aboutsummaryrefslogtreecommitdiffstatshomepage
path: root/linden/indra/llmath/llrand.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'linden/indra/llmath/llrand.cpp')
-rw-r--r--linden/indra/llmath/llrand.cpp107
1 files changed, 101 insertions, 6 deletions
diff --git a/linden/indra/llmath/llrand.cpp b/linden/indra/llmath/llrand.cpp
index 4c214c4..c0f03d2 100644
--- a/linden/indra/llmath/llrand.cpp
+++ b/linden/indra/llmath/llrand.cpp
@@ -30,34 +30,129 @@
30#include "llrand.h" 30#include "llrand.h"
31#include "lluuid.h" 31#include "lluuid.h"
32 32
33/**
34 * Through analysis, we have decided that we want to take values which
35 * are close enough to 1.0 to map back to 0.0. We came to this
36 * conclusion from noting that:
37 *
38 * [0.0, 1.0)
39 *
40 * when scaled to the integer set:
41 *
42 * [0, 4)
43 *
44 * there is some value close enough to 1.0 that when multiplying by 4,
45 * gets truncated to 4. Therefore:
46 *
47 * [0,1-eps] => 0
48 * [1,2-eps] => 1
49 * [2,3-eps] => 2
50 * [3,4-eps] => 3
51 *
52 * So 0 gets uneven distribution if we simply clamp. The actual
53 * clamp utilized in this file is to map values out of range back
54 * to 0 to restore uniform distribution.
55 *
56 * Also, for clamping floats when asking for a distribution from
57 * [0.0,g) we have determined that for values of g < 0.5, then
58 * rand*g=g, which is not the desired result. As above, we clamp to 0
59 * to restore uniform distribution.
60 */
61
62// *NOTE: The system rand implementation is probably not correct.
63#define LL_USE_SYSTEM_RAND 0
64
65#if LL_USE_SYSTEM_RAND
66#include <stdlib.h>
67#endif
68
69#if LL_USE_SYSTEM_RAND
70class LLSeedRand
71{
72public:
73 LLSeedRand()
74 {
75#if LL_WINDOWS
76 srand(LLUUID::getRandomSeed());
77#else
78 srand48(LLUUID::getRandomSeed());
79#endif
80 }
81};
82static LLSeedRand sRandomSeeder;
83inline F64 ll_internal_random_double()
84{
85#if LL_WINDOWS
86 return (F64)rand() / (F64)RAND_MAX;
87#else
88 return drand48();
89#endif
90}
91inline F32 ll_internal_random_float()
92{
93#if LL_WINDOWS
94 return (F32)rand() / (F32)RAND_MAX;
95#else
96 return (F32)drand48();
97#endif
98}
99#else
33static LLRandLagFib2281 gRandomGenerator(LLUUID::getRandomSeed()); 100static LLRandLagFib2281 gRandomGenerator(LLUUID::getRandomSeed());
101inline F64 ll_internal_random_double()
102{
103 // *HACK: Through experimentation, we have found that dual core
104 // CPUs (or at least multi-threaded processes) seem to
105 // occasionally give an obviously incorrect random number -- like
106 // 5^15 or something. Sooooo, clamp it as described above.
107 F64 rv = gRandomGenerator();
108 if(!((rv >= 0.0) && (rv < 1.0))) return 0.0;
109 return rv;
110}
111
112inline F32 ll_internal_random_float()
113{
114 // The clamping rules are described above.
115 F32 rv = (F32)gRandomGenerator();
116 if(!((rv >= 0.0f) && (rv < 1.0f))) return 0.0f;
117 return rv;
118}
119#endif
34 120
35S32 ll_rand() 121S32 ll_rand()
36{ 122{
37 return (S32)(gRandomGenerator() * RAND_MAX); 123 return ll_rand(RAND_MAX);
38} 124}
39 125
40S32 ll_rand(S32 val) 126S32 ll_rand(S32 val)
41{ 127{
42 return (S32)(gRandomGenerator() * val); 128 // The clamping rules are described above.
129 S32 rv = (S32)(ll_internal_random_double() * val);
130 if(rv == val) return 0;
131 return rv;
43} 132}
44 133
45F32 ll_frand() 134F32 ll_frand()
46{ 135{
47 return (F32)gRandomGenerator(); 136 return ll_internal_random_float();
48} 137}
49 138
50F32 ll_frand(F32 val) 139F32 ll_frand(F32 val)
51{ 140{
52 return (F32)gRandomGenerator() * val; 141 // The clamping rules are described above.
142 F32 rv = ll_internal_random_float() * val;
143 if(rv >= val) return 0.0f;
144 return rv;
53} 145}
54 146
55F64 ll_drand() 147F64 ll_drand()
56{ 148{
57 return gRandomGenerator(); 149 return ll_internal_random_double();
58} 150}
59 151
60F64 ll_drand(F64 val) 152F64 ll_drand(F64 val)
61{ 153{
62 return gRandomGenerator() * val; 154 // The clamping rules are described above.
155 F64 rv = ll_internal_random_double() * val;
156 if(rv >= val) return 0.0;
157 return rv;
63} 158}