From 38d6d37f2d982fa959e9e8a4a3f7e1ccfad7b5d4 Mon Sep 17 00:00:00 2001 From: Jacek Antonelli Date: Fri, 15 Aug 2008 23:44:46 -0500 Subject: Second Life viewer sources 1.13.2.12 --- linden/indra/llmath/llquaternion.h | 461 +++++++++++++++++++++++++++++++++++++ 1 file changed, 461 insertions(+) create mode 100644 linden/indra/llmath/llquaternion.h (limited to 'linden/indra/llmath/llquaternion.h') diff --git a/linden/indra/llmath/llquaternion.h b/linden/indra/llmath/llquaternion.h new file mode 100644 index 0000000..1e3f2b6 --- /dev/null +++ b/linden/indra/llmath/llquaternion.h @@ -0,0 +1,461 @@ +/** + * @file llquaternion.h + * @brief LLQuaternion class header file. + * + * Copyright (c) 2000-2007, Linden Research, Inc. + * + * The source code in this file ("Source Code") is provided by Linden Lab + * to you under the terms of the GNU General Public License, version 2.0 + * ("GPL"), unless you have obtained a separate licensing agreement + * ("Other License"), formally executed by you and Linden Lab. Terms of + * the GPL can be found in doc/GPL-license.txt in this distribution, or + * online at http://secondlife.com/developers/opensource/gplv2 + * + * There are special exceptions to the terms and conditions of the GPL as + * it is applied to this Source Code. View the full text of the exception + * in the file doc/FLOSS-exception.txt in this software distribution, or + * online at http://secondlife.com/developers/opensource/flossexception + * + * By copying, modifying or distributing this software, you acknowledge + * that you have read and understood your obligations described above, + * and agree to abide by those obligations. + * + * ALL LINDEN LAB SOURCE CODE IS PROVIDED "AS IS." LINDEN LAB MAKES NO + * WARRANTIES, EXPRESS, IMPLIED OR OTHERWISE, REGARDING ITS ACCURACY, + * COMPLETENESS OR PERFORMANCE. + */ + +#ifndef LLQUATERNION_H +#define LLQUATERNION_H + +#include "llmath.h" + +class LLVector4; +class LLVector3; +class LLVector3d; +class LLMatrix4; +class LLMatrix3; + +// NOTA BENE: Quaternion code is written assuming Unit Quaternions!!!! +// Moreover, it is written assuming that all vectors and matricies +// passed as arguments are normalized and unitary respectively. +// VERY VERY VERY VERY BAD THINGS will happen if these assumptions fail. + +static const U32 LENGTHOFQUAT = 4; + +class LLQuaternion +{ +public: + F32 mQ[LENGTHOFQUAT]; + + static const LLQuaternion DEFAULT; + + LLQuaternion(); // Initializes Quaternion to (0,0,0,1) + explicit LLQuaternion(const LLMatrix4 &mat); // Initializes Quaternion from Matrix4 + explicit LLQuaternion(const LLMatrix3 &mat); // Initializes Quaternion from Matrix3 + LLQuaternion(F32 x, F32 y, F32 z, F32 w); // Initializes Quaternion to normQuat(x, y, z, w) + LLQuaternion(F32 angle, const LLVector4 &vec); // Initializes Quaternion to axis_angle2quat(angle, vec) + LLQuaternion(F32 angle, const LLVector3 &vec); // Initializes Quaternion to axis_angle2quat(angle, vec) + LLQuaternion(const F32 *q); // Initializes Quaternion to normQuat(x, y, z, w) + LLQuaternion(const LLVector3 &x_axis, + const LLVector3 &y_axis, + const LLVector3 &z_axis); // Initializes Quaternion from Matrix3 = [x_axis ; y_axis ; z_axis] + + BOOL isIdentity() const; + BOOL isNotIdentity() const; + BOOL isFinite() const; // checks to see if all values of LLQuaternion are finite + void quantize16(F32 lower, F32 upper); // changes the vector to reflect quatization + void quantize8(F32 lower, F32 upper); // changes the vector to reflect quatization + void loadIdentity(); // Loads the quaternion that represents the identity rotation + const LLQuaternion& setQuatInit(F32 x, F32 y, F32 z, F32 w); // Sets Quaternion to normQuat(x, y, z, w) + const LLQuaternion& setQuat(const LLQuaternion &quat); // Copies Quaternion + const LLQuaternion& setQuat(const F32 *q); // Sets Quaternion to normQuat(quat[VX], quat[VY], quat[VZ], quat[VW]) + const LLQuaternion& setQuat(const LLMatrix3 &mat); // Sets Quaternion to mat2quat(mat) + const LLQuaternion& setQuat(const LLMatrix4 &mat); // Sets Quaternion to mat2quat(mat) + const LLQuaternion& setQuat(F32 angle, F32 x, F32 y, F32 z); // Sets Quaternion to axis_angle2quat(angle, x, y, z) + const LLQuaternion& setQuat(F32 angle, const LLVector3 &vec); // Sets Quaternion to axis_angle2quat(angle, vec) + const LLQuaternion& setQuat(F32 angle, const LLVector4 &vec); // Sets Quaternion to axis_angle2quat(angle, vec) + const LLQuaternion& setQuat(F32 roll, F32 pitch, F32 yaw); // Sets Quaternion to euler2quat(pitch, yaw, roll) + + LLMatrix4 getMatrix4(void) const; // Returns the Matrix4 equivalent of Quaternion + LLMatrix3 getMatrix3(void) const; // Returns the Matrix3 equivalent of Quaternion + void getAngleAxis(F32* angle, F32* x, F32* y, F32* z) const; // returns rotation in radians about axis x,y,z + void getAngleAxis(F32* angle, LLVector3 &vec) const; + void getEulerAngles(F32 *roll, F32* pitch, F32 *yaw) const; + + F32 normQuat(); // Normalizes Quaternion and returns magnitude + const LLQuaternion& conjQuat(void); // Conjugates Quaternion and returns result + + // Other useful methods + const LLQuaternion& transQuat(); // Transpose + void shortestArc(const LLVector3 &a, const LLVector3 &b); // shortest rotation from a to b + const LLQuaternion& constrain(F32 radians); // constrains rotation to a cone angle specified in radians + + // Standard operators + friend std::ostream& operator<<(std::ostream &s, const LLQuaternion &a); // Prints a + friend LLQuaternion operator+(const LLQuaternion &a, const LLQuaternion &b); // Addition + friend LLQuaternion operator-(const LLQuaternion &a, const LLQuaternion &b); // Subtraction + friend LLQuaternion operator-(const LLQuaternion &a); // Negation + friend LLQuaternion operator*(F32 a, const LLQuaternion &q); // Scale + friend LLQuaternion operator*(const LLQuaternion &q, F32 b); // Scale + friend LLQuaternion operator*(const LLQuaternion &a, const LLQuaternion &b); // Returns a * b + friend LLQuaternion operator~(const LLQuaternion &a); // Returns a* (Conjugate of a) + bool operator==(const LLQuaternion &b) const; // Returns a == b + bool operator!=(const LLQuaternion &b) const; // Returns a != b + + friend const LLQuaternion& operator*=(LLQuaternion &a, const LLQuaternion &b); // Returns a * b + + friend LLVector4 operator*(const LLVector4 &a, const LLQuaternion &rot); // Rotates a by rot + friend LLVector3 operator*(const LLVector3 &a, const LLQuaternion &rot); // Rotates a by rot + friend LLVector3d operator*(const LLVector3d &a, const LLQuaternion &rot); // Rotates a by rot + + // Non-standard operators + friend F32 dot(const LLQuaternion &a, const LLQuaternion &b); + friend LLQuaternion lerp(F32 t, const LLQuaternion &p, const LLQuaternion &q); // linear interpolation (t = 0 to 1) from p to q + friend LLQuaternion lerp(F32 t, const LLQuaternion &q); // linear interpolation (t = 0 to 1) from identity to q + friend LLQuaternion slerp(F32 t, const LLQuaternion &p, const LLQuaternion &q); // spherical linear interpolation from p to q + friend LLQuaternion slerp(F32 t, const LLQuaternion &q); // spherical linear interpolation from identity to q + friend LLQuaternion nlerp(F32 t, const LLQuaternion &p, const LLQuaternion &q); // normalized linear interpolation from p to q + friend LLQuaternion nlerp(F32 t, const LLQuaternion &q); // normalized linear interpolation from p to q + + LLVector3 packToVector3() const; // Saves space by using the fact that our quaternions are normalized + void unpackFromVector3(const LLVector3& vec); // Saves space by using the fact that our quaternions are normalized + + enum Order { + XYZ = 0, + YZX = 1, + ZXY = 2, + XZY = 3, + YXZ = 4, + ZYX = 5 + }; + // Creates a quaternions from maya's rotation representation, + // which is 3 rotations (in DEGREES) in the specified order + friend LLQuaternion mayaQ(F32 x, F32 y, F32 z, Order order); + + // Conversions between Order and strings like "xyz" or "ZYX" + friend const char *OrderToString( const Order order ); + friend Order StringToOrder( const char *str ); + + static BOOL parseQuat(const char* buf, LLQuaternion* value); + + // For debugging, only + //static U32 mMultCount; +}; + +// checker +inline BOOL LLQuaternion::isFinite() const +{ + return (llfinite(mQ[VX]) && llfinite(mQ[VY]) && llfinite(mQ[VZ]) && llfinite(mQ[VS])); +} + +inline BOOL LLQuaternion::isIdentity() const +{ + return + ( mQ[VX] == 0.f ) && + ( mQ[VY] == 0.f ) && + ( mQ[VZ] == 0.f ) && + ( mQ[VS] == 1.f ); +} + +inline BOOL LLQuaternion::isNotIdentity() const +{ + return + ( mQ[VX] != 0.f ) || + ( mQ[VY] != 0.f ) || + ( mQ[VZ] != 0.f ) || + ( mQ[VS] != 1.f ); +} + + + +inline LLQuaternion::LLQuaternion(void) +{ + mQ[VX] = 0.f; + mQ[VY] = 0.f; + mQ[VZ] = 0.f; + mQ[VS] = 1.f; +} + +inline LLQuaternion::LLQuaternion(F32 x, F32 y, F32 z, F32 w) +{ + mQ[VX] = x; + mQ[VY] = y; + mQ[VZ] = z; + mQ[VS] = w; + + //RN: don't normalize this case as its used mainly for temporaries during calculations + //normQuat(); + /* + F32 mag = sqrtf(mQ[VX]*mQ[VX] + mQ[VY]*mQ[VY] + mQ[VZ]*mQ[VZ] + mQ[VS]*mQ[VS]); + mag -= 1.f; + mag = fabs(mag); + llassert(mag < 10.f*FP_MAG_THRESHOLD); + */ +} + +inline LLQuaternion::LLQuaternion(const F32 *q) +{ + mQ[VX] = q[VX]; + mQ[VY] = q[VY]; + mQ[VZ] = q[VZ]; + mQ[VS] = q[VW]; + + normQuat(); + /* + F32 mag = sqrtf(mQ[VX]*mQ[VX] + mQ[VY]*mQ[VY] + mQ[VZ]*mQ[VZ] + mQ[VS]*mQ[VS]); + mag -= 1.f; + mag = fabs(mag); + llassert(mag < FP_MAG_THRESHOLD); + */ +} + + +inline void LLQuaternion::loadIdentity() +{ + mQ[VX] = 0.0f; + mQ[VY] = 0.0f; + mQ[VZ] = 0.0f; + mQ[VW] = 1.0f; +} + + +inline const LLQuaternion& LLQuaternion::setQuatInit(F32 x, F32 y, F32 z, F32 w) +{ + mQ[VX] = x; + mQ[VY] = y; + mQ[VZ] = z; + mQ[VS] = w; + normQuat(); + return (*this); +} + +inline const LLQuaternion& LLQuaternion::setQuat(const LLQuaternion &quat) +{ + mQ[VX] = quat.mQ[VX]; + mQ[VY] = quat.mQ[VY]; + mQ[VZ] = quat.mQ[VZ]; + mQ[VW] = quat.mQ[VW]; + normQuat(); + return (*this); +} + +inline const LLQuaternion& LLQuaternion::setQuat(const F32 *q) +{ + mQ[VX] = q[VX]; + mQ[VY] = q[VY]; + mQ[VZ] = q[VZ]; + mQ[VS] = q[VW]; + normQuat(); + return (*this); +} + +// There may be a cheaper way that avoids the sqrt. +// Does sin_a = VX*VX + VY*VY + VZ*VZ? +// Copied from Matrix and Quaternion FAQ 1.12 +inline void LLQuaternion::getAngleAxis(F32* angle, F32* x, F32* y, F32* z) const +{ + F32 cos_a = mQ[VW]; + if (cos_a > 1.0f) cos_a = 1.0f; + if (cos_a < -1.0f) cos_a = -1.0f; + + F32 sin_a = (F32) sqrt( 1.0f - cos_a * cos_a ); + + if ( fabs( sin_a ) < 0.0005f ) + sin_a = 1.0f; + else + sin_a = 1.f/sin_a; + + *angle = 2.0f * (F32) acos( cos_a ); + *x = mQ[VX] * sin_a; + *y = mQ[VY] * sin_a; + *z = mQ[VZ] * sin_a; +} + +inline const LLQuaternion& LLQuaternion::conjQuat() +{ + mQ[VX] *= -1.f; + mQ[VY] *= -1.f; + mQ[VZ] *= -1.f; + return (*this); +} + +// Transpose +inline const LLQuaternion& LLQuaternion::transQuat() +{ + mQ[VX] = -mQ[VX]; + mQ[VY] = -mQ[VY]; + mQ[VZ] = -mQ[VZ]; + return *this; +} + + +inline LLQuaternion operator+(const LLQuaternion &a, const LLQuaternion &b) +{ + return LLQuaternion( + a.mQ[VX] + b.mQ[VX], + a.mQ[VY] + b.mQ[VY], + a.mQ[VZ] + b.mQ[VZ], + a.mQ[VW] + b.mQ[VW] ); +} + + +inline LLQuaternion operator-(const LLQuaternion &a, const LLQuaternion &b) +{ + return LLQuaternion( + a.mQ[VX] - b.mQ[VX], + a.mQ[VY] - b.mQ[VY], + a.mQ[VZ] - b.mQ[VZ], + a.mQ[VW] - b.mQ[VW] ); +} + + +inline LLQuaternion operator-(const LLQuaternion &a) +{ + return LLQuaternion( + -a.mQ[VX], + -a.mQ[VY], + -a.mQ[VZ], + -a.mQ[VW] ); +} + + +inline LLQuaternion operator*(F32 a, const LLQuaternion &q) +{ + return LLQuaternion( + a * q.mQ[VX], + a * q.mQ[VY], + a * q.mQ[VZ], + a * q.mQ[VW] ); +} + + +inline LLQuaternion operator*(const LLQuaternion &q, F32 a) +{ + return LLQuaternion( + a * q.mQ[VX], + a * q.mQ[VY], + a * q.mQ[VZ], + a * q.mQ[VW] ); +} + +inline LLQuaternion operator~(const LLQuaternion &a) +{ + LLQuaternion q(a); + q.conjQuat(); + return q; +} + +inline bool LLQuaternion::operator==(const LLQuaternion &b) const +{ + return ( (mQ[VX] == b.mQ[VX]) + &&(mQ[VY] == b.mQ[VY]) + &&(mQ[VZ] == b.mQ[VZ]) + &&(mQ[VS] == b.mQ[VS])); +} + +inline bool LLQuaternion::operator!=(const LLQuaternion &b) const +{ + return ( (mQ[VX] != b.mQ[VX]) + ||(mQ[VY] != b.mQ[VY]) + ||(mQ[VZ] != b.mQ[VZ]) + ||(mQ[VS] != b.mQ[VS])); +} + +inline const LLQuaternion& operator*=(LLQuaternion &a, const LLQuaternion &b) +{ +#if 1 + LLQuaternion q( + b.mQ[3] * a.mQ[0] + b.mQ[0] * a.mQ[3] + b.mQ[1] * a.mQ[2] - b.mQ[2] * a.mQ[1], + b.mQ[3] * a.mQ[1] + b.mQ[1] * a.mQ[3] + b.mQ[2] * a.mQ[0] - b.mQ[0] * a.mQ[2], + b.mQ[3] * a.mQ[2] + b.mQ[2] * a.mQ[3] + b.mQ[0] * a.mQ[1] - b.mQ[1] * a.mQ[0], + b.mQ[3] * a.mQ[3] - b.mQ[0] * a.mQ[0] - b.mQ[1] * a.mQ[1] - b.mQ[2] * a.mQ[2] + ); + a = q; +#else + a = a * b; +#endif + return a; +} + +inline F32 LLQuaternion::normQuat() +{ + F32 mag = sqrtf(mQ[VX]*mQ[VX] + mQ[VY]*mQ[VY] + mQ[VZ]*mQ[VZ] + mQ[VS]*mQ[VS]); + + if (mag > FP_MAG_THRESHOLD) + { + F32 oomag = 1.f/mag; + mQ[VX] *= oomag; + mQ[VY] *= oomag; + mQ[VZ] *= oomag; + mQ[VS] *= oomag; + } + else + { + mQ[VX] = 0.f; + mQ[VY] = 0.f; + mQ[VZ] = 0.f; + mQ[VS] = 1.f; + } + + return mag; +} + +LLQuaternion::Order StringToOrder( const char *str ); + +// Some notes about Quaternions + +// What is a Quaternion? +// --------------------- +// A quaternion is a point in 4-dimensional complex space. +// Q = { Qx, Qy, Qz, Qw } +// +// +// Why Quaternions? +// ---------------- +// The set of quaternions that make up the the 4-D unit sphere +// can be mapped to the set of all rotations in 3-D space. Sometimes +// it is easier to describe/manipulate rotations in quaternion space +// than rotation-matrix space. +// +// +// How Quaternions? +// ---------------- +// In order to take advantage of quaternions we need to know how to +// go from rotation-matricies to quaternions and back. We also have +// to agree what variety of rotations we're generating. +// +// Consider the equation... v' = v * R +// +// There are two ways to think about rotations of vectors. +// 1) v' is the same vector in a different reference frame +// 2) v' is a new vector in the same reference frame +// +// bookmark -- which way are we using? +// +// +// Quaternion from Angle-Axis: +// --------------------------- +// Suppose we wanted to represent a rotation of some angle (theta) +// about some axis ({Ax, Ay, Az})... +// +// axis of rotation = {Ax, Ay, Az} +// angle_of_rotation = theta +// +// s = sin(0.5 * theta) +// c = cos(0.5 * theta) +// Q = { s * Ax, s * Ay, s * Az, c } +// +// +// 3x3 Matrix from Quaternion +// -------------------------- +// +// | | +// | 1 - 2 * (y^2 + z^2) 2 * (x * y + z * w) 2 * (y * w - x * z) | +// | | +// M = | 2 * (x * y - z * w) 1 - 2 * (x^2 + z^2) 2 * (y * z + x * w) | +// | | +// | 2 * (x * z + y * w) 2 * (y * z - x * w) 1 - 2 * (x^2 + y^2) | +// | | + +#endif -- cgit v1.1