabs(noise3(lx,ly,lz)) / freq; // Like snow - bubbly at low frequencies // t += sqrt(fabs(noise3(lx,ly,lz))) / freq; // Better at low freq t += (noise3(lx,ly,lz)*noise3(lx,ly,lz)) / freq; } return t; }