diff options
Diffstat (limited to 'linden/indra/llmath/v3dmath.h')
-rw-r--r-- | linden/indra/llmath/v3dmath.h | 437 |
1 files changed, 437 insertions, 0 deletions
diff --git a/linden/indra/llmath/v3dmath.h b/linden/indra/llmath/v3dmath.h new file mode 100644 index 0000000..da13cc3 --- /dev/null +++ b/linden/indra/llmath/v3dmath.h | |||
@@ -0,0 +1,437 @@ | |||
1 | /** | ||
2 | * @file v3dmath.h | ||
3 | * @brief High precision 3 dimensional vector. | ||
4 | * | ||
5 | * Copyright (c) 2000-2007, Linden Research, Inc. | ||
6 | * | ||
7 | * The source code in this file ("Source Code") is provided by Linden Lab | ||
8 | * to you under the terms of the GNU General Public License, version 2.0 | ||
9 | * ("GPL"), unless you have obtained a separate licensing agreement | ||
10 | * ("Other License"), formally executed by you and Linden Lab. Terms of | ||
11 | * the GPL can be found in doc/GPL-license.txt in this distribution, or | ||
12 | * online at http://secondlife.com/developers/opensource/gplv2 | ||
13 | * | ||
14 | * There are special exceptions to the terms and conditions of the GPL as | ||
15 | * it is applied to this Source Code. View the full text of the exception | ||
16 | * in the file doc/FLOSS-exception.txt in this software distribution, or | ||
17 | * online at http://secondlife.com/developers/opensource/flossexception | ||
18 | * | ||
19 | * By copying, modifying or distributing this software, you acknowledge | ||
20 | * that you have read and understood your obligations described above, | ||
21 | * and agree to abide by those obligations. | ||
22 | * | ||
23 | * ALL LINDEN LAB SOURCE CODE IS PROVIDED "AS IS." LINDEN LAB MAKES NO | ||
24 | * WARRANTIES, EXPRESS, IMPLIED OR OTHERWISE, REGARDING ITS ACCURACY, | ||
25 | * COMPLETENESS OR PERFORMANCE. | ||
26 | */ | ||
27 | |||
28 | #ifndef LL_V3DMATH_H | ||
29 | #define LL_V3DMATH_H | ||
30 | |||
31 | #include "llerror.h" | ||
32 | #include "v3math.h" | ||
33 | |||
34 | class LLVector3d | ||
35 | { | ||
36 | public: | ||
37 | F64 mdV[3]; | ||
38 | |||
39 | const static LLVector3d zero; | ||
40 | const static LLVector3d x_axis; | ||
41 | const static LLVector3d y_axis; | ||
42 | const static LLVector3d z_axis; | ||
43 | const static LLVector3d x_axis_neg; | ||
44 | const static LLVector3d y_axis_neg; | ||
45 | const static LLVector3d z_axis_neg; | ||
46 | |||
47 | inline LLVector3d(); // Initializes LLVector3d to (0, 0, 0) | ||
48 | inline LLVector3d(const F64 x, const F64 y, const F64 z); // Initializes LLVector3d to (x. y, z) | ||
49 | inline explicit LLVector3d(const F64 *vec); // Initializes LLVector3d to (vec[0]. vec[1], vec[2]) | ||
50 | inline explicit LLVector3d(const LLVector3 &vec); | ||
51 | LLVector3d(const LLSD& sd) | ||
52 | { | ||
53 | setValue(sd); | ||
54 | } | ||
55 | |||
56 | void setValue(const LLSD& sd) | ||
57 | { | ||
58 | mdV[0] = sd[0].asReal(); | ||
59 | mdV[1] = sd[1].asReal(); | ||
60 | mdV[2] = sd[2].asReal(); | ||
61 | } | ||
62 | |||
63 | const LLVector3d& operator=(const LLSD& sd) | ||
64 | { | ||
65 | setValue(sd); | ||
66 | return *this; | ||
67 | } | ||
68 | |||
69 | LLSD getValue() const | ||
70 | { | ||
71 | LLSD ret; | ||
72 | ret[0] = mdV[0]; | ||
73 | ret[1] = mdV[1]; | ||
74 | ret[2] = mdV[2]; | ||
75 | return ret; | ||
76 | } | ||
77 | |||
78 | inline BOOL isFinite() const; // checks to see if all values of LLVector3d are finite | ||
79 | BOOL clamp(const F64 min, const F64 max); // Clamps all values to (min,max), returns TRUE if data changed | ||
80 | BOOL abs(); // sets all values to absolute value of original value (first octant), returns TRUE if changed | ||
81 | |||
82 | inline const LLVector3d& clearVec(); // Clears LLVector3d to (0, 0, 0, 1) | ||
83 | inline const LLVector3d& zeroVec(); // Zero LLVector3d to (0, 0, 0, 0) | ||
84 | inline const LLVector3d& setVec(const F64 x, const F64 y, const F64 z); // Sets LLVector3d to (x, y, z, 1) | ||
85 | inline const LLVector3d& setVec(const LLVector3d &vec); // Sets LLVector3d to vec | ||
86 | inline const LLVector3d& setVec(const F64 *vec); // Sets LLVector3d to vec | ||
87 | inline const LLVector3d& setVec(const LLVector3 &vec); | ||
88 | |||
89 | F64 magVec() const; // Returns magnitude of LLVector3d | ||
90 | F64 magVecSquared() const; // Returns magnitude squared of LLVector3d | ||
91 | inline F64 normVec(); // Normalizes and returns the magnitude of LLVector3d | ||
92 | |||
93 | const LLVector3d& rotVec(const F64 angle, const LLVector3d &vec); // Rotates about vec by angle radians | ||
94 | const LLVector3d& rotVec(const F64 angle, const F64 x, const F64 y, const F64 z); // Rotates about x,y,z by angle radians | ||
95 | const LLVector3d& rotVec(const LLMatrix3 &mat); // Rotates by LLMatrix4 mat | ||
96 | const LLVector3d& rotVec(const LLQuaternion &q); // Rotates by LLQuaternion q | ||
97 | |||
98 | BOOL isNull() const; // Returns TRUE if vector has a _very_small_ length | ||
99 | BOOL isExactlyZero() const { return !mdV[VX] && !mdV[VY] && !mdV[VZ]; } | ||
100 | |||
101 | const LLVector3d& operator=(const LLVector4 &a); | ||
102 | |||
103 | F64 operator[](int idx) const { return mdV[idx]; } | ||
104 | F64 &operator[](int idx) { return mdV[idx]; } | ||
105 | |||
106 | friend LLVector3d operator+(const LLVector3d &a, const LLVector3d &b); // Return vector a + b | ||
107 | friend LLVector3d operator-(const LLVector3d &a, const LLVector3d &b); // Return vector a minus b | ||
108 | friend F64 operator*(const LLVector3d &a, const LLVector3d &b); // Return a dot b | ||
109 | friend LLVector3d operator%(const LLVector3d &a, const LLVector3d &b); // Return a cross b | ||
110 | friend LLVector3d operator*(const LLVector3d &a, const F64 k); // Return a times scaler k | ||
111 | friend LLVector3d operator/(const LLVector3d &a, const F64 k); // Return a divided by scaler k | ||
112 | friend LLVector3d operator*(const F64 k, const LLVector3d &a); // Return a times scaler k | ||
113 | friend bool operator==(const LLVector3d &a, const LLVector3d &b); // Return a == b | ||
114 | friend bool operator!=(const LLVector3d &a, const LLVector3d &b); // Return a != b | ||
115 | |||
116 | friend const LLVector3d& operator+=(LLVector3d &a, const LLVector3d &b); // Return vector a + b | ||
117 | friend const LLVector3d& operator-=(LLVector3d &a, const LLVector3d &b); // Return vector a minus b | ||
118 | friend const LLVector3d& operator%=(LLVector3d &a, const LLVector3d &b); // Return a cross b | ||
119 | friend const LLVector3d& operator*=(LLVector3d &a, const F64 k); // Return a times scaler k | ||
120 | friend const LLVector3d& operator/=(LLVector3d &a, const F64 k); // Return a divided by scaler k | ||
121 | |||
122 | friend LLVector3d operator-(const LLVector3d &a); // Return vector -a | ||
123 | |||
124 | friend std::ostream& operator<<(std::ostream& s, const LLVector3d &a); // Stream a | ||
125 | |||
126 | static BOOL parseVector3d(const char* buf, LLVector3d* value); | ||
127 | |||
128 | }; | ||
129 | |||
130 | typedef LLVector3d LLGlobalVec; | ||
131 | |||
132 | const LLVector3d &LLVector3d::setVec(const LLVector3 &vec) | ||
133 | { | ||
134 | mdV[0] = vec.mV[0]; | ||
135 | mdV[1] = vec.mV[1]; | ||
136 | mdV[2] = vec.mV[2]; | ||
137 | return *this; | ||
138 | } | ||
139 | |||
140 | |||
141 | inline LLVector3d::LLVector3d(void) | ||
142 | { | ||
143 | mdV[0] = 0.f; | ||
144 | mdV[1] = 0.f; | ||
145 | mdV[2] = 0.f; | ||
146 | } | ||
147 | |||
148 | inline LLVector3d::LLVector3d(const F64 x, const F64 y, const F64 z) | ||
149 | { | ||
150 | mdV[VX] = x; | ||
151 | mdV[VY] = y; | ||
152 | mdV[VZ] = z; | ||
153 | } | ||
154 | |||
155 | inline LLVector3d::LLVector3d(const F64 *vec) | ||
156 | { | ||
157 | mdV[VX] = vec[VX]; | ||
158 | mdV[VY] = vec[VY]; | ||
159 | mdV[VZ] = vec[VZ]; | ||
160 | } | ||
161 | |||
162 | inline LLVector3d::LLVector3d(const LLVector3 &vec) | ||
163 | { | ||
164 | mdV[VX] = vec.mV[VX]; | ||
165 | mdV[VY] = vec.mV[VY]; | ||
166 | mdV[VZ] = vec.mV[VZ]; | ||
167 | } | ||
168 | |||
169 | /* | ||
170 | inline LLVector3d::LLVector3d(const LLVector3d ©) | ||
171 | { | ||
172 | mdV[VX] = copy.mdV[VX]; | ||
173 | mdV[VY] = copy.mdV[VY]; | ||
174 | mdV[VZ] = copy.mdV[VZ]; | ||
175 | } | ||
176 | */ | ||
177 | |||
178 | // Destructors | ||
179 | |||
180 | // checker | ||
181 | inline BOOL LLVector3d::isFinite() const | ||
182 | { | ||
183 | return (llfinite(mdV[VX]) && llfinite(mdV[VY]) && llfinite(mdV[VZ])); | ||
184 | } | ||
185 | |||
186 | |||
187 | // Clear and Assignment Functions | ||
188 | |||
189 | inline const LLVector3d& LLVector3d::clearVec(void) | ||
190 | { | ||
191 | mdV[0] = 0.f; | ||
192 | mdV[1] = 0.f; | ||
193 | mdV[2]= 0.f; | ||
194 | return (*this); | ||
195 | } | ||
196 | |||
197 | inline const LLVector3d& LLVector3d::zeroVec(void) | ||
198 | { | ||
199 | mdV[0] = 0.f; | ||
200 | mdV[1] = 0.f; | ||
201 | mdV[2] = 0.f; | ||
202 | return (*this); | ||
203 | } | ||
204 | |||
205 | inline const LLVector3d& LLVector3d::setVec(const F64 x, const F64 y, const F64 z) | ||
206 | { | ||
207 | mdV[VX] = x; | ||
208 | mdV[VY] = y; | ||
209 | mdV[VZ] = z; | ||
210 | return (*this); | ||
211 | } | ||
212 | |||
213 | inline const LLVector3d& LLVector3d::setVec(const LLVector3d &vec) | ||
214 | { | ||
215 | mdV[0] = vec.mdV[0]; | ||
216 | mdV[1] = vec.mdV[1]; | ||
217 | mdV[2] = vec.mdV[2]; | ||
218 | return (*this); | ||
219 | } | ||
220 | |||
221 | inline const LLVector3d& LLVector3d::setVec(const F64 *vec) | ||
222 | { | ||
223 | mdV[0] = vec[0]; | ||
224 | mdV[1] = vec[1]; | ||
225 | mdV[2] = vec[2]; | ||
226 | return (*this); | ||
227 | } | ||
228 | |||
229 | inline F64 LLVector3d::normVec(void) | ||
230 | { | ||
231 | F64 mag = fsqrtf(mdV[0]*mdV[0] + mdV[1]*mdV[1] + mdV[2]*mdV[2]); | ||
232 | F64 oomag; | ||
233 | |||
234 | if (mag > FP_MAG_THRESHOLD) | ||
235 | { | ||
236 | oomag = 1.f/mag; | ||
237 | mdV[0] *= oomag; | ||
238 | mdV[1] *= oomag; | ||
239 | mdV[2] *= oomag; | ||
240 | } | ||
241 | else | ||
242 | { | ||
243 | mdV[0] = 0.f; | ||
244 | mdV[1] = 0.f; | ||
245 | mdV[2] = 0.f; | ||
246 | mag = 0; | ||
247 | } | ||
248 | return (mag); | ||
249 | } | ||
250 | |||
251 | // LLVector3d Magnitude and Normalization Functions | ||
252 | |||
253 | inline F64 LLVector3d::magVec(void) const | ||
254 | { | ||
255 | return fsqrtf(mdV[0]*mdV[0] + mdV[1]*mdV[1] + mdV[2]*mdV[2]); | ||
256 | } | ||
257 | |||
258 | inline F64 LLVector3d::magVecSquared(void) const | ||
259 | { | ||
260 | return mdV[0]*mdV[0] + mdV[1]*mdV[1] + mdV[2]*mdV[2]; | ||
261 | } | ||
262 | |||
263 | inline LLVector3d operator+(const LLVector3d &a, const LLVector3d &b) | ||
264 | { | ||
265 | LLVector3d c(a); | ||
266 | return c += b; | ||
267 | } | ||
268 | |||
269 | inline LLVector3d operator-(const LLVector3d &a, const LLVector3d &b) | ||
270 | { | ||
271 | LLVector3d c(a); | ||
272 | return c -= b; | ||
273 | } | ||
274 | |||
275 | inline F64 operator*(const LLVector3d &a, const LLVector3d &b) | ||
276 | { | ||
277 | return (a.mdV[0]*b.mdV[0] + a.mdV[1]*b.mdV[1] + a.mdV[2]*b.mdV[2]); | ||
278 | } | ||
279 | |||
280 | inline LLVector3d operator%(const LLVector3d &a, const LLVector3d &b) | ||
281 | { | ||
282 | return LLVector3d( a.mdV[1]*b.mdV[2] - b.mdV[1]*a.mdV[2], a.mdV[2]*b.mdV[0] - b.mdV[2]*a.mdV[0], a.mdV[0]*b.mdV[1] - b.mdV[0]*a.mdV[1] ); | ||
283 | } | ||
284 | |||
285 | inline LLVector3d operator/(const LLVector3d &a, const F64 k) | ||
286 | { | ||
287 | F64 t = 1.f / k; | ||
288 | return LLVector3d( a.mdV[0] * t, a.mdV[1] * t, a.mdV[2] * t ); | ||
289 | } | ||
290 | |||
291 | inline LLVector3d operator*(const LLVector3d &a, const F64 k) | ||
292 | { | ||
293 | return LLVector3d( a.mdV[0] * k, a.mdV[1] * k, a.mdV[2] * k ); | ||
294 | } | ||
295 | |||
296 | inline LLVector3d operator*(F64 k, const LLVector3d &a) | ||
297 | { | ||
298 | return LLVector3d( a.mdV[0] * k, a.mdV[1] * k, a.mdV[2] * k ); | ||
299 | } | ||
300 | |||
301 | inline bool operator==(const LLVector3d &a, const LLVector3d &b) | ||
302 | { | ||
303 | return ( (a.mdV[0] == b.mdV[0]) | ||
304 | &&(a.mdV[1] == b.mdV[1]) | ||
305 | &&(a.mdV[2] == b.mdV[2])); | ||
306 | } | ||
307 | |||
308 | inline bool operator!=(const LLVector3d &a, const LLVector3d &b) | ||
309 | { | ||
310 | return ( (a.mdV[0] != b.mdV[0]) | ||
311 | ||(a.mdV[1] != b.mdV[1]) | ||
312 | ||(a.mdV[2] != b.mdV[2])); | ||
313 | } | ||
314 | |||
315 | inline const LLVector3d& operator+=(LLVector3d &a, const LLVector3d &b) | ||
316 | { | ||
317 | a.mdV[0] += b.mdV[0]; | ||
318 | a.mdV[1] += b.mdV[1]; | ||
319 | a.mdV[2] += b.mdV[2]; | ||
320 | return a; | ||
321 | } | ||
322 | |||
323 | inline const LLVector3d& operator-=(LLVector3d &a, const LLVector3d &b) | ||
324 | { | ||
325 | a.mdV[0] -= b.mdV[0]; | ||
326 | a.mdV[1] -= b.mdV[1]; | ||
327 | a.mdV[2] -= b.mdV[2]; | ||
328 | return a; | ||
329 | } | ||
330 | |||
331 | inline const LLVector3d& operator%=(LLVector3d &a, const LLVector3d &b) | ||
332 | { | ||
333 | LLVector3d ret( a.mdV[1]*b.mdV[2] - b.mdV[1]*a.mdV[2], a.mdV[2]*b.mdV[0] - b.mdV[2]*a.mdV[0], a.mdV[0]*b.mdV[1] - b.mdV[0]*a.mdV[1]); | ||
334 | a = ret; | ||
335 | return a; | ||
336 | } | ||
337 | |||
338 | inline const LLVector3d& operator*=(LLVector3d &a, const F64 k) | ||
339 | { | ||
340 | a.mdV[0] *= k; | ||
341 | a.mdV[1] *= k; | ||
342 | a.mdV[2] *= k; | ||
343 | return a; | ||
344 | } | ||
345 | |||
346 | inline const LLVector3d& operator/=(LLVector3d &a, const F64 k) | ||
347 | { | ||
348 | F64 t = 1.f / k; | ||
349 | a.mdV[0] *= t; | ||
350 | a.mdV[1] *= t; | ||
351 | a.mdV[2] *= t; | ||
352 | return a; | ||
353 | } | ||
354 | |||
355 | inline LLVector3d operator-(const LLVector3d &a) | ||
356 | { | ||
357 | return LLVector3d( -a.mdV[0], -a.mdV[1], -a.mdV[2] ); | ||
358 | } | ||
359 | |||
360 | inline F64 dist_vec(const LLVector3d &a, const LLVector3d &b) | ||
361 | { | ||
362 | F64 x = a.mdV[0] - b.mdV[0]; | ||
363 | F64 y = a.mdV[1] - b.mdV[1]; | ||
364 | F64 z = a.mdV[2] - b.mdV[2]; | ||
365 | return fsqrtf( x*x + y*y + z*z ); | ||
366 | } | ||
367 | |||
368 | inline F64 dist_vec_squared(const LLVector3d &a, const LLVector3d &b) | ||
369 | { | ||
370 | F64 x = a.mdV[0] - b.mdV[0]; | ||
371 | F64 y = a.mdV[1] - b.mdV[1]; | ||
372 | F64 z = a.mdV[2] - b.mdV[2]; | ||
373 | return x*x + y*y + z*z; | ||
374 | } | ||
375 | |||
376 | inline F64 dist_vec_squared2D(const LLVector3d &a, const LLVector3d &b) | ||
377 | { | ||
378 | F64 x = a.mdV[0] - b.mdV[0]; | ||
379 | F64 y = a.mdV[1] - b.mdV[1]; | ||
380 | return x*x + y*y; | ||
381 | } | ||
382 | |||
383 | inline LLVector3d lerp(const LLVector3d &a, const LLVector3d &b, const F64 u) | ||
384 | { | ||
385 | return LLVector3d( | ||
386 | a.mdV[VX] + (b.mdV[VX] - a.mdV[VX]) * u, | ||
387 | a.mdV[VY] + (b.mdV[VY] - a.mdV[VY]) * u, | ||
388 | a.mdV[VZ] + (b.mdV[VZ] - a.mdV[VZ]) * u); | ||
389 | } | ||
390 | |||
391 | |||
392 | inline BOOL LLVector3d::isNull() const | ||
393 | { | ||
394 | if ( F_APPROXIMATELY_ZERO > mdV[VX]*mdV[VX] + mdV[VY]*mdV[VY] + mdV[VZ]*mdV[VZ] ) | ||
395 | { | ||
396 | return TRUE; | ||
397 | } | ||
398 | return FALSE; | ||
399 | } | ||
400 | |||
401 | |||
402 | inline F64 angle_between(const LLVector3d& a, const LLVector3d& b) | ||
403 | { | ||
404 | LLVector3d an = a; | ||
405 | LLVector3d bn = b; | ||
406 | an.normVec(); | ||
407 | bn.normVec(); | ||
408 | F64 cosine = an * bn; | ||
409 | F64 angle = (cosine >= 1.0f) ? 0.0f : | ||
410 | (cosine <= -1.0f) ? F_PI : | ||
411 | acos(cosine); | ||
412 | return angle; | ||
413 | } | ||
414 | |||
415 | inline BOOL are_parallel(const LLVector3d &a, const LLVector3d &b, const F64 epsilon) | ||
416 | { | ||
417 | LLVector3d an = a; | ||
418 | LLVector3d bn = b; | ||
419 | an.normVec(); | ||
420 | bn.normVec(); | ||
421 | F64 dot = an * bn; | ||
422 | if ( (1.0f - fabs(dot)) < epsilon) | ||
423 | { | ||
424 | return TRUE; | ||
425 | } | ||
426 | return FALSE; | ||
427 | |||
428 | } | ||
429 | |||
430 | inline LLVector3d projected_vec(const LLVector3d &a, const LLVector3d &b) | ||
431 | { | ||
432 | LLVector3d project_axis = b; | ||
433 | project_axis.normVec(); | ||
434 | return project_axis * (a * project_axis); | ||
435 | } | ||
436 | |||
437 | #endif // LL_V3DMATH_H | ||