diff options
Diffstat (limited to 'linden/indra/llmath/v4math.h')
-rw-r--r-- | linden/indra/llmath/v4math.h | 404 |
1 files changed, 404 insertions, 0 deletions
diff --git a/linden/indra/llmath/v4math.h b/linden/indra/llmath/v4math.h new file mode 100644 index 0000000..06ac777 --- /dev/null +++ b/linden/indra/llmath/v4math.h | |||
@@ -0,0 +1,404 @@ | |||
1 | /** | ||
2 | * @file v4math.h | ||
3 | * @brief LLVector4 class header file. | ||
4 | * | ||
5 | * Copyright (c) 2000-2007, Linden Research, Inc. | ||
6 | * | ||
7 | * The source code in this file ("Source Code") is provided by Linden Lab | ||
8 | * to you under the terms of the GNU General Public License, version 2.0 | ||
9 | * ("GPL"), unless you have obtained a separate licensing agreement | ||
10 | * ("Other License"), formally executed by you and Linden Lab. Terms of | ||
11 | * the GPL can be found in doc/GPL-license.txt in this distribution, or | ||
12 | * online at http://secondlife.com/developers/opensource/gplv2 | ||
13 | * | ||
14 | * There are special exceptions to the terms and conditions of the GPL as | ||
15 | * it is applied to this Source Code. View the full text of the exception | ||
16 | * in the file doc/FLOSS-exception.txt in this software distribution, or | ||
17 | * online at http://secondlife.com/developers/opensource/flossexception | ||
18 | * | ||
19 | * By copying, modifying or distributing this software, you acknowledge | ||
20 | * that you have read and understood your obligations described above, | ||
21 | * and agree to abide by those obligations. | ||
22 | * | ||
23 | * ALL LINDEN LAB SOURCE CODE IS PROVIDED "AS IS." LINDEN LAB MAKES NO | ||
24 | * WARRANTIES, EXPRESS, IMPLIED OR OTHERWISE, REGARDING ITS ACCURACY, | ||
25 | * COMPLETENESS OR PERFORMANCE. | ||
26 | */ | ||
27 | |||
28 | #ifndef LL_V4MATH_H | ||
29 | #define LL_V4MATH_H | ||
30 | |||
31 | #include "llerror.h" | ||
32 | #include "llmath.h" | ||
33 | #include "v3math.h" | ||
34 | |||
35 | class LLMatrix3; | ||
36 | class LLMatrix4; | ||
37 | class LLQuaternion; | ||
38 | |||
39 | // LLVector4 = |x y z w| | ||
40 | |||
41 | static const U32 LENGTHOFVECTOR4 = 4; | ||
42 | |||
43 | #if LL_WINDOWS | ||
44 | __declspec( align(16) ) | ||
45 | #endif | ||
46 | |||
47 | class LLVector4 | ||
48 | { | ||
49 | public: | ||
50 | F32 mV[LENGTHOFVECTOR4]; | ||
51 | LLVector4(); // Initializes LLVector4 to (0, 0, 0, 1) | ||
52 | explicit LLVector4(const F32 *vec); // Initializes LLVector4 to (vec[0]. vec[1], vec[2], 1) | ||
53 | explicit LLVector4(const LLVector3 &vec); // Initializes LLVector4 to (vec, 1) | ||
54 | explicit LLVector4(const LLVector3 &vec, F32 w); // Initializes LLVector4 to (vec, w) | ||
55 | LLVector4(F32 x, F32 y, F32 z); // Initializes LLVector4 to (x. y, z, 1) | ||
56 | LLVector4(F32 x, F32 y, F32 z, F32 w); | ||
57 | |||
58 | LLSD getValue() const | ||
59 | { | ||
60 | LLSD ret; | ||
61 | ret[0] = mV[0]; | ||
62 | ret[1] = mV[1]; | ||
63 | ret[2] = mV[2]; | ||
64 | ret[3] = mV[3]; | ||
65 | return ret; | ||
66 | } | ||
67 | |||
68 | inline BOOL isFinite() const; // checks to see if all values of LLVector3 are finite | ||
69 | |||
70 | inline void clearVec(); // Clears LLVector4 to (0, 0, 0, 1) | ||
71 | inline void zeroVec(); // zero LLVector4 to (0, 0, 0, 0) | ||
72 | inline void setVec(F32 x, F32 y, F32 z); // Sets LLVector4 to (x, y, z, 1) | ||
73 | inline void setVec(F32 x, F32 y, F32 z, F32 w); // Sets LLVector4 to (x, y, z, w) | ||
74 | inline void setVec(const LLVector4 &vec); // Sets LLVector4 to vec | ||
75 | inline void setVec(const LLVector3 &vec, F32 w = 1.f); // Sets LLVector4 to LLVector3 vec | ||
76 | inline void setVec(const F32 *vec); // Sets LLVector4 to vec | ||
77 | |||
78 | F32 magVec() const; // Returns magnitude of LLVector4 | ||
79 | F32 magVecSquared() const; // Returns magnitude squared of LLVector4 | ||
80 | F32 normVec(); // Normalizes and returns the magnitude of LLVector4 | ||
81 | |||
82 | // Sets all values to absolute value of their original values | ||
83 | // Returns TRUE if data changed | ||
84 | BOOL abs(); | ||
85 | |||
86 | BOOL isExactlyClear() const { return (mV[VW] == 1.0f) && !mV[VX] && !mV[VY] && !mV[VZ]; } | ||
87 | BOOL isExactlyZero() const { return !mV[VW] && !mV[VX] && !mV[VY] && !mV[VZ]; } | ||
88 | |||
89 | const LLVector4& rotVec(F32 angle, const LLVector4 &vec); // Rotates about vec by angle radians | ||
90 | const LLVector4& rotVec(F32 angle, F32 x, F32 y, F32 z); // Rotates about x,y,z by angle radians | ||
91 | const LLVector4& rotVec(const LLMatrix4 &mat); // Rotates by MAT4 mat | ||
92 | const LLVector4& rotVec(const LLQuaternion &q); // Rotates by QUAT q | ||
93 | |||
94 | const LLVector4& scaleVec(const LLVector4& vec); // Scales component-wise by vec | ||
95 | |||
96 | F32 operator[](int idx) const { return mV[idx]; } | ||
97 | F32 &operator[](int idx) { return mV[idx]; } | ||
98 | |||
99 | friend std::ostream& operator<<(std::ostream& s, const LLVector4 &a); // Print a | ||
100 | friend LLVector4 operator+(const LLVector4 &a, const LLVector4 &b); // Return vector a + b | ||
101 | friend LLVector4 operator-(const LLVector4 &a, const LLVector4 &b); // Return vector a minus b | ||
102 | friend F32 operator*(const LLVector4 &a, const LLVector4 &b); // Return a dot b | ||
103 | friend LLVector4 operator%(const LLVector4 &a, const LLVector4 &b); // Return a cross b | ||
104 | friend LLVector4 operator/(const LLVector4 &a, F32 k); // Return a divided by scaler k | ||
105 | friend LLVector4 operator*(const LLVector4 &a, F32 k); // Return a times scaler k | ||
106 | friend LLVector4 operator*(F32 k, const LLVector4 &a); // Return a times scaler k | ||
107 | friend bool operator==(const LLVector4 &a, const LLVector4 &b); // Return a == b | ||
108 | friend bool operator!=(const LLVector4 &a, const LLVector4 &b); // Return a != b | ||
109 | |||
110 | friend const LLVector4& operator+=(LLVector4 &a, const LLVector4 &b); // Return vector a + b | ||
111 | friend const LLVector4& operator-=(LLVector4 &a, const LLVector4 &b); // Return vector a minus b | ||
112 | friend const LLVector4& operator%=(LLVector4 &a, const LLVector4 &b); // Return a cross b | ||
113 | friend const LLVector4& operator*=(LLVector4 &a, F32 k); // Return a times scaler k | ||
114 | friend const LLVector4& operator/=(LLVector4 &a, F32 k); // Return a divided by scaler k | ||
115 | |||
116 | friend LLVector4 operator-(const LLVector4 &a); // Return vector -a | ||
117 | } | ||
118 | #if LL_DARWIN | ||
119 | __attribute__ ((aligned (16))) | ||
120 | #endif | ||
121 | ; | ||
122 | |||
123 | |||
124 | // Non-member functions | ||
125 | F32 angle_between(const LLVector4 &a, const LLVector4 &b); // Returns angle (radians) between a and b | ||
126 | BOOL are_parallel(const LLVector4 &a, const LLVector4 &b, F32 epsilon=F_APPROXIMATELY_ZERO); // Returns TRUE if a and b are very close to parallel | ||
127 | F32 dist_vec(const LLVector4 &a, const LLVector4 &b); // Returns distance between a and b | ||
128 | F32 dist_vec_squared(const LLVector4 &a, const LLVector4 &b); // Returns distance squared between a and b | ||
129 | LLVector3 vec4to3(const LLVector4 &vec); | ||
130 | LLVector4 vec3to4(const LLVector3 &vec); | ||
131 | LLVector4 lerp(const LLVector4 &a, const LLVector4 &b, F32 u); // Returns a vector that is a linear interpolation between a and b | ||
132 | |||
133 | // Constructors | ||
134 | |||
135 | inline LLVector4::LLVector4(void) | ||
136 | { | ||
137 | mV[VX] = 0.f; | ||
138 | mV[VY] = 0.f; | ||
139 | mV[VZ] = 0.f; | ||
140 | mV[VW] = 1.f; | ||
141 | } | ||
142 | |||
143 | inline LLVector4::LLVector4(F32 x, F32 y, F32 z) | ||
144 | { | ||
145 | mV[VX] = x; | ||
146 | mV[VY] = y; | ||
147 | mV[VZ] = z; | ||
148 | mV[VW] = 1.f; | ||
149 | } | ||
150 | |||
151 | inline LLVector4::LLVector4(F32 x, F32 y, F32 z, F32 w) | ||
152 | { | ||
153 | mV[VX] = x; | ||
154 | mV[VY] = y; | ||
155 | mV[VZ] = z; | ||
156 | mV[VW] = w; | ||
157 | } | ||
158 | |||
159 | inline LLVector4::LLVector4(const F32 *vec) | ||
160 | { | ||
161 | mV[VX] = vec[VX]; | ||
162 | mV[VY] = vec[VY]; | ||
163 | mV[VZ] = vec[VZ]; | ||
164 | mV[VW] = vec[VW]; | ||
165 | } | ||
166 | |||
167 | inline LLVector4::LLVector4(const LLVector3 &vec) | ||
168 | { | ||
169 | mV[VX] = vec.mV[VX]; | ||
170 | mV[VY] = vec.mV[VY]; | ||
171 | mV[VZ] = vec.mV[VZ]; | ||
172 | mV[VW] = 1.f; | ||
173 | } | ||
174 | |||
175 | inline LLVector4::LLVector4(const LLVector3 &vec, F32 w) | ||
176 | { | ||
177 | mV[VX] = vec.mV[VX]; | ||
178 | mV[VY] = vec.mV[VY]; | ||
179 | mV[VZ] = vec.mV[VZ]; | ||
180 | mV[VW] = w; | ||
181 | } | ||
182 | |||
183 | |||
184 | inline BOOL LLVector4::isFinite() const | ||
185 | { | ||
186 | return (llfinite(mV[VX]) && llfinite(mV[VY]) && llfinite(mV[VZ]) && llfinite(mV[VW])); | ||
187 | } | ||
188 | |||
189 | // Clear and Assignment Functions | ||
190 | |||
191 | inline void LLVector4::clearVec(void) | ||
192 | { | ||
193 | mV[VX] = 0.f; | ||
194 | mV[VY] = 0.f; | ||
195 | mV[VZ] = 0.f; | ||
196 | mV[VW] = 1.f; | ||
197 | } | ||
198 | |||
199 | inline void LLVector4::zeroVec(void) | ||
200 | { | ||
201 | mV[VX] = 0.f; | ||
202 | mV[VY] = 0.f; | ||
203 | mV[VZ] = 0.f; | ||
204 | mV[VW] = 0.f; | ||
205 | } | ||
206 | |||
207 | inline void LLVector4::setVec(F32 x, F32 y, F32 z) | ||
208 | { | ||
209 | mV[VX] = x; | ||
210 | mV[VY] = y; | ||
211 | mV[VZ] = z; | ||
212 | mV[VW] = 1.f; | ||
213 | } | ||
214 | |||
215 | inline void LLVector4::setVec(F32 x, F32 y, F32 z, F32 w) | ||
216 | { | ||
217 | mV[VX] = x; | ||
218 | mV[VY] = y; | ||
219 | mV[VZ] = z; | ||
220 | mV[VW] = w; | ||
221 | } | ||
222 | |||
223 | inline void LLVector4::setVec(const LLVector4 &vec) | ||
224 | { | ||
225 | mV[VX] = vec.mV[VX]; | ||
226 | mV[VY] = vec.mV[VY]; | ||
227 | mV[VZ] = vec.mV[VZ]; | ||
228 | mV[VW] = vec.mV[VW]; | ||
229 | } | ||
230 | |||
231 | inline void LLVector4::setVec(const LLVector3 &vec, F32 w) | ||
232 | { | ||
233 | mV[VX] = vec.mV[VX]; | ||
234 | mV[VY] = vec.mV[VY]; | ||
235 | mV[VZ] = vec.mV[VZ]; | ||
236 | mV[VW] = w; | ||
237 | } | ||
238 | |||
239 | inline void LLVector4::setVec(const F32 *vec) | ||
240 | { | ||
241 | mV[VX] = vec[VX]; | ||
242 | mV[VY] = vec[VY]; | ||
243 | mV[VZ] = vec[VZ]; | ||
244 | mV[VW] = vec[VW]; | ||
245 | } | ||
246 | |||
247 | // LLVector4 Magnitude and Normalization Functions | ||
248 | |||
249 | inline F32 LLVector4::magVec(void) const | ||
250 | { | ||
251 | return fsqrtf(mV[VX]*mV[VX] + mV[VY]*mV[VY] + mV[VZ]*mV[VZ]); | ||
252 | } | ||
253 | |||
254 | inline F32 LLVector4::magVecSquared(void) const | ||
255 | { | ||
256 | return mV[VX]*mV[VX] + mV[VY]*mV[VY] + mV[VZ]*mV[VZ]; | ||
257 | } | ||
258 | |||
259 | // LLVector4 Operators | ||
260 | |||
261 | inline LLVector4 operator+(const LLVector4 &a, const LLVector4 &b) | ||
262 | { | ||
263 | LLVector4 c(a); | ||
264 | return c += b; | ||
265 | } | ||
266 | |||
267 | inline LLVector4 operator-(const LLVector4 &a, const LLVector4 &b) | ||
268 | { | ||
269 | LLVector4 c(a); | ||
270 | return c -= b; | ||
271 | } | ||
272 | |||
273 | inline F32 operator*(const LLVector4 &a, const LLVector4 &b) | ||
274 | { | ||
275 | return (a.mV[VX]*b.mV[VX] + a.mV[VY]*b.mV[VY] + a.mV[VZ]*b.mV[VZ]); | ||
276 | } | ||
277 | |||
278 | inline LLVector4 operator%(const LLVector4 &a, const LLVector4 &b) | ||
279 | { | ||
280 | return LLVector4(a.mV[VY]*b.mV[VZ] - b.mV[VY]*a.mV[VZ], a.mV[VZ]*b.mV[VX] - b.mV[VZ]*a.mV[VX], a.mV[VX]*b.mV[VY] - b.mV[VX]*a.mV[VY]); | ||
281 | } | ||
282 | |||
283 | inline LLVector4 operator/(const LLVector4 &a, F32 k) | ||
284 | { | ||
285 | F32 t = 1.f / k; | ||
286 | return LLVector4( a.mV[VX] * t, a.mV[VY] * t, a.mV[VZ] * t ); | ||
287 | } | ||
288 | |||
289 | |||
290 | inline LLVector4 operator*(const LLVector4 &a, F32 k) | ||
291 | { | ||
292 | return LLVector4( a.mV[VX] * k, a.mV[VY] * k, a.mV[VZ] * k ); | ||
293 | } | ||
294 | |||
295 | inline LLVector4 operator*(F32 k, const LLVector4 &a) | ||
296 | { | ||
297 | return LLVector4( a.mV[VX] * k, a.mV[VY] * k, a.mV[VZ] * k ); | ||
298 | } | ||
299 | |||
300 | inline bool operator==(const LLVector4 &a, const LLVector4 &b) | ||
301 | { | ||
302 | return ( (a.mV[VX] == b.mV[VX]) | ||
303 | &&(a.mV[VY] == b.mV[VY]) | ||
304 | &&(a.mV[VZ] == b.mV[VZ])); | ||
305 | } | ||
306 | |||
307 | inline bool operator!=(const LLVector4 &a, const LLVector4 &b) | ||
308 | { | ||
309 | return ( (a.mV[VX] != b.mV[VX]) | ||
310 | ||(a.mV[VY] != b.mV[VY]) | ||
311 | ||(a.mV[VZ] != b.mV[VZ])); | ||
312 | } | ||
313 | |||
314 | inline const LLVector4& operator+=(LLVector4 &a, const LLVector4 &b) | ||
315 | { | ||
316 | a.mV[VX] += b.mV[VX]; | ||
317 | a.mV[VY] += b.mV[VY]; | ||
318 | a.mV[VZ] += b.mV[VZ]; | ||
319 | return a; | ||
320 | } | ||
321 | |||
322 | inline const LLVector4& operator-=(LLVector4 &a, const LLVector4 &b) | ||
323 | { | ||
324 | a.mV[VX] -= b.mV[VX]; | ||
325 | a.mV[VY] -= b.mV[VY]; | ||
326 | a.mV[VZ] -= b.mV[VZ]; | ||
327 | return a; | ||
328 | } | ||
329 | |||
330 | inline const LLVector4& operator%=(LLVector4 &a, const LLVector4 &b) | ||
331 | { | ||
332 | LLVector4 ret(a.mV[VY]*b.mV[VZ] - b.mV[VY]*a.mV[VZ], a.mV[VZ]*b.mV[VX] - b.mV[VZ]*a.mV[VX], a.mV[VX]*b.mV[VY] - b.mV[VX]*a.mV[VY]); | ||
333 | a = ret; | ||
334 | return a; | ||
335 | } | ||
336 | |||
337 | inline const LLVector4& operator*=(LLVector4 &a, F32 k) | ||
338 | { | ||
339 | a.mV[VX] *= k; | ||
340 | a.mV[VY] *= k; | ||
341 | a.mV[VZ] *= k; | ||
342 | return a; | ||
343 | } | ||
344 | |||
345 | inline const LLVector4& operator/=(LLVector4 &a, F32 k) | ||
346 | { | ||
347 | F32 t = 1.f / k; | ||
348 | a.mV[VX] *= t; | ||
349 | a.mV[VY] *= t; | ||
350 | a.mV[VZ] *= t; | ||
351 | return a; | ||
352 | } | ||
353 | |||
354 | inline LLVector4 operator-(const LLVector4 &a) | ||
355 | { | ||
356 | return LLVector4( -a.mV[VX], -a.mV[VY], -a.mV[VZ] ); | ||
357 | } | ||
358 | |||
359 | inline F32 dist_vec(const LLVector4 &a, const LLVector4 &b) | ||
360 | { | ||
361 | LLVector4 vec = a - b; | ||
362 | return (vec.magVec()); | ||
363 | } | ||
364 | |||
365 | inline F32 dist_vec_squared(const LLVector4 &a, const LLVector4 &b) | ||
366 | { | ||
367 | LLVector4 vec = a - b; | ||
368 | return (vec.magVecSquared()); | ||
369 | } | ||
370 | |||
371 | inline LLVector4 lerp(const LLVector4 &a, const LLVector4 &b, F32 u) | ||
372 | { | ||
373 | return LLVector4( | ||
374 | a.mV[VX] + (b.mV[VX] - a.mV[VX]) * u, | ||
375 | a.mV[VY] + (b.mV[VY] - a.mV[VY]) * u, | ||
376 | a.mV[VZ] + (b.mV[VZ] - a.mV[VZ]) * u, | ||
377 | a.mV[VW] + (b.mV[VW] - a.mV[VW]) * u); | ||
378 | } | ||
379 | |||
380 | inline F32 LLVector4::normVec(void) | ||
381 | { | ||
382 | F32 mag = fsqrtf(mV[VX]*mV[VX] + mV[VY]*mV[VY] + mV[VZ]*mV[VZ]); | ||
383 | F32 oomag; | ||
384 | |||
385 | if (mag > FP_MAG_THRESHOLD) | ||
386 | { | ||
387 | oomag = 1.f/mag; | ||
388 | mV[VX] *= oomag; | ||
389 | mV[VY] *= oomag; | ||
390 | mV[VZ] *= oomag; | ||
391 | } | ||
392 | else | ||
393 | { | ||
394 | mV[0] = 0.f; | ||
395 | mV[1] = 0.f; | ||
396 | mV[2] = 0.f; | ||
397 | mag = 0; | ||
398 | } | ||
399 | return (mag); | ||
400 | } | ||
401 | |||
402 | |||
403 | #endif | ||
404 | |||