diff options
Diffstat (limited to '')
-rw-r--r-- | linden/indra/llmath/llsphere.cpp | 364 |
1 files changed, 364 insertions, 0 deletions
diff --git a/linden/indra/llmath/llsphere.cpp b/linden/indra/llmath/llsphere.cpp new file mode 100644 index 0000000..62f6e27 --- /dev/null +++ b/linden/indra/llmath/llsphere.cpp | |||
@@ -0,0 +1,364 @@ | |||
1 | /** | ||
2 | * @file llsphere.cpp | ||
3 | * @author Andrew Meadows | ||
4 | * @brief Simple line class that can compute nearest approach between two lines | ||
5 | * | ||
6 | * $LicenseInfo:firstyear=2006&license=internal$ | ||
7 | * | ||
8 | * Copyright (c) 2006-2008, Linden Research, Inc. | ||
9 | * | ||
10 | * The following source code is PROPRIETARY AND CONFIDENTIAL. Use of | ||
11 | * this source code is governed by the Linden Lab Source Code Disclosure | ||
12 | * Agreement ("Agreement") previously entered between you and Linden | ||
13 | * Lab. By accessing, using, copying, modifying or distributing this | ||
14 | * software, you acknowledge that you have been informed of your | ||
15 | * obligations under the Agreement and agree to abide by those obligations. | ||
16 | * | ||
17 | * ALL LINDEN LAB SOURCE CODE IS PROVIDED "AS IS." LINDEN LAB MAKES NO | ||
18 | * WARRANTIES, EXPRESS, IMPLIED OR OTHERWISE, REGARDING ITS ACCURACY, | ||
19 | * COMPLETENESS OR PERFORMANCE. | ||
20 | * $/LicenseInfo$ | ||
21 | */ | ||
22 | |||
23 | #include "llsphere.h" | ||
24 | |||
25 | LLSphere::LLSphere() | ||
26 | : mCenter(0.f, 0.f, 0.f), | ||
27 | mRadius(0.f) | ||
28 | { } | ||
29 | |||
30 | LLSphere::LLSphere( const LLVector3& center, F32 radius) | ||
31 | { | ||
32 | set(center, radius); | ||
33 | } | ||
34 | |||
35 | void LLSphere::set( const LLVector3& center, F32 radius ) | ||
36 | { | ||
37 | mCenter = center; | ||
38 | setRadius(radius); | ||
39 | } | ||
40 | |||
41 | void LLSphere::setCenter( const LLVector3& center) | ||
42 | { | ||
43 | mCenter = center; | ||
44 | } | ||
45 | |||
46 | void LLSphere::setRadius( F32 radius) | ||
47 | { | ||
48 | if (radius < 0.f) | ||
49 | { | ||
50 | radius = -radius; | ||
51 | } | ||
52 | mRadius = radius; | ||
53 | } | ||
54 | |||
55 | const LLVector3& LLSphere::getCenter() const | ||
56 | { | ||
57 | return mCenter; | ||
58 | } | ||
59 | |||
60 | F32 LLSphere::getRadius() const | ||
61 | { | ||
62 | return mRadius; | ||
63 | } | ||
64 | |||
65 | // returns 'TRUE' if this sphere completely contains other_sphere | ||
66 | BOOL LLSphere::contains(const LLSphere& other_sphere) const | ||
67 | { | ||
68 | F32 separation = (mCenter - other_sphere.mCenter).length(); | ||
69 | return (mRadius >= separation + other_sphere.mRadius) ? TRUE : FALSE; | ||
70 | } | ||
71 | |||
72 | // returns 'TRUE' if this sphere completely contains other_sphere | ||
73 | BOOL LLSphere::overlaps(const LLSphere& other_sphere) const | ||
74 | { | ||
75 | F32 separation = (mCenter - other_sphere.mCenter).length(); | ||
76 | return (separation <= mRadius + other_sphere.mRadius) ? TRUE : FALSE; | ||
77 | } | ||
78 | |||
79 | // returns overlap | ||
80 | // negative overlap is closest approach | ||
81 | F32 LLSphere::getOverlap(const LLSphere& other_sphere) const | ||
82 | { | ||
83 | // separation is distance from other_sphere's edge and this center | ||
84 | return (mCenter - other_sphere.mCenter).length() - mRadius - other_sphere.mRadius; | ||
85 | } | ||
86 | |||
87 | bool LLSphere::operator==(const LLSphere& rhs) const | ||
88 | { | ||
89 | // TODO? -- use approximate equality for centers? | ||
90 | return (mRadius == rhs.mRadius | ||
91 | && mCenter == rhs.mCenter); | ||
92 | } | ||
93 | |||
94 | std::ostream& operator<<( std::ostream& output_stream, const LLSphere& sphere) | ||
95 | { | ||
96 | output_stream << "{center=" << sphere.mCenter << "," << "radius=" << sphere.mRadius << "}"; | ||
97 | return output_stream; | ||
98 | } | ||
99 | |||
100 | // static | ||
101 | // removes any spheres that are contained in others | ||
102 | void LLSphere::collapse(std::vector<LLSphere>& sphere_list) | ||
103 | { | ||
104 | std::vector<LLSphere>::iterator first_itr = sphere_list.begin(); | ||
105 | while (first_itr != sphere_list.end()) | ||
106 | { | ||
107 | bool delete_from_front = false; | ||
108 | |||
109 | std::vector<LLSphere>::iterator second_itr = first_itr; | ||
110 | ++second_itr; | ||
111 | while (second_itr != sphere_list.end()) | ||
112 | { | ||
113 | if (second_itr->contains(*first_itr)) | ||
114 | { | ||
115 | delete_from_front = true; | ||
116 | break; | ||
117 | } | ||
118 | else if (first_itr->contains(*second_itr)) | ||
119 | { | ||
120 | sphere_list.erase(second_itr++); | ||
121 | } | ||
122 | else | ||
123 | { | ||
124 | ++second_itr; | ||
125 | } | ||
126 | } | ||
127 | |||
128 | if (delete_from_front) | ||
129 | { | ||
130 | sphere_list.erase(first_itr++); | ||
131 | } | ||
132 | else | ||
133 | { | ||
134 | ++first_itr; | ||
135 | } | ||
136 | } | ||
137 | } | ||
138 | |||
139 | // static | ||
140 | // returns the bounding sphere that contains both spheres | ||
141 | LLSphere LLSphere::getBoundingSphere(const LLSphere& first_sphere, const LLSphere& second_sphere) | ||
142 | { | ||
143 | LLVector3 direction = second_sphere.mCenter - first_sphere.mCenter; | ||
144 | |||
145 | // HACK -- it is possible to get enough floating point error in the | ||
146 | // other getBoundingSphere() method that we have to add some slop | ||
147 | // at the end. Unfortunately, this breaks the link-order invarience | ||
148 | // for the linkability tests... unless we also apply the same slop | ||
149 | // here. | ||
150 | F32 half_milimeter = 0.0005f; | ||
151 | |||
152 | F32 distance = direction.length(); | ||
153 | if (0.f == distance) | ||
154 | { | ||
155 | direction.setVec(1.f, 0.f, 0.f); | ||
156 | } | ||
157 | else | ||
158 | { | ||
159 | direction.normVec(); | ||
160 | } | ||
161 | // the 'edge' is measured from the first_sphere's center | ||
162 | F32 max_edge = 0.f; | ||
163 | F32 min_edge = 0.f; | ||
164 | |||
165 | max_edge = llmax(max_edge + first_sphere.getRadius(), max_edge + distance + second_sphere.getRadius() + half_milimeter); | ||
166 | min_edge = llmin(min_edge - first_sphere.getRadius(), min_edge + distance - second_sphere.getRadius() - half_milimeter); | ||
167 | F32 radius = 0.5f * (max_edge - min_edge); | ||
168 | LLVector3 center = first_sphere.mCenter + (0.5f * (max_edge + min_edge)) * direction; | ||
169 | return LLSphere(center, radius); | ||
170 | } | ||
171 | |||
172 | // static | ||
173 | // returns the bounding sphere that contains an arbitrary set of spheres | ||
174 | LLSphere LLSphere::getBoundingSphere(const std::vector<LLSphere>& sphere_list) | ||
175 | { | ||
176 | // this algorithm can get relatively inaccurate when the sphere | ||
177 | // collection is 'small' (contained within a bounding sphere of about | ||
178 | // 2 meters or less) | ||
179 | // TODO -- improve the accuracy for small collections of spheres | ||
180 | |||
181 | LLSphere bounding_sphere( LLVector3(0.f, 0.f, 0.f), 0.f ); | ||
182 | S32 sphere_count = sphere_list.size(); | ||
183 | if (1 == sphere_count) | ||
184 | { | ||
185 | // trivial case -- single sphere | ||
186 | std::vector<LLSphere>::const_iterator sphere_itr = sphere_list.begin(); | ||
187 | bounding_sphere = *sphere_itr; | ||
188 | } | ||
189 | else if (2 == sphere_count) | ||
190 | { | ||
191 | // trivial case -- two spheres | ||
192 | std::vector<LLSphere>::const_iterator first_sphere = sphere_list.begin(); | ||
193 | std::vector<LLSphere>::const_iterator second_sphere = first_sphere; | ||
194 | ++second_sphere; | ||
195 | bounding_sphere = LLSphere::getBoundingSphere(*first_sphere, *second_sphere); | ||
196 | } | ||
197 | else if (sphere_count > 0) | ||
198 | { | ||
199 | // non-trivial case -- we will approximate the solution | ||
200 | // | ||
201 | // NOTE -- there is a fancy/fast way to do this for large | ||
202 | // numbers of arbirary N-dimensional spheres -- you can look it | ||
203 | // up on the net. We're dealing with 3D spheres at collection | ||
204 | // sizes of 256 spheres or smaller, so we just use this | ||
205 | // brute force method. | ||
206 | |||
207 | // TODO -- perhaps would be worthwile to test for the solution where | ||
208 | // the largest spanning radius just happens to work. That is, where | ||
209 | // there are really two spheres that determine the bounding sphere, | ||
210 | // and all others are contained therein. | ||
211 | |||
212 | // compute the AABB | ||
213 | std::vector<LLSphere>::const_iterator first_itr = sphere_list.begin(); | ||
214 | LLVector3 max_corner = first_itr->getCenter() + first_itr->getRadius() * LLVector3(1.f, 1.f, 1.f); | ||
215 | LLVector3 min_corner = first_itr->getCenter() - first_itr->getRadius() * LLVector3(1.f, 1.f, 1.f); | ||
216 | { | ||
217 | std::vector<LLSphere>::const_iterator sphere_itr = sphere_list.begin(); | ||
218 | for (++sphere_itr; sphere_itr != sphere_list.end(); ++sphere_itr) | ||
219 | { | ||
220 | LLVector3 center = sphere_itr->getCenter(); | ||
221 | F32 radius = sphere_itr->getRadius(); | ||
222 | for (S32 i=0; i<3; ++i) | ||
223 | { | ||
224 | if (center.mV[i] + radius > max_corner.mV[i]) | ||
225 | { | ||
226 | max_corner.mV[i] = center.mV[i] + radius; | ||
227 | } | ||
228 | if (center.mV[i] - radius < min_corner.mV[i]) | ||
229 | { | ||
230 | min_corner.mV[i] = center.mV[i] - radius; | ||
231 | } | ||
232 | } | ||
233 | } | ||
234 | } | ||
235 | |||
236 | // get the starting center and radius from the AABB | ||
237 | LLVector3 diagonal = max_corner - min_corner; | ||
238 | F32 bounding_radius = 0.5f * diagonal.length(); | ||
239 | LLVector3 bounding_center = 0.5f * (max_corner + min_corner); | ||
240 | |||
241 | // compute the starting step-size | ||
242 | F32 minimum_radius = 0.5f * llmin(diagonal.mV[VX], llmin(diagonal.mV[VY], diagonal.mV[VZ])); | ||
243 | F32 step_length = bounding_radius - minimum_radius; | ||
244 | S32 step_count = 0; | ||
245 | S32 max_step_count = 12; | ||
246 | F32 half_milimeter = 0.0005f; | ||
247 | |||
248 | // wander the center around in search of tighter solutions | ||
249 | S32 last_dx = 2; // 2 is out of bounds --> no match | ||
250 | S32 last_dy = 2; | ||
251 | S32 last_dz = 2; | ||
252 | |||
253 | while (step_length > half_milimeter | ||
254 | && step_count < max_step_count) | ||
255 | { | ||
256 | // the algorithm for testing the maximum radius could be expensive enough | ||
257 | // that it makes sense to NOT duplicate testing when possible, so we keep | ||
258 | // track of where we last tested, and only test the new points | ||
259 | |||
260 | S32 best_dx = 0; | ||
261 | S32 best_dy = 0; | ||
262 | S32 best_dz = 0; | ||
263 | |||
264 | // sample near the center of the box | ||
265 | bool found_better_center = false; | ||
266 | for (S32 dx = -1; dx < 2; ++dx) | ||
267 | { | ||
268 | for (S32 dy = -1; dy < 2; ++dy) | ||
269 | { | ||
270 | for (S32 dz = -1; dz < 2; ++dz) | ||
271 | { | ||
272 | if (dx == 0 && dy == 0 && dz == 0) | ||
273 | { | ||
274 | continue; | ||
275 | } | ||
276 | |||
277 | // count the number of indecies that match the last_*'s | ||
278 | S32 match_count = 0; | ||
279 | if (last_dx == dx) ++match_count; | ||
280 | if (last_dy == dy) ++match_count; | ||
281 | if (last_dz == dz) ++match_count; | ||
282 | if (match_count == 2) | ||
283 | { | ||
284 | // we've already tested this point | ||
285 | continue; | ||
286 | } | ||
287 | |||
288 | LLVector3 center = bounding_center; | ||
289 | center.mV[VX] += (F32) dx * step_length; | ||
290 | center.mV[VY] += (F32) dy * step_length; | ||
291 | center.mV[VZ] += (F32) dz * step_length; | ||
292 | |||
293 | // compute the radius of the bounding sphere | ||
294 | F32 max_radius = 0.f; | ||
295 | std::vector<LLSphere>::const_iterator sphere_itr; | ||
296 | for (sphere_itr = sphere_list.begin(); sphere_itr != sphere_list.end(); ++sphere_itr) | ||
297 | { | ||
298 | F32 radius = (sphere_itr->getCenter() - center).length() + sphere_itr->getRadius(); | ||
299 | if (radius > max_radius) | ||
300 | { | ||
301 | max_radius = radius; | ||
302 | } | ||
303 | } | ||
304 | if (max_radius < bounding_radius) | ||
305 | { | ||
306 | best_dx = dx; | ||
307 | best_dy = dy; | ||
308 | best_dz = dz; | ||
309 | bounding_center = center; | ||
310 | bounding_radius = max_radius; | ||
311 | found_better_center = true; | ||
312 | } | ||
313 | } | ||
314 | } | ||
315 | } | ||
316 | if (found_better_center) | ||
317 | { | ||
318 | // remember where we came from so we can avoid retesting | ||
319 | last_dx = -best_dx; | ||
320 | last_dy = -best_dy; | ||
321 | last_dz = -best_dz; | ||
322 | } | ||
323 | else | ||
324 | { | ||
325 | // reduce the step size | ||
326 | step_length *= 0.5f; | ||
327 | //++step_count; | ||
328 | // reset the last_*'s | ||
329 | last_dx = 2; // 2 is out of bounds --> no match | ||
330 | last_dy = 2; | ||
331 | last_dz = 2; | ||
332 | } | ||
333 | } | ||
334 | |||
335 | // HACK -- it is possible to get enough floating point error for the | ||
336 | // bounding sphere to too small on the order of 10e-6, but we only need | ||
337 | // it to be accurate to within about half a millimeter | ||
338 | bounding_radius += half_milimeter; | ||
339 | |||
340 | // this algorithm can get relatively inaccurate when the sphere | ||
341 | // collection is 'small' (contained within a bounding sphere of about | ||
342 | // 2 meters or less) | ||
343 | // TODO -- fix this | ||
344 | /* debug code | ||
345 | { | ||
346 | std::vector<LLSphere>::const_iterator sphere_itr; | ||
347 | for (sphere_itr = sphere_list.begin(); sphere_itr != sphere_list.end(); ++sphere_itr) | ||
348 | { | ||
349 | F32 radius = (sphere_itr->getCenter() - bounding_center).length() + sphere_itr->getRadius(); | ||
350 | if (radius + 0.1f > bounding_radius) | ||
351 | { | ||
352 | std::cout << " rad = " << radius << " bounding - rad = " << (bounding_radius - radius) << std::endl; | ||
353 | } | ||
354 | } | ||
355 | std::cout << "\n" << std::endl; | ||
356 | } | ||
357 | */ | ||
358 | |||
359 | bounding_sphere.set(bounding_center, bounding_radius); | ||
360 | } | ||
361 | return bounding_sphere; | ||
362 | } | ||
363 | |||
364 | |||